Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Strain style, magnitude, and distribution within mass-transport complexes (MTCs) is important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally-driven passive margins have been shown to approximately balance between updip extensional and downdip compressional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1500 mbsf) and well-imaged MTC, offshore Uruguay using a high-resolution (12.5 m vertical and 15x12.5 m horizontal resolution) 3D seismic-reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic-attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub-orthogonal shear zones, and fold-thrust systems within the basal shear zone beneath rafted-blocks. These features suggest multiple phases of flow and transport directions during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and compressional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra-MTC rafted-blocks due to kinematic interaction between these features and the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain deficit between the extensional and compressional domains (c. 3-14%) is calculated, which we attribute to a combination of distributed, sub-seismic, ‘cryptic’ strain, likely related to de-watering, grain-scale deformation, and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.

License: Academic Free License (AFL) 3.0

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.