Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
The replication of Study 52: [Png et al., 2012][1] was [not pursued][2]; however, this project contains all information pertaining to the attempted replication of key experiments from this paper. It includes the detailed protocols, reagents, and author clarifications where they are available. <br> **Original paper:** <br> Png K.J., Halberg N., Yoshida M., Tavazoie S.F.<a href="http://www.nature.com/nature/journal/v481/n7380/full/nature10661.html"> A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells.</a> Nature. 2012 Jan 12;481(7380):190-4. doi: 10.1038/nature10661. <br> **Original abstract:**<br> Metastatic progression of cancer is a complex and clinically daunting process. We previously identified a set of human microRNAs (miRNAs) that robustly suppress breast cancer metastasis to lung and bone and which display expression levels that predict human metastasis. Although these findings revealed miRNAs as suppressors of cell-autonomous metastatic phenotypes, the roles of non-coding RNAs in non-cell-autonomous cancer progression processes remain unknown. Here we reveal that endogenous miR-126, an miRNA silenced in a variety of common human cancers, non-cell-autonomously regulates endothelial cell recruitment to metastatic breast cancer cells, in vitro and in vivo. It suppresses metastatic endothelial recruitment, metastatic angiogenesis and metastatic colonization through coordinate targeting of IGFBP2, PITPNC1 and MERTK—novel pro-angiogenic genes and bio-markers of human metastasis. Insulin-like growth factor binding protein 2 (IGFBP2) secreted by metastatic cells recruits endothelia by modulating IGF1-mediated activation of the IGF type-I receptor on endothelial cells; whereas c-Mer tyrosine kinase (MERTK) receptor cleaved from metastatic cells promotes endothelial recruitment by competitively antagonizing the binding of its ligand GAS6 to endothelial MERTK receptors. Co-injection of endothelial cells with breast cancer cells non-cell-autonomously rescues their miR- 126-induced metastatic defect, revealing a novel and important role for endothelial interactions in metastatic initiation. Through loss-of-function and epistasis experiments, we delineate an miRNA regulatory network’s individual components as novel and cell- extrinsic regulators of endothelial recruitment, angiogenesis and metastatic colonization. We also identify the IGFBP2/IGF1/IGF1R and GAS6/MERTK signalling pathways as regulators of cancer-mediated endothelial recruitment. Our work further reveals endothelial recruitment and endothelial interactions in the tumour microenvironment to be critical features of metastatic breast cancer. [1]: http://www.nature.com/nature/journal/v481/n7380/full/nature10661.html [2]: https://osf.io/ucpye/
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.