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Abstract

This is an introductory collection of theorems in topology.
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Introduction

1. We present some basic theorems in Topology using the fewest number
of mathematical symbols, without losing information.

2. The idea is to provide a global overview of the results without worrying
about their proofs.

3. This white paper is being updated from time to time.
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Metalinguistic Symbols

4. A metalinguistic symbol is not part of the language.

5. The symbol := means that what is on the left side is defined by the
right side of it.

6. Depending on the context, = and # are used to state a theorem.

7. For example, in the statement of a theorem, = can be read as is, are,
has, have etc.

8. [1,2]



Archimedean Property

9

10.

1.

12

13.

14.

15.

. Theorem

(Vre F3neN:n>x) = (F has the Archimedean Property)

F := ordered field
(9) means that N is unbounded in F'.

. Theorem
Q,R = Archimedean Property

@Q := set of rational numbers

R := set of real numbers

3]



Density Theorem

16. Theorem
(z,yeR, x<y) - (J¢geQ:x<g<y)
17.
Q is dense in R
18. 3]



Open Interval

19. Definition
(a,b) ={x e X |a<xz<b}

20. (a,b) := open interval in X
21. X = set

22. (3]



Open Set

23. Definition

(VreX:ze(a,b)cX) = X:=open set in R

24. Definition
X :=open set in Y if

(1) XcY
(i1) Ve e X :x € (a,b) € X

25. X,Y := sets
26. (a,b) := open interval in R

27. (3]



Open Interval, Open in R

28. Theorem
V(a,b): (a,b) = open set in R

29. Theorem

(Vh. h:=half-open interval in R) — (h #open set in R)

30. Theorem

(Ve. c:=closed interval in R) — (c# open set in R)

31. (a,b) := open interval in R

32. [3]



Infinite Interval, Open in R

33. Theorem
a€R — (a,00)=openin R

34. Theorem
beR - (-oc0,b)=openinR

35. (a,00),(—o0,b) := infinite open intervals in R

36. [3]



Empty Set, Set of Real Numbers, Open in R

37. Theorem
7, R = open in R

38. [3]



Open Subset of R, Open in R

39. Theorem

(X=openinR) < (VxeX, 3¢>0, ceR:(x—-c,x+c)c X)

40. X cR; (x-c,x+c):=open interval in R

41. 3]
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Union of Open Sets in R

42. Theorem
AuB =openin R

43. A, B := open sets in R

44. [3]
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Union of a collection of sets

45. Definition
|J X :=union of all elements of X

46. UX ={y|FY e X, yeY}
47. X := collection of sets
48. Y = set

19. [3]
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Intersection of a collection of sets
50. Definition
()X := intersection of all elements of X
5. N X ={y | VY e X, yeY}
52. X := collection of sets

H3. Y = set

54. (3]
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Union of Open Subsets of R, Open in R

55. Theorem
| JX =openin R

56. X := set of open subsets of R
57. U X := union of all elements of X

58. [3]
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Upper/Lower Bound in R

H59. Definition

(ImeR:VseS, s<m) = (m:=upper bound of )

60. Definition

(JkeR:VseS, s>k) = (k:=1lower bound of S)

61l. g+ ScR

62. [4]
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Bounded Set

63. Definition

bounded set := bounded above and below

64. [3]
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Bounded Open Intervals
065. Theorem

(VX CcR, X #@, X :=opensetin R) - (X =JB)

66. B := set of all bounded open intervals in X
67. U B := union of all elements of B

68. 3]
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Pairwise Disjoint Open Intervals

69. Theorem

(VX CcR, X #@, X:=opensetinR) - (X=JP)

70. U, := countable union

71. P :=set of pairwise disjoint open intervals

72. 3]
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Modal operators

73

74.

75.

76

e

78

79.

. Definitions

0, < := (unary) modal operators
O := necessarily

. O = possibly

@ := formula

O E-O-p

5]
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Intersection of Open Sets in R

80.

81.

82.

83.

84.

85.

86.

