We successfully replicated the VO effect using new distractor tasks.
regress accurate i.verbalize, vce(robust)
Linear regression Number of obs = 1096
F( 1, 1094) = 4.75
Prob > F = 0.0295
R-squared = 0.0043
Root MSE = .44804
------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.verbalize | -.0591244 .0271253 -2.18 0.029 -.1123478 -.005901
_cons | .3095685 .0200434 15.44 0.000 .2702406 .3488964
------------------------------------------------------------------------------
Only one of our filler tasks moderated the results (complete results at bottom of page). this was whether someone was more likely to remember soeone's face after meeting them. Verbal Overshadowing was present for those people but not for name rememberers or people equally likely to remember faces or names.
interflex accurate verbalize facerememberer facerverbazlie, vce(robust)
p value of Wald test: 0.0001
regress accurate i.verbalize if facerememberer == 1, vce(robust)
Linear regression Number of obs = 666
F( 1, 664) = 4.82
Prob > F = 0.0284
R-squared = 0.0073
Root MSE = .45542
------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.verbalize | -.0778573 .0354516 -2.20 0.028 -.1474681 -.0082465
_cons | .336478 .0265366 12.68 0.000 .2843722 .3885838
------------------------------------------------------------------------------
. regress accurate i.verbalize if facerememberer != 1, vce(robust)
Linear regression Number of obs = 430
F( 1, 428) = 0.60
Prob > F = 0.4389
R-squared = 0.0014
Root MSE = .43572
------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.verbalize | -.0325581 .0420244 -0.77 0.439 -.1151579 .0500417
_cons | .2697674 .0303402 8.89 0.000 .2101331 .3294018
------------------------------------------------------------------------------
**Exploratory Analyses**
People were more likely to say the robber was 'not present' if they verbalized his description
regress notpresent verbalize ,vce(robust)
Linear regression Number of obs = 1098
F( 1, 1096) = 24.98
Prob > F = 0.0000
R-squared = 0.0221
Root MSE = .42354
------------------------------------------------------------------------------
| Robust
notpresent | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
verbalize | .1271615 .0254437 5.00 0.000 .0772377 .1770854
_cons | .17603 .0164958 10.67 0.000 .143663 .2083969
------------------------------------------------------------------------------
People were also more confident in their judgments when they said the robber was 'not present' or when they were wrong when they verbalized his description. When they wetre correct, however, verbalizing had no affect on confidence.
regress confidence verbalize , vce(robust)
Linear regression Number of obs = 1096
F( 1, 1094) = 10.74
Prob > F = 0.0011
R-squared = 0.0098
Root MSE = 25.717
------------------------------------------------------------------------------
| Robust
confidence_1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
verbalize | 5.104449 1.557317 3.28 0.001 2.048783 8.160115
_cons | 53.07317 1.155354 45.94 0.000 50.80621 55.34013
------------------------------------------------------------------------------
regress confidence verbalize if whodunnit == 9 , vce(robust)
Linear regression Number of obs = 265
F( 1, 263) = 15.89
Prob > F = 0.0001
R-squared = 0.0608
Root MSE = 28.386
------------------------------------------------------------------------------
| Robust
confidence_1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
verbalize | 15.03888 3.772799 3.99 0.000 7.610148 22.46762
_cons | 45.8617 3.151695 14.55 0.000 39.65594 52.06747
------------------------------------------------------------------------------
. regress confidence verbalize if whodunnit == 6 , vce(robust)
Linear regression Number of obs = 306
F( 1, 304) = 0.17
Prob > F = 0.6795
R-squared = 0.0006
Root MSE = 23.45
------------------------------------------------------------------------------
| Robust
confidence_1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
verbalize | -1.110251 2.684358 -0.41 0.679 -6.392526 4.172023
_cons | 62.06061 1.845466 33.63 0.000 58.4291 65.69211
------------------------------------------------------------------------------
regress confidence verbalize if whodunnit !=6 & whodunnit != 9, vce(robust)
Linear regression Number of obs = 525
F( 1, 523) = 4.64
Prob > F = 0.0317
R-squared = 0.0087
Root MSE = 24.68
------------------------------------------------------------------------------
| Robust
confidence_1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
verbalize | 4.629904 2.148925 2.15 0.032 .4083186 8.851489
_cons | 50.13504 1.545832 32.43 0.000 47.09823 53.17184
------------------------------------------------------------------------------
There was also the possibility that there wa sa higher-order interaction between mental rotaiton ability and being a face rememberer, such that among face rememberers, verbal overshadowing was stronger for those of lower ability, where there was no such interaction among name rememberers or those equally likely to remember a face and name.
