Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Goal-directed behavior requires integrating action selection processes with learning systems that adapt control using environmental feedback. These functions intersect in the basal ganglia (BG), which has at least two targets of plasticity: a dopaminergic modulation of striatal pathways and cortical modulation of the subthalamic nucleus (STN). Dual learning mechanisms suggests that feedback signals have a multifaceted impact on BG-dependent decisions. Using a hybrid of accumulation-to-bound decision models and reinforcement learning, we modeled the performance of humans in a stop-signal task where participants (N=75) learned the prior distribution of the timing of a stop signal through trial-and-error feedback. Changes in the drift-rate of the action execution process were driven by errors in action timing, whereas adaptation in the boundary height served to increase caution following failed stops. These findings highlight two interactive learning mechanisms for adapting the control of goal-directed actions based on dissociable dimensions of f eedback error.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.