Main content

A Tutorial on Bayes Factor Design Analysis Using an Informed Prior  /

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Well-designed experiments are likely to yield compelling evidence with efficient sample sizes. Bayes Factor Design Analysis (BFDA) is a recently developed methodology that allows researchers to balance the informativeness and efficiency of their experiment (Schönbrodt & Wagenmakers, 2017). With BFDA, researchers can control the rate of misleading evidence but, in addition, they can plan for a target strength of evidence. BFDA can be applied to fixed-N and sequential designs. In this tutorial paper, we provide a tutorial-style introduction to BFDA and generalize the method to informed prior distributions. We also present a user-friendly web-based BFDA application that allows researchers to conduct BFDAs with ease. Two practical examples highlight how researchers can use a BFDA to plan for informative and efficient research designs.

License: CC-By Attribution 4.0 International

Has supplemental materials for A Tutorial on Bayes Factor Design Analysis Using an Informed Prior on PsyArXiv

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...