regress accurate verbalize mrts mrtsverbazlie if facerememberer == 1, vce(robust)
Linear regression Number of obs = 666
F( 3, 662) = 2.99
Prob > F = 0.0304
R-squared = 0.0143
Root MSE = .45449
-------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
verbalize | -.1821699 .0638083 -2.85 0.004 -.307461 -.0568788
mrts | -.0095582 .004793 -1.99 0.047 -.0189694 -.0001469
mrtsverbazlie | .012855 .0064868 1.98 0.048 .0001178 .0255922
_cons | .4151076 .0492395 8.43 0.000 .3184232 .5117921
-------------------------------------------------------------------------------
regress accurate verbalize mrts mrtsverbazlie if facerememberer !=1, vce(robust)
Linear regression Number of obs = 430
F( 3, 426) = 2.01
Prob > F = 0.1112
R-squared = 0.0135
Root MSE = .43409
-------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
verbalize | -.037568 .0620088 -0.61 0.545 -.1594493 .0843134
mrts | .0075174 .0053583 1.40 0.161 -.0030145 .0180494
mrtsverbazlie | .001356 .007256 0.19 0.852 -.012906 .0156181
_cons | .2147678 .0471204 4.56 0.000 .1221504 .3073852
-------------------------------------------------------------------------------
**non-interactions**
None of the interactions seemed to work, however. Still need to test mental rotation and crt. The only one may have been an interaction with face rememberers
. regress accurate i.verbalize agec agecverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 7.69
Prob > F = 0.0000
R-squared = 0.0206
Root MSE = .44477
-------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
1.verbalize | -.0601372 .0651815 -0.92 0.356 -.1880322 .0677579
agec | -.0035637 .0012319 -2.89 0.004 -.0059809 -.0011466
agecverbalize | .0001567 .0016572 0.09 0.925 -.0030949 .0034084
_cons | .4283544 .0474332 9.03 0.000 .3352839 .5214249
-------------------------------------------------------------------------------
. interflex accurate i.verbalize agec agecverbalize if Finished ==1, vce(robust)
factor variables and time-series operators not allowed
r(101);
. interflex accurate verbalize agec agecverbalize if Finished ==1, vce(robust)
p value of Wald test: 0.1675
. regress accurate i.verbalize white whiteverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 2.32
Prob > F = 0.0735
R-squared = 0.0060
Root MSE = .44808
--------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------+----------------------------------------------------------------
1.verbalize | -.1307562 .0597395 -2.19 0.029 -.2479733 -.013539
white | -.0337632 .0503732 -0.67 0.503 -.1326024 .065076
whiteverbalize | .0891206 .0670375 1.33 0.184 -.0424162 .2206574
_cons | .3363636 .0451302 7.45 0.000 .2478119 .4249153
--------------------------------------------------------------------------------
. interflex accurate verbalize white whiteverbalize if Finished ==1, vce(robust)
p value of Wald test: .
