Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
Over the past few decades, the methods of electrical generation such as by coal, nuclear fission, solar, wind, and geothermal have been studied and tested repeatedly, yet the mode of electrical transmission has remained the same: An electric grid of wires. However, at the turn of the 20th century, inventor and electrical pioneer Nikola Tesla attempted to build the Wardenclyffe Tower, a giant Tesla coil which he claimed could transmit power over large distances using induction. Unfortunately, funding for his research dried up and his claims have been dismissed. If Tesla's claims are true, the land and resource-consuming power grid can be eliminated. The magnitude of Tesla's vision was not something we attempted to test physically; rather, we intended to apply the results of small-scale transmission from a Tesla coil to the large scale to measure its feasibility. For our tests, we built a Tesla coil and measured its power usage. Next, we measured the power of a fluorescent light bulb and the distance from the coil at which it glowed. Finally, we compared the power and costs of our Tesla coil to that of North Anna's nuclear facilities, which we used as an example power station. Our results matched that of previous studies - the power output from a Tesla coil decreases dramatically with distance and thus would not be feasible as an efficient power transmitter. Although further research is needed on wireless effects on the large scale, the current electric grid remains the most efficient power transmission.
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.