Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
This provides the NIH Cortex software based source code for fMRI data acquisition on the auditory time window experiment. [1] To map the auditory subfields, information from tonotopy fMRI data, macro-anatomical features (cortical folding), anatomical MRI can be combined. So tonotopic information from each individual animal can be used in the parcellation of function-anatomical areas of the auditory cortex. For characterising tonotopy using the BOLD response to spectral frequencies sound stimuli were based on random-phase noise carrier with different pass-bands: 0.125-0.25 kHz, 0.25-0.5 kHz, 0.5-1 kHz, 1-2 kHz, 2-4 kHz, 4-8 kHz, and 8-16 kHz resulting in stimuli that encompassed different spectral ranges. The carriers were amplitude modulated with a sinusoidal envelope of 90% depth at 10 Hz to achieve a robust response in the auditory system. To record data from the auditory system that is devoid of activity due to the high-intensity noise generated by the MRI scanner, a 'sparse temporal' design is utilized. With the use of a pseudo-random sequence, each adjacent trial was ensured to have a different spectral frequency sound stimulus. The duration of each sound stimulus was 6 seconds which were presented during the last 6 of the 10 s trial duration. This duration is sufficient for the BOLD response in the macaque auditory cortex to reach a plateau (Baumann et al., 2010). The monkey performed visual fixation on a fixation point presented in the centre of a visual display in front of the animal during the entire time the sound stimulus was presented. This simple task ensured that the levels of attention remained consistent across the entire session. Moreover, it minimized the body movement of the animal by alleviating potential waiting/boredom related stress. The task was to fixate on a target (small red square) positioned at the centre of a screen, when the eye trace entered within a window of fixation (~ five degrees centred on the target) a timer started and the fixation target turned green. A continuous visual fixation (no saccades) of a randomly defined duration of 2-2.5 s was rewarded immediately by the delivery of a juice via a gravity-fed dispenser. If you use this code then please cite this paper: [1] Pradeep Dheerendra, Simon Baumann, Olivier Joly, Fabien Balezeau, Christopher I Petkov, Alexander Thiele, Timothy D Griffiths, "The representation of time windows in primate auditory cortex", Cerebral Cortex, 2021
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.