The COVID-19 pandemic has reshaped societies and brought to the forefront simulation as a tool to explore the spread of the diseases including that of agent-based modeling. Efforts have been made to ground these models on the world around us using synthetic populations that attempt to mimic the population at large. However, we would argue that many of these synthetic populations and therefore the models using them, miss the social connections which were paramount to the spread of the pandemic. Our argument being is that contagious diseases mainly spread through people interacting with each other and therefore the social connections need to be captured. To address this, we create a geographically-explicit synthetic population along with its social network for the Western New York (WNY) Area. This synthetic population is then used to build a framework to explore a hypothetical contagious disease inspired by various of COVID-19. We show simulation results from two scenarios utilizing this framework, which demonstrates the utility of our approach capturing the disease dynamics. As such we show how basic patterns of life along with interactions driven by social networks can lead to the emergence of disease outbreaks and pave the way for researchers to explore the next pandemic utilizing agent-based modeling with geographically explicit social networks.