Dynamic Transactions Between News Frames and Sociopolitical Events: An Integrative, Hidden Markov Model Approach

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: A central goal of news research is to understand the interplay between news coverage and sociopolitical events. Although a great deal of work has elucidated how events drive news coverage, and how in turn news coverage influences societal outcomes, integrative systems-level models of the reciprocal interchanges between these two processes are sparse. Herein, we present a macro-scale investigation of the dynamic transactions between news frames and events using Hidden Markov Models (HMMs), focusing on morally-charged news frames and sociopolitical events. Using 3,501,141 news records discussing 504,759 unique events, we demonstrate that sequences of frames and events can be characterized in terms of "hidden states" containing distinct moral frame and event relationships, and that these “hidden states” can forecast future news frames and events. This work serves to construct a path toward the integrated study of the news-event cycle across multiple research domains.

Wiki

This repository contains all the scripts and data used for training and evaluating the Hidden Markov Model.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.