Theorem
AnB = openin R
Theorem o
() A; = open in R
i=1
Theorem -
(1A;=-D0open in R
i=1
A, B, A; := open sets in R

N A; := arbitrary intersection of A;

-0 := not necessarily

3]
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Closed Set in R, Complement of a Set
87. Definition

(R\X =open in R) — (X :=closed in R)

88. X cR
89. R\ X := complement of X in R

90. 3]
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Intersection of Closed Sets

91. Theorem
AnB=closedin R

92. A, B := closed sets in R

03. (3]
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Accumulation Point of a Set in R
94. Definition

(R >z := accumulation point of S <
<> Va,beR (a<zx<b—->3TyeS(a<y<bry+x)))
= every open interval containing x contains at least one point of S

different from x

95. ScR
96. (R>z)=(xeR)

07. (3]
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Closed in R, Accumulation Points
98. Theorem

(C'=closed in R) < (z=accumulation point of C'— x € ()

99. CcR

100. 3]
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Closure of a Set in R, Intersection
101. Definition

ScR » S:=(){C|ScC, C=closed in R}

102. S := closure of S in R

103. S := intersection of all closed sets in R containing S

104. Theorem

S =closedin R

105. [3]
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Closure, Accumulation Point, Closed in R

106. Theorems

107.
ScsS
108.
(C=closedinR, ScC) - (ScO)
109.
S=Su{zreR|z=accumulation point of S}
110.
(S =closed in R) < (S=29)
111.
(xe8S) < VX (reX —»3IseX)
112. se ScR

113. S := closure of S in R
114. X := open interval

115. [3]
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Open Disk in C, Neighborhood

116. Definition
N.(c):=4{zeC:|z-<r}

117. N,(c) := r-neighborhood of ¢ (open disk in C)
118. c¢:= center of the open disk

119. r:= radius of the open disk

120. [3]
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Open in C
121. Definition
(VzeX 3D:zeDcX) - (X :=openin C)
122. Theorem
(X =openin C) < (Vwe X Id>0: Ny(w) € X)

123. we X cC; deR
124. D := open disk
125. Ny(w) := open disk in C (d-neighborhood of w)

126. [3]
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Closed in C

127. Definition

(C\X =openin C) - (X =closed in C)

128. X cC
129. C\X := complement of X in C

130. [3]
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Accumulation Point of a Set in C

131. Definition

(C >z =accumulation point of S <>
<> VaeCVreR" (ze Ny(a) > JweS(weN(a) Aw # 2)))
= every open disk containing z contains at least one point of S

different from z

132. ScC
133. (C32)=(z€C)
134. N,(a) := open disk in C (r-neighborhood of a)

135. [3]
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Closed in C, Accumulation Points

136. Theorem
(C=closedinC) <« (VzeC:z€(O)

137. CcC

138. z:= accumulation point of C'

139. [3]
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Closure, Accumulation Point, Closed in C

140. Theorems

141.
ScsS
142.
(C=closedinC, ScC) - (ScO)
143.
S=Su{zeC|z=accumulation point of S}
144.
(S =closed in C) < (S=25)
145.
(2€S) < VD (e DA3seD)
146. se ScC

147. S := closure of S in C
148. D := open disk in C

149. [3]
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Euclidean space

150.

151.
152.
153.
154.
155.
156.
157.
158.

159.

Definition
R™ := {(z1,x9,....,x,) | T1, X2, ..., T, € R}
r,yeR" kel
r+y=(T1+y, T+ Y2, ..., Tp +Yp)
kx = (kxy, kxo, ..., kxy,)
—x = (=11, — T2, ey —Tp)

r-—y=v+(-y)=(r1 -y, 22— Yo, .0, Ty — Yn)

o) = /23 + 2 + ..+ 22
|z| := norm (length /magnitude) of x
R"™:=n-dimensional Euclidean space

3]
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Unitary space
160. Definition

C":={(21,22, ..., 2n) | 21,22, ..., 2, € C}

161. C":=n-dimensional unitary space
(with the definitions of sum, scalar multiple, and norm)

162. 3]
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(Generalized Triangle Inequality

163. Theorem
v +yl| < x|+ |y|

164. x,y e R" (or x,y € C")
165. |z| := norm of

166. [3]
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Open Ball in R", Neighborhood

