Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
Running studies with high statistical power, while effect size estimates in psychology are often inaccurate, leads to a practical challenge when designing an experiment. This challenge can be addressed by performing sequential analyses while the data collection is still in progress. At an interim analysis, data collection can be stopped whenever the results are convincing enough to conclude that an effect is present, more data can be collected, or the study can be terminated whenever it is extremely unlikely that the predicted effect will be observed if data collection would be continued. Such interim analyses can be performed while controlling the Type 1 error rate. Sequential analyses can greatly improve the efficiency with which data are collected, and improve current standards in data collection. I hope this introduction will provide a practical primer that allows researchers to incorporate sequential analyses in their research.
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.