Main content

Contributors:
  1. B. David A. Naafs
  2. Yanhong Zheng
  3. Erin L. McClymont
  4. Richard P. Evershed
  5. Richard D. Pancost

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Hopanoids are pentacyclic triterpenoids produced by a wide range of bacteria. Within modern settings, hopanoids mostly occur in the biological 17β,21β(H) configuration. However, in some modern peatlands, the C31 hopane is present as the 'thermally-mature' 17α,21β(H) stereoisomer. This has traditionally been ascribed to isomerisation at the C-17 position catalysed by the acidic environment. However, recent work has argued that temperature and/or hydrology also exert a control upon hopane isomerisation. Such findings complicate the application of geohopanoids as palaeoenvironmental proxies. However, due to the small number of peats that have been studied, as well as the lack of peatland diversity sampled, the environmental controls regulating geohopanoid isomerisation remain poorly constrained. Here, we undertake a global approach to investigate the occurrence, distribution and diagenesis of geohopanoids within peat, combining previously published and newly generated data (n = 395) from peatlands with a wide temperature (-1 to 27°C) and pH (3 to 8) range. Our results indicate that peats are characterised by a wide range of geohopanoids. However, the C31 hopane and C32 hopanoic acid (and occasionally the C32 hopanol) typically dominate. C32 hopanoic acids occur as αβ- and ββ-stereoisomers, with the ββ-isomer typically dominating. In contrast, C31 hopanes occur predominantly as the αβ-stereoisomer. These two observations collectively suggest that isomerisation is not inherited from an original biological precursor (i.e. biohopanoids). Using geohopanoid ββ/(αβ+ββ) indices, we demonstrate that the abundance of αβ-hopanoids is strongly influenced by the acidic environment, and we observe a significant positive correlation between C31 hopane isomerisation and pH (n = 94, r2 = 0.64, p < 0.001). Crucially, there is no correlation between C31 hopane isomerisation and temperature. We therefore conclude that within peats, αβ-hopanoids are acid-catalysed diagenetic products and their occurrence at shallow depths indicates that this isomerisation is rapid. This shows that geohopanoid ββ/(αβ+ββ) indices can be used to reconstruct pH within modern and ancient peat-forming environments. However, we only recommend using ββ/(αβ+ββ) indices to interrogate large amplitude (> 1 pH unit) and longer-term (> 1 kyr) variation. Overall, our findings demonstrate the potential of geohopanoids to provide unique new insights into understanding depositional environments and interpreting terrestrial organic matter sources in the geological record.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.