Main content

Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the "pie size"). "Unstructured" means that players can make or withdraw any offers and demands they want at any time. Such paradigms, while lifelike have been displaced in experimental studies by highly structured bargaining because they are hard to analyze. Machine learning comes to the rescue because the players' wide range of choices in unstructured bargaining can be taken as "features" used to predict behavior. Machine learning approaches can accommodate a large number of features and guard against overfitting using test samples and methods such as penalized LASSO regression. In previous research we found that LASSO could add power to theoretical variables in predicting whether bargaining ended in disagreement. We replicate this work with higher stakes, subject experience, and special attention to gender differences, demonstrating the robustness of this approach.


Add important information, links, or images here to describe your project.


Loading files...


Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.