Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: When objects move, their motion is governed by the laws of physics. We investigated whether multiple objects that move while correctly obeying aspects of Newtonian physics are easier to track than those that do not accurately obey the laws of physics. Participants were asked to track multiple objects that either did or did not take on the correct angles and/or speeds after collisions with each other. We found an advantage for tracking when objects obeyed realistic physics, such that people were more accurate when objects reflected from each other at proper angles and when objects varied in speed after collisions (as opposed to always maintaining the same speed). This advantage was independent of a variety of low-level factors that would be expected to affect object tracking, such as object spacing. However, we also found that performance was not affected when objects' speed changed randomly after each collision (so long as it varied), nor when the reflection angles were jittered moderately after collisions. We conclude that perceptual noise seriously limits many aspects of object trajectory estimation, but nevertheless people are sensitive to at least a subset of the Newtonian laws of physics under demanding attentional tracking conditions.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Components

data


Recent Activity

Loading logs...

Program


Recent Activity

Loading logs...

Videos


Recent Activity

Loading logs...

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.