167. Definition
Bi(a) ={yeR": |y —a|<d}

168. Bgy(a) := open ball in R" (center a, radius d)
(d-neighborhood of a € R")

169. [3]
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Open in R", Open Ball in R"
170. Definition
(VzeX AB:zeB,Bc X) - (X :=openin R")
171. Definition
(R™\ X =open in R") - (X :=closed in R")

172. R\ X := complement of X in R”
173. X ¢ R" B :=open ball in R"

174. [3]
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Accumulation Point of a Set in R"

175. Definition

VBCR" (xeB, 3se B, s+x) —

— R" 5z :=accumulation point of S in R"

176. S cR”
177. B:=open ball in R"; seS; (R*">x)=(reR")

178. 3]
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Closure of a Set in R", Intersection
179. Definition

ScR" - S=({C|ScCAC =closed in R"}

180. S := closure of S in R»

181. S:

intersection of all closed sets in R™ containing S

182. [3]
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Open, Closed, Union, Intersection,
Accumulation Point, Open Ball

183. Theorems

184.
(X =openin R") < (YxeR" 3d>0: By(x) c X)
185.
@, R" = open and closed in R"
186.
JA; = open in R"
187. .
() A; = open in R"
i=1
188.
ﬂKi = closed in R"
189. .
UKZ- = closed in R"
i=1
190.
(C'=closedin R") < (VyeR":ye()
191.
ScR" - ScS
192.
(C=closedinR", ScC) - (ScC)
193.

(SCR") - (S=Su{zreR"|x=accumulation point of S})
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194.

195.

196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
2006.

207.

(S =closed in R") « (S=25)

(xeS) < VB (reB,3seB)
xeR?
By(x) := open ball (center x, radius d)
A;:=open sets in R"; ieN={1,2,3,...}
U A; := union of all A;
K; = closed sets in R”
N K; := intersection of all K;
CcR”
y := accumulation point of R"
S := closure of S in R”
B := open ball
sesS

3]
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Topology on S

208. Definition
T :=topology on S if

(i) 2,5 €T
(1) X<T ->UXeT
(i13) (Y €T A Y :=finite) > NY eT

209. (208.i7) means that T is closed under taking arbitrary unions.
210. (208.i37) means that T is closed under taking finite intersections.
211. .S := set

212. T,X,Y := sets of sets

213. P(S) := power set of S (set of all subsets of S)

214. Theorem
T cP(S)eP(P(S))

215. [3]
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Trivial Topology

216. Definition
T:={2,5}

217. T := trivial topology (or indiscrete topology) on S
218. S := set

219. [3]
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Discrete Topology

220. Definition
P(S)

221. P(S) := power set := discrete topology
222. 5 := set

223. 3]
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Topological Space

224. Definition
(S,7) :=topological space

225. 5 = set
226. T := topology on .S

297, 13|
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Topology of a singleton

228. Definition

T:={2,{a}}
229. S ={a}
230. 7T := unique topology on S

231. [3
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Topologies of a set with two elements

232. Theorems

T = {@, {avb}}
T2 ={2,{a},{a,b}}
Ts ={2,{b},{a,b}}
Ti={2,{a},{b} . {a,b}}

233. S ={a,b}
234. 7T; = topologies on S

235. [3]
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Coarser, finer, and incomparable topologies

236. Definition
TicTs

237. 7T is coarser than 75
238. 75 1s finer than 7y

239. incomparable := neither finer nor coarser

240. 3]
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Standard topology on R
241. Definition

T={XcR|VxeX Ja,beR (x € (a,b)A(a,b)cX)}

242. 7T := standard topology on R
243. (a,b) = open interval

244. [3]
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Standard topology on C
245. Definition
T={XcC|VzeX JaecCIreR"(z€ N,(a)AN,(a)cX)}
246. N,(a)={z€C:|z-a|<r}:=open ball
247. T := standard topology on C

248. 3]
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Standard topology on R"
249. Definition
T={XcR"|VzeX JaecR" IreR*(ze B,(a) A B.(a) € X)}
250. By(a) ={x eR": |z —a|<r}:= open ball
251. 7T = standard topology on the Euclidean space R"

252. [3]
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Topological Space, Neighborhood

