Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Speakers’ memory of sentence structure can persist and modulate the syntactic choices of subsequent utterances (i.e., structural priming). Much research on structural priming posited a multifactorial account by which an implicit learning process and a process related to explicit memory jointly contribute to the priming effect. Here, we tested two predictions from that account: (1) that lexical repetition facilitates the retrieval of sentence structures from memory; (2) that priming is partly driven by a short-term explicit memory mechanism with limited resources. In two pairs of structural priming and sentence structure memory experiments, we examined the effects of structural priming and its modulation by lexical repetition as a function of cognitive load in native Dutch speakers. Cognitive load was manipulated by interspersing the prime and target trials with easy or difficult mathematical problems. Lexical repetition boosted both structural priming (Experiments 1a-2a) and memory for sentence structure (Experiments 1b-2b), and did so with a comparable magnitude. In Experiment 1, there were no load effects, but in Experiment 2, with a stronger manipulation of load, both the priming and memory effects were reduced with a larger cognitive load. The findings support an explicit memory mechanism in structural priming that is cue-dependent and attention demanding, consistent with a multifactorial account of structural priming.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.