Prior sensitivity analysis in default Bayesian structural equation modeling

  1. Joris Mulder

Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models while solving some of the issues often encountered in classical maximum likelihood (ML) estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error (MSE), bias, coverage rates, and quantiles of the estimates. In this paper, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors, with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature and all code for conducting the prior sensitivity analysis is made available in the online supplemental material.

License: CC0 1.0 Universal

This project represents an accepted preprint submitted to PsyArXiv . Learn more about how to work with preprint files. View preprint


Loading files...



Recent Activity

Loading logs...

This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.

Create an Account Learn More Hide this message