Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
## Dataset Information This dataset focuses on characterizing crystallites within two types of crystals, Spherulite and Lamellar, using Atomic Force Microscopy (AFM) images acquired at Lawrence Livermore National Laboratory (LLNL). Currently, the dataset consists of ~500 annotated images. - Images and corresponding ground truth masks can be found [here][1]. **Metadata:** - Imaging technique: AFM - Sample: Crystallites - Types: Spherulite and Lamellar - Image size: 512 x 512 - Resolution: High-resolution **Want to contribute? Fill up this [Google Form][2]**. <h2> Benchmarks </h2> | Model | Description | Binary IoU | Library | Input Image Size | Performance Metrics | Paper | Evaluation Script | |:---------------------------------:|:--------------------------------------------:|:----------:|:--------------------:|:----------------:|:------------------------------------------:|:------------------------------------------:|:------------------------------------------:| [trial_63.ckpt][3] | U-Net++ with Xception Encoder Backbone | 72% | PyTorch <br> ([Segmentation Models][4]) | 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU* | - | - | |[trial_84.ckpt][5]| U-Net model Xception Encoder Backbone| 72% |PyTorch <br> ([Segmentation Models][6])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_8.ckpt][7]| U-Net model Xception Encoder Backbone| 69% |PyTorch <br> ([Segmentation Models][8])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_15.ckpt][9]| U-Net++ model Xception Encoder Backbone| 68% |PyTorch <br> ([Segmentation Models][10])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_5.ckpt][11]| U-Net++ model Xception Encoder Backbone| 67% |PyTorch <br> ([Segmentation Models][12])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_112.ckpt][13]| U-Net++ model Xception Encoder Backbone| 66% |PyTorch <br> ([Segmentation Models][14])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_22.ckpt][15]| U-Net model Xception Encoder Backbone| 64% |PyTorch <br> ([Segmentation Models][16])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_58.ckpt][17]| U-Net++ model SE-ResNext101 Encoder Backbone| 62% |PyTorch <br> ([Segmentation Models][18])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_106.ckpt][19]| U-Net model SE-ResNext101 Encoder Backbone| 62% |PyTorch <br> ([Segmentation Models][20])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_108.ckpt][21]| U-Net model SE-ResNext101 Encoder Backbone| 62% |PyTorch <br> ([Segmentation Models][22])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_76.ckpt][23]| U-Net model SE-ResNext101 Encoder Backbone| 61% |PyTorch <br> ([Segmentation Models][24])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | |[trial_11.ckpt][25]| U-Net++ model SE-ResNext101 Encoder Backbone| 59% |PyTorch <br> ([Segmentation Models][26])| 512 x 512| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | - | [1]: https://osf.io/b2wdg/files/osfstorage [2]: https://forms.gle/4pGRhkdw4wGNy1dY9 [3]: https://osf.io/download/6659f4fa6b6c8e20c404cb9e/ [4]: https://github.com/qubvel/segmentation_models [5]: https://osf.io/download/6670368965e1de5d78893c5a/ [6]: https://github.com/qubvel/segmentation_models [7]: https://osf.io/download/6670321c6b6c8e331404cab8/ [8]: https://github.com/qubvel/segmentation_models [9]: https://osf.io/download/6670336bd835c4389b4ce005/ [10]: https://github.com/qubvel/segmentation_models [11]: https://osf.io/download/667032426b6c8e331404cac1/ [12]: https://github.com/qubvel/segmentation_models [13]: https://osf.io/download/667037ed6b6c8e332204cb03/ [14]: https://github.com/qubvel/segmentation_models [15]: https://osf.io/download/6670347177ff4c5e1ee044b0/ [16]: https://github.com/qubvel/segmentation_models [17]: https://osf.io/download/6670364d6b6c8e331d04ceb8/ [18]: https://github.com/qubvel/segmentation_models [19]: https://osf.io/download/66703757d835c438a44cdfa2/ [20]: https://github.com/qubvel/segmentation_models [21]: https://osf.io/download/667037e50f8c8016f03c93fa/ [22]: https://github.com/qubvel/segmentation_models [23]: https://osf.io/download/667036020f8c8016e63c9335/ [24]: https://github.com/qubvel/segmentation_models [25]: https://osf.io/download/667034860f8c8016eb3c90d2/ [26]: https://github.com/qubvel/segmentation_models
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.