BIMCV-COVID19+

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Data

Description: BIMCV-COVID19+ dataset is a large dataset with chest X-ray images CXR (CR, DX) and computed tomography (CT) imaging of COVID-19 patients along with their radiographic findings, pathologies, polymerase chain reaction (PCR), immunoglobulin G (IgG) and immunoglobulin M (IgM) diagnostic antibody tests and radiographic reports from Medical Imaging Databank in Valencian Region Medical Image Bank (BIMCV). The findings are mapped onto standard Unified Medical Language System (UMLS) terminology and they cover a wide spectrum of thoracic entities, contrasting with the much more reduced number of entities annotated in previous datasets. Images are stored in high resolution and entities are localized with anatomical labels in a Medical Imaging Data Structure (MIDS) format. In addition, 10 images were annotated by a team of expert radiologists to include semantic segmentation of radiographic findings. Moreover, extensive information is provided,including the patient’s demographic information, type of projection and acquisition parameters for the imaging study, among others. This first iteration of the database includes 1380 CX, 885 DX and 163 CT studies

License: Other

Files

Loading files...

Citation

Components

  • PADCHEST

    A large chest x-ray image dataset with multi-label annotated reports

    Recent Activity

    Loading logs...

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.