253. Definition

(UeT, xeU) = (U :=neighborhood of x)

254. (S, T) = topological space

255. [3]
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Accumulation Point of a Set

256. Definition

(S > 2 =accumulation point of A <«

o VU eT (zeU—>3TyecA(yelU,y+x)))

257. (S, T) := topological space
258. AcS
259. (S>x)=(xef)

260. [3]
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Closed, Accumulation Points, Topological Space

261. Theorem
(C'=closedin S) < VxeS (xeC)

262. (S, T) := topological space
263. C'c S

264. x := accumulation points of C

265. [3]
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Closure, Topological Space

266. Definition

AcS - A=){C|AcC, Cisclosedin S}

267. Theorem

A is closedin S
268. (S, T) := topological space
269. A := closure of A in S

270. A := intersection of all closed sets in S

271, [3]
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Topological Space, Closed, Accumulation Point

272. Theorems

273.
AcA
274.
(C=closedin S, AcC) - (Ac()
275.
A=Au{xreS|z=accumulation point of A}
276.
(A=closedin S) « (A=A)
277.

(xreA) & YOS (re0,Iye0,ycA)
278. (S, T) := topological space
279. Ac S
280. A := closure of Ain S
281. O = open set

282. 3]
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Bases

283. Definition
(S, T) := topological space —
— BET:VweT(az:UB@-)
284. Every element of the topology can be written as a union of elements
from the basis.
285. B := basis for the topology T
286. B; e B
287. U B; = arbitrary union
288. T := generated by B (or B generates 7))

289. [3]
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Cover, Intersection Containment Property

290. Definition

(VereSJAeX(xeA)) - (X covers S)

291. Definition

X has the intersection containment property on S
if
Vre SYA/BeX(reAnB—->3CeX(xeC,CcAnB))

292. S, A, B,C :=sets; X :=set of sets

293. (3|
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Basis, Cover,
Intersection Containment Property

294. Theorem

B = basis for a topology on S

<~

B covers S,

B has the intersection containment property on S

295. S+ &
296. B := collection of subsets of S

297. 3]
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Subbasis

298. Theorem

X ={(-00,b) | be R} u{(a,o0)|acR} #basis for a topology on R

299. Theorem

B := collection of all finite intersections of sets in X —
— B forms a basis for R (because X' covers R) —

— X = subbasis for the topology generated by B

300. standard topology on R ~> generated by B

301. [3]
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Basis, Subbasis, Union

302. Theorem

X :=set of sets —
— (X = -oObasis for T) A
A (X = subbasis for T.,)

303. -0 := not necessarily

304. T := topology on R

305. T, := topology on U X

306. J X := union of all elements of X

307. [3
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Basis, Intersection, Subspace Topology

308. Theorem

(S, T) = topological space with basis B, AcS —
— Ba={UnA|U e B} =basis for a topology 74 on A

309. T := subspace topology relative to A

310. [3]
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Topological Space, Subset, Intersection

311. Theorem

(S,T) = topological space, AcS - Ta={UnA|UeT}

312. T4 := topology on A

313. [3]
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Product Topology (basis, Cartesian product)

314. Definition
S1x Sy :={(x,y) | x €S, yeSy}

315. Theorem

(71 := topology on Sy, T :=topology on S5) —
- B={UxV |Uc€T, VeTy}=basis for T

316. T := product topology on Si x S9

317. [3]
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Product Topology, Basis, Cartesian Product

318. Theorem

(77 := topology on Sy with basis By,
75 := topology on Sy with basis By) —
- C={UxV |Ue€B;, VebBy} =basis for T

319. Theorem

X ={UxSy|UeB}u{S;xV |V eBy}=subbasis for T

320. T := product topology on 57 x So

321. [3]
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Product Topology, Basis,
Cartesian Product (n)

322. Theorem

Vie{l,2,...,n}:7T;:=topology on S; —
- B={U;xUyx..xU, |Uy€T{, Uy€Ts, ..., U, €T,} =basis for T

323. Theorem

Vie{l,2,...,n}: B; :=bases for T; —
- B={UixUyx..xU,|Uy€By, Uy €By, ..., U, €B,} =basis for T

