Main content


Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: Data scientists across disciplines are increasingly in need of exploratory analysis tools for data sets with a high volume of features of mixed data type (quantitative continuous and discrete categorical). We introduce Sirius, a novel visualization package for researchers to explore feature relationships among mixed data types using mutual information. The visualization of feature relationships aids data scientists in finding meaningful dependence among features prior to the development of predictive modeling pipelines, which can inform downstream analysis such as feature selection, feature extraction, and early detection of potential proxy variables. Using an information theoretic approach, Sirius supports network visualization of heterogeneous data sets (consisting of continuous and discrete data types), and provides a user interface for exploring feature pairs with locally significant mutual information scores. Mutual information algorithm and bivariate chart types are assigned on a data type pairing basis (continuous-continuous, discrete-discrete, and discrete-continuous). We show how this tool can be used for tasks such as hypothesis confirmation, identification of predictive features, suggestions for feature extraction, or early warning of data abnormalities.


Loading files...


Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.