Main content

Manipulator refinement and control  /

Affiliated institutions: University of Wisconsin - Stout

Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: Rigid link robots currently dominate the market for manipulators in assistive technology, though research on continuum robots for assistive technology has been developing over recent years. These types of robots have a continuous backbone that allows them to have infinite degrees of freedom, making them highly compliant, however this brings challenges in terms of modelling and control. Additionally, materials for this type of application require specific qualities. In this work, we attempt to address these problems while designing a continuum arm suitable for assistive technology applications. Bendy ARM 2.0 is a revised version of the first Bendy ARM robot to accomplish these goals. In its first iteration, Bendy ARM had limitations in its mechanical function, such as the structural performance of the backbone, which decreased the accuracy in positional control. Nitinol was tested as a new backbone material but failed during testing so a low density polyethylene was chosen. Cable conduits were added to help reduce the mechanical coupling between the proximal and distal segments of the manipulator. Motion processing units (MPU) are utilized to gather tilt angles and provide direction for automated movements. Due to the arms natural rotation, this data alone was not enough to consistently control and place the robot. With the information gathered, further consideration of backbone material and usage of MPU data is required for an automatable robot.

License: CC-By Attribution 4.0 International


Loading files...



Recent Activity

Loading logs...