Main content

Contributors:
  1. Vahur Oja
  2. Ville Alopaeus

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: The temperature and pressure dependence of density was measured experimentally from 293 to 473 K and 0.1 to 12 MPa for a shale oil produced from Kukersite oil shale in Estonia. The shale oil sample was a fuel oil fraction of a whole oil produced in a commercial plant that uses solid heat carrier retorting technology. The fraction had a boiling range of approximately 460 to 780 K and contained significant quantities of polar phenolic compounds (hydroxyl group content of 5.3 wt%). The effect of these compounds on the properties of the oil was investigated by removing most of the phenolic compounds via extraction to create the second sample (dephenolated sample with hydroxyl group content of 1.1 wt%). The dephenolation resulted in a shale oil with a composition being more similar to that of other shale oils from well explored deposits. Based on a review of the literature, this is the first experimental data on the pressure dependence of density for this shale oil, and shale oils generally. Thermal expansion coefficients, isothermal compressibilities and speeds of sound were calculated from the experimental data. Empirical relationships describing the temperature dependence of the heat capacities between 288 and 423 K at atmospheric pressure are also presented here.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Components

Hydrogen solubility of shale oil containing polar phenolic compounds

The hydrogen solubility of two Kukersite shale oil samples was measured using a continuous flow apparatus.

Recent Activity

Loading logs...

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.