324. T = product topology on Sy x Sy x ... x .S,

325. [3]
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General Cartesian product

326. Definition

HSkIZ{fZK—>S|V/€€K(f(k?)ESk)}

keK
327. K := index set
328. Si = set for each k € K := union of all elements S},
329. S :=U{Sk | ke K}
330. {S) | ke K} := indexed by k
331. 1Sy := general Cartesian product of {Si|ke K}

332. 3]
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Product Topology on a general Cartesian
product, Box Topology

333. Theorem

B:{HUk|VkEK:(Ukeﬁ)/\(U;{;:Sk)}zbasis for T

334. Theorem

B = {H Uy ’ Vke K': (Uk 677{;) A (Uk = Sk)} = basis for T’

335. K := finite index set

336. K':= infinite index set

337. (Sk,Tr) = topological space for each k € K
338. T := product topology on [] .Sy

339. 7' := box topology

340. T is strictly finer than T,

TcT.

341, [3]

68



Kolmogorov space (Tj-space)
342. Definition

Ve,yeS (r+y) I eT:(xeUny¢U)v(x¢Unyel) -
— (5,7T) = Kolmogorov space (Tj-space)

343. (S,T) := topological space

344. [3
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T;-space (Fréchet)
345. Definition

Ve,ye S (x+y) AU,V eT :(zel, y¢U, 2¢V, yeV)

— (9,7T) =Ti-space (Fréchet or accessible space)

346. (S,T) := topological space

347. 3]
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Cofinite Topology

348. Definition
7T = cofinite topology on S

349. T := topology generated by the basis B
350. B={X cS:5\X is finite}

351. 3]
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Cofinite Topology on R

352. Definition

(7T := topology generated by the basis B,
B={XcR:R\X is finite}) -
— 7T =cofinite topology on R

353. Theorem: 7T is strictly coarser than Ty,
T C Tst'

354. Theorem
(R,7T) =T;-space

355. Ty := standard topology

356. [3]
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T-space, Closed
357. Theorem

((S,T)=Ti-space) < (VxeS, {z}=closedin (S,7))

358. (S, T) := topological space

359. [3]
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T{-space, Accumulation Point

360. Theorem

x = accumulation point of A
iff
VOcS (xeQ) acO
361. (S,T) = Ty-space
362. AcS; acA
363. O := open set

364. d. := there are infinitely many

365. [3
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Multiple limits (multiple convergence)

366. Theorem: In Ti-spaces, sequences may converge to multiple limits.

367. 3]
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Line with two origins

368.
(S,7) =1line with two origins (topological space)

369. Theorems

370.
(S,T) =Ty-space
371.
(1) > 00
n+1 ’
372.
B covers S
373.

B has the intersection containment property
374. S:=Ru{c}
375. c¢ R
376. B:={(a,b) | (a,b) cR} u{(-a,0)u{c}u(0,b)}
377. There are two origins (0 and c).
378. B := basis for a topology T on S
379. s = (ﬁ) i= sequence
380. s converges to both 0 and c.

381. (a,b) := open interval in R

382. [3]
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Cofinite Topology on N

383. Theorems

384.
(N,7) = cofinite topology on N
385.
(N,7) = T;-space
386.

VmeN:(n) >m
387. T := topology generated by the basis B
388. B={X cN:N\X is finite}
389. (n) := sequence
390. (n) converges to every natural number in Ti-space.

301. [3]
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T9-space (Hausdorff)

392. Definition

Ve,ye S (x#y) AU,V eT :(xelU, yeV, UnV = @)
— (S,7) = Ty-space (Hausdorff)

393. (S, T) := topological space

304. 3]

78



Unique Limit, Convergence, Ty-space
395. Theorem
((s,) = convergent) — (lim (sp) = unique)
396. (S, T) := Ty-space

397. (sp) := sequence in To-space

308. 3]
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Ts-space (Regular)
399. Definition

(S,7T) = Ti-space, X = closed set,
VeeS, XcS\{z}, U, VeT:(xelU XV, UnV=9g) -
— (S,T) :=T3-space (Regular)

400. (S, T) := topological space

401, [3]
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Clopen set

402. Definition: Both open and closed.

403 [3]
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T4-space (Normal)
404. Definition

(S,T)=Ti-space, V(X,Y): XnY =2, X,Y =closed, X,Y ¢S,
WU, VeT:(XcU, YV, UnV=03)->
— (S,T) :=T4-space (Normal)

405. (S, T) := topological space

406. [3]
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Separation and Countability Axioms

407. Axioms

408. Separation Axioms = (definitions of) Ty, Ty, Ty, T3, Ty.

(they all “separate” points and/or closed sets from each
other by open sets)

409. Countability Axioms

(i) Separable Spaces
(i7) First-Countable Spaces
(ii1) Second-Countable Spaces

410. [3]
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Separable Spaces

411. Definition
(A=8) - (A:=dense)

412. Definition

(JA: A =dense, countable) — ((S,7T) := separable)

413. Ac S
414. A := closure of Ain S
415. (S, T) := topological space

416. [3)
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First-Countable Spaces

417. Definition
B := countable basis at x if

(1) VeB » xzeV
(1) YU :xeU, IV eB (VcU)

418. ¢ €S
419. U := open set
420. (S,T) := topological space

421, [3]
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First-Countable, Closure, Sequence,
Convergence

422. Theorem

((S,T) = first-countable, x € A) = (3(s,): 5, > )

423. A := closure of A in S
424. (s,) = sequence
425. (S, T) := topological space

426. [3]
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Second-Countable Spaces

427. Definition

iB — (S,T) := second-countable

428. Theorem
VT = second-countable — 7 = separable

429. B := countable basis of (S,7T)
430. (S, T) := topological space

431, [3]
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Metric (distance function)

432. Definition
d:SxS—->R

(a) Va,ye St (d(z,y) =0) < (z=y)
(b) Vz,yeS: d(z,y) =d(y,z)
(¢c) Yx,y,z€S: d(x,z) <d(x,y) +d(y, 2)

433. Theorem: Vax,y €S :d(xz,y) >0.

434, [3]
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Metric space

435. Definition
(S,d) :=metric space

436. S = set
437. d := metric (distance function)
438. d: Sx S =R

439. (3]
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Open ball

440. Definition
B.(a):={xeS|d(a,z) <7}

441. (S, d) := metric space

442. a € S; reR*

443. B,(a) = B,(a;d) := open ball (center a, radius r)
444. B={B.(a) |a€ S, r e R*} covers S.

445, [3]
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Metrizable Topological Space

446. Definition

(S,T) is metrizable if
3d : T is generated from the open balls in (S, d)

447, d:= metric; d:SxS->R

448. (S, T) := topological space

449. d induces T

450. T := metric topology (on S) induced by d

451. Different metrics can induce the same topology.

452 [3]
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FEuclidean Metric, Unitary Metric

453. Definitions

454.
d(x,y) = |r —y| := Euclidean metric

455.
k(z,w) = |z —w| = unitary metric

456. neZ* = {1,2,3,...)

457. d:R*"x R" - R

458. k:C"xCr - C

459. (R",d), (C", k) := metric spaces
460. |z —y| = Euclidean norm

461. |z — w| := unitary norm

462 [3]
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Square Metric on R"
463. Definition
p(x,y) =max{|xy —yi|, ..., |Tn — yn|} := square metric on R"
464. p:R"xR" - R
465. n =1 — p:= BEuclidean metric

466. p and d induce the product topology on R™,

467. (3]
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Discrete Metric

468. Definition
0, ifrx=y

d(z,y) = {

1, ifx+y
469. d: S xS —-R
470. d:= discrete metric on S

471, [3]
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Standard Bounded Metric

472.

473.

474.

475.

476.
477.
478.
479.
4R0.

481.

Definition

(IM e R* :Va,ye A, d(x,y) < M) = (A:=bounded in S)

Theorem

d:SxS—>R; d(z,y)=min{l,d(z,y)} =

= (9,d) =metric space

Theorem

d = bounded

Theorem
d,d induce the same topology

(S, d) := metric space
AcS
diam A =sup{d(z,y) | z,y € A} := diameter of A

d := standard bounded metric corresponding to d

boundedