Does Centrality in a Cross-Sectional Network Suggest Intervention Targets for Social Anxiety Disorder?

Contributors:
  1. Arielle Horenstein
  2. Michelle H Lim
  3. Katya C Fernandez
  4. Carlos Blanco
  5. Franklin Schneier
  6. richard heimberg

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Objective: Network analysis allows us to identify the most interconnected (i.e., central) symptoms, and multiple authors have suggested that these symptoms might be important treatment targets. This is because change in central symptoms (relative to others) should have greater impact on change in all other symptoms. It has been argued that networks derived from cross-sectional data may help identify such important symptoms. We tested this hypothesis in social anxiety disorder. Method: We first estimated a state-of-the-art regularized partial correlation network based on participants with social anxiety disorder (N = 910) to determine which symptoms were more central. Next, we tested whether change in these central symptoms were indeed more related to overall symptom change in a separate dataset of participants with social anxiety disorder who underwent a variety of treatments (N = 244). We also tested whether relatively superficial item properties (infrequency of endorsement and variance of items) might account for any effects shown for central symptoms. Results: Centrality indices successfully predicted how strongly changes in items correlated with change in the remainder of the items. Findings were limited to the measure used in the network and did not generalize to three other measures related to social anxiety severity. In contrast, infrequency of endorsement showed associations across all measures. Conclusions: The transfer of recently published results from cross-sectional network analyses to treatment data is unlikely to be straightforward.

This project represents a pending preprint submitted to PsyArXiv . Learn more about how to work with preprint files. View preprint

Files

Loading files...

Citation

osf.io/e7k6s

Tags

Recent Activity

Loading logs...

This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.

Create an Account Learn More Hide this message