. regress accurate i.verbalize wsp wspverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 2.34
Prob > F = 0.0721
R-squared = 0.0065
Root MSE = .44796
------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.verbalize | .0476937 .0789266 0.60 0.546 -.1071711 .2025586
wsp | .0091382 .0058963 1.55 0.121 -.0024312 .0207076
wspverbalize | -.0113591 .0079926 -1.42 0.156 -.0270416 .0043234
_cons | .2234326 .0577199 3.87 0.000 .1101782 .336687
------------------------------------------------------------------------------
. interflex accurate verbalize wsp wspverbalize if Finished ==1, vce(robust)
p value of Wald test: 0.6192
. regress accurate i.verbalize faithintu faithinuverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 1.88
Prob > F = 0.1314
R-squared = 0.0053
Root MSE = .44824
-----------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------+----------------------------------------------------------------
1.verbalize | -.1202523 .1584032 -0.76 0.448 -.4310614 .1905567
faithintu | -.0270407 .0312207 -0.87 0.387 -.0883 .0342185
faithinuverbalize | .015936 .0408981 0.39 0.697 -.0643116 .0961837
_cons | .4127088 .1212174 3.40 0.001 .1748635 .6505541
-----------------------------------------------------------------------------------
. interflex accurate verbalize faithintu faithinuverbalize if Finished ==1, vce(robust)
p value of Wald test: 0.7613
. regress accurate i.verbalize nfc nfcverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 1.95
Prob > F = 0.1192
R-squared = 0.0051
Root MSE = .44828
------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.verbalize | -.0211093 .0981303 -0.22 0.830 -.2136544 .1714359
nfc | -.0072689 .0245449 -0.30 0.767 -.0554294 .0408916
nfcverbalize | -.0133697 .0328807 -0.41 0.684 -.0778861 .0511467
_cons | .3302371 .0728541 4.53 0.000 .1872873 .473187
------------------------------------------------------------------------------
. interflex accurate verbalize nfc nfcverbalize if Finished ==1, vce(robust)
p value of Wald test: 0.1420
. regress accurate i.verbalize restraint restraintverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 2.48
Prob > F = 0.0597
R-squared = 0.0064
Root MSE = .44798
------------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
1.verbalize | .1362881 .1276934 1.07 0.286 -.1142641 .3868404
restraint | .0360418 .0343748 1.05 0.295 -.0314064 .1034899
restraintverbalize | -.0686581 .0438521 -1.57 0.118 -.154702 .0173859
_cons | .2084419 .0978056 2.13 0.033 .0165338 .4003501
------------------------------------------------------------------------------------
. interflex accurate verbalize restraint restraintverbalize if Finished ==1, vce(robust)
p value of Wald test: 0.4686
. regress accurate i.verbalize impulsive impulsiveverbalize if Finished ==1 , vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 2.01
Prob > F = 0.1104
R-squared = 0.0056
Root MSE = .44816
------------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
1.verbalize | -.1257343 .0680811 -1.85 0.065 -.2593188 .0078502
impulsive | -.0243365 .0212467 -1.15 0.252 -.0660254 .0173524
impulsiveverbalize | .0316504 .0296588 1.07 0.286 -.0265443 .0898451
_cons | .3611089 .0501158 7.21 0.000 .2627748 .4594429
------------------------------------------------------------------------------------
. interflex accurate verbalize impulsive impulsiveverbalize if Finished ==1 , vce(robust)
p value of Wald test: 0.2117
. regress accurate i.verbalize vizualizer vizualizerverbazlie if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 1.81
Prob > F = 0.1429
R-squared = 0.0050
Root MSE = .44829
-------------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------------+----------------------------------------------------------------
1.verbalize | -.0046113 .0704638 -0.07 0.948 -.142871 .1336484
vizualizer | .012281 .0164927 0.74 0.457 -.0200799 .0446419
vizualizerverbazlie | -.0181877 .0217146 -0.84 0.402 -.0607948 .0244194
_cons | .2729328 .0526558 5.18 0.000 .1696148 .3762508
-------------------------------------------------------------------------------------
. interflex accurate verbalize vizualizer vizualizerverbazlie if Finished ==1, vce(robust)
p value of Wald test: 0.8826
. regress accurate i.verbalize vrblzr vrblzrvizualize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 1.72
Prob > F = 0.1614
R-squared = 0.0047
Root MSE = .44838
---------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
1.verbalize | -.0293702 .0631153 -0.47 0.642 -.1532111 .0944707
vrblzr | .0030219 .0152 0.20 0.842 -.0268026 .0328465
vrblzrvizualize | -.0106627 .0202195 -0.53 0.598 -.0503362 .0290108
_cons | .301013 .0473587 6.36 0.000 .2080886 .3939374
---------------------------------------------------------------------------------
. interflex accurate verbalize vrblzr vrblzrvizualize if Finished ==1, vce(robust)
p value of Wald test: 0.9149
. tab facerememberer
After meeting someone for the |
first time, on the second time |
meeting them, are y | Freq. Percent Cum.
-----------------------------------+-----------------------------------
More likely to remember their name | 239 13.88 13.88
.5 | 574 33.33 47.21
More likely to remember their face | 909 52.79 100.00
-----------------------------------+-----------------------------------
Total | 1,722 100.00
. gen facerverbazlie = facerememberer*verbalize
(1040 missing values generated)
. regress accurate i.verbalize facerememberer facerverbazlie if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 4.64
Prob > F = 0.0031
R-squared = 0.0121
Root MSE = .44671
--------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------+----------------------------------------------------------------
1.verbalize | .0270115 .059644 0.45 0.651 -.0900182 .1440412
facerememberer | .1610305 .0518463 3.11 0.002 .0593009 .2627602
facerverbazlie | -.1161638 .0741176 -1.57 0.117 -.2615928 .0292651
_cons | .1893243 .0408195 4.64 0.000 .1092308 .2694178
--------------------------------------------------------------------------------
. interflex accurate verbalize facerememberer facerverbazlie if Finished ==1, vce(robust)
p value of Wald test: 0.0001
. gen weedverbalize = weed*verbalize
(1040 missing values generated)
. regress accurate i.verbalize weed weedverbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 1.95
Prob > F = 0.1202
R-squared = 0.0053
Root MSE = .44824
-------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
1.verbalize | -.0688635 .0288998 -2.38 0.017 -.125569 -.0121581
weed | -.0270517 .0609119 -0.44 0.657 -.1465693 .0924659
weedverbalize | .0789239 .0838504 0.94 0.347 -.0856023 .24345
_cons | .312766 .0214243 14.60 0.000 .2707285 .3548035
-------------------------------------------------------------------------------
regress accurate i.verbalize crt2 crt2verbalize if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 1.78
Prob > F = 0.1501
R-squared = 0.0049
Root MSE = .44832
-------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
1.verbalize | -.0474418 .0457748 -1.04 0.300 -.1372583 .0423747
crt2 | .0118325 .0166779 0.71 0.478 -.0208919 .0445569
crt2verbalize | -.0063733 .0229394 -0.28 0.781 -.0513836 .038637
_cons | .289411 .0343253 8.43 0.000 .2220601 .3567619
-------------------------------------------------------------------------------
. interflex accurate verbalize crt2 crt2verbalize if Finished ==1, vce(robust)
p value of Wald test: 0.9724
regress accurate i.verbalize mrts mrtsverbazlie if Finished ==1, vce(robust)
Linear regression Number of obs = 1096
F( 3, 1092) = 2.86
Prob > F = 0.0360
R-squared = 0.0073
Root MSE = .44779
-------------------------------------------------------------------------------
| Robust
accurate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
1.verbalize | -.1155726 .0451606 -2.56 0.011 -.204184 -.0269611
mrts | -.0017995 .0035641 -0.50 0.614 -.0087927 .0051937
mrtsverbazlie | .0075181 .0048126 1.56 0.119 -.0019249 .0169611
_cons | .3237112 .0347603 9.31 0.000 .2555067 .3919157
-------------------------------------------------------------------------------
interflex accurate verbalize mrts mrtsverbazlie if Finished ==1, vce(robust)
p value of Wald test: 0.2227