Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
REFERENCES: 1. Gunderson, E. P. Childbearing and Obesity in Women: Weight Before, During, and After Pregnancy. Obstet. Gynecol. Clin. North Am. 36, 317–332 (2009). 2. Sebire, N., Jolly, M. & Harris, J. Maternal obesity and pregnancy outcome: a study of 287 213 pregnancies in London. J. Obes. ... (2001). 3. O’Brien, T. E., Ray, J. G. & Chan, W.-S. Maternal Body Mass Index and the Risk of Preeclampsia: A Systematic Overview. Epidemiology 14, 368–374 (2003). 4. Chu, S. Y. et al. Maternal obesity and risk of stillbirth: a metaanalysis. Am. J. Obstet. Gynecol. 197, 223–228 (2007). 5. Wallace, J. M., Bhattacharya, S., Campbell, D. M. & Horgan, G. W. Inter-Pregnancy Weight Change and the Risk of Recurrent Pregnancy Complications. PLoS One 11, e0154812 (2016). 6. Woo Baidal, J. A. et al. Risk Factors for Childhood Obesity in the First 1,000 Days: A Systematic Review. Am. J. Prev. Med. 50, 761–779 (2016). 7. Rasmussen, S. A., Chu, S. Y., Kim, S. Y., Schmid, C. H. & Lau, J. Maternal obesity and risk of neural tube defects: a metaanalysis. Am. J. Obstet. Gynecol. 198, 611–619 (2008). 8. Rooney, B. L., Schauberger, C. W. & Mathiason, M. A. Impact of perinatal weight change on long-term obesity and obesity-related illnesses. Obstet. Gynecol. 106, 1349–56 (2005). 9. Rooney, B. L. & Schauberger, C. W. Excess pregnancy weight gain and long-term obesity: one decade later. Obstet. Gynecol. 100, 245–52 (2002). 10. Widen, E. M. et al. Excessive gestational weight gain is associated with long-term body fat and weight retention at 7 y postpartum in African American and Dominican mothers with underweight, normal, and overweight prepregnancy BMI. Am. J. Clin. Nutr. 102, 1460–7 (2015). 11. Gunderson, E. P. et al. Excess gains in weight and waist circumference associated with childbearing: The Coronary Artery Risk Development in Young Adults Study (CARDIA). Int. J. Obes. Relat. Metab. Disord. 28, 525–35 (2004). 12. McCowan, L. M. et al. Interpregnancy weight gain—a modifiable cause of stillbirth? Lancet 387, 508– 510 (2016). 13. Bogaerts, A. et al. Interpregnancy weight change and risk for adverse perinatal outcome. Obstet. Gynecol. 122, 999–1009 (2013). 14. Bogaerts, A. et al. Postpartum weight trajectories in overweight and lean women. Midwifery (2016). doi:10.1016/j.midw.2016.08.010 15. Bider-Canfield, Z. et al. Maternal obesity, gestational diabetes, breastfeeding and childhood overweight at age 2 years. Pediatr. Obes. n/a-n/a (2016). doi:10.1111/ijpo.12125 16. Flenady, V. et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta- analysis. Lancet 377, 1331–1340 (2011). 17. Catalano, P. M., Presley, L., Minium, J. & Hauguel-de Mouzon, S. Fetuses of Obese Mothers Develop Insulin Resistance in Utero. Diabetes Care 32, (2009). 18. Campbell, F. et al. Behavioural interventions for weight management in pregnancy: A systematic review of quantitative and qualitative data. BMC Public Health 11, 491 (2011). 19. Mattes, R. Energy intake and obesity: ingestive frequency outweighs portion size. Physiol. Behav. 134, 110–8 (2014). 20. Sharifi, N., Mahdavi, R. & Ebrahimi-Mameghani, M. Perceived Barriers to Weight loss Programs for Overweight or Obese Women. Heal. Promot. Perspect. 3, 11–22 (2013). 21. Epstein, L. H. et al. Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav. Neurosci. 121, 877–86 (2007). 22. Carr, K. A. et al. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI. Behav Neurosci 127, 387–399 (2013). 23. Epstein, L. H. et al. Food reinforcement, the dopamine D-2 receptor genotype, and energy intake in obese and nonobese humans. Behav. Neurosci. 121, 877–886 (2007). 24. Price, M., Higgs, S. & Lee, M. Self-reported eating traits: Underlying components of food responsivity and dietary restriction are positively related to BMI. Appetite 95, 203–10 (2015). 25. Jocham, G., Klein, T. A. & Ullsperger, M. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J. Neurosci. 31, 1606–1613 (2011). 26. Stice, E., Yokum, S., Burger, K., Epstein, L. & Smolen, A. Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J Neurosci 32, 10093–10100 (2012). 27. Stice, E., Burger, K. S. & Yokum, S. Reward Region Responsivity Predicts Future Weight Gain and Moderating Effects of the TaqIA Allele. J. Neurosci. 35, 10316 (2015). 28. Kenny, P. J., Voren, G. & Johnson, P. M. Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr. Opin. Neurobiol. 23, 535–8 (2013). 29. Eagle, D. M. et al. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J. Neurosci. 31, 7349–56 (2011). 30. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–9 (1997). 31. Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19, 479–86 (2016). 32. Wang, G. J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001). 33. Keiflin, R. & Janak, P. H. Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry. Neuron 88, 247–263 (2015). 34. Suri, R. E. & Schultz, W. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91, 871–90 (1999). 35. Glimcher, P. W. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl, 15647–54 (2011). 36. Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010). 37. Babbs, R. K. et al. Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiol. Behav. 121, 103–11 (2013). 38. Burger, K. S. & Stice, E. Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. Am J Clin Nutr 95, 810–817 (2012). 39. Nansel, T. R. et al. Pregnancy eating attributes study (PEAS): a cohort study examining behavioral and environmental influences on diet and weight change in pregnancy and postpartum. BMC Nutr. 2, 45 (2016). 40. Epstein, L. H., Salvy, S. J., Carr, K. A., Dearing, K. K. & Bickel, W. K. Food reinforcement, delay discounting and obesity. Physiol. Behav. 100, 438–45 (2010). 41. Epstein, L. H., Truesdale, R., Wojcik, A., Paluch, R. A. & Raynor, H. A. Effects of deprivation on hedonics and reinforcing value of food. Physiol. Behav. 78, 221–7 (2003). 42. Murdaugh, D. L., Cox, J. E., Cook, E. W. & Weller, R. E. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage 59, 2709–21 (2012). 43. Goldfield, G. S. & Legg, C. Dietary restraint, anxiety, and the relative reinforcing value of snack food in non-obese women. Eat. Behav. 7, 323–32 (2006). 44. Lappin, J. S. & Eriksen, C. W. Use of a delayed signal to stop a visual reaction-time response. J. Exp. Psychol. 72, 805–811 (1966). 45. Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 91, 295–327 (1984). 46. The Organization for Human Brain Mapping (OHBM) & Committee on Best Practices in Data Analysis and Sharing (COBIDAS). Best Practices in Data Analysis and Sharing in Neuroimaging using MRI. (2016). 47. Poline, J. B., Worsley, K. J., Evans, A. C. & Friston, K. J. Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage 5, 83–96 (1997). 48. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009). 49. Thakkar, K. N. et al. Women are more sensitive than men to prior trial events on the Stop-signal task. Br. J. Psychol. 105, 254–72 (2014). 50. Congdon, E. et al. Measurement and Reliability of Response Inhibition. Front. Psychol. 3, 37 (2012).
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.