Main content

Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: Measurement invariance—the notion that the measurement properties of a scale are equal across groups, contexts, or time—is an important assumption underlying much of psychology research. The traditional approach for evaluating measurement invariance is to conduct a series of nested measurement models using multiple-group confirmatory factor analyses. However, traditional approaches are strict, vary across the field in implementation, and present multiplicity challenges, even in the simplest case of two groups under study. The alignment method was recently proposed as an alternative approach. This method is more automated, requires fewer decisions from researchers, and accommodates two or more groups. However, it has different assumptions, estimation techniques, and limitations from traditional approaches. To address the lack of accessible resources that explain the methodological differences and complexities between the two approaches, we introduce and illustrate both, comparing them side by side. First, we overview the concepts, assumptions, advantages, and limitations of each approach. Based on this overview, we propose a list of four key considerations to help researchers decide which approach to choose and how to document their analytical decisions in a preregistration or analysis plan. We then demonstrate our key considerations on an illustrative research question using an open dataset and provide an example of a completed preregistration. Our illustrative example is accompanied by an annotated analysis report that shows readers, step-by-step, how to conduct measurement invariance tests using R and Mplus. Finally, we provide recommendations for how to decide between and use each approach and next steps for methodological research.


Loading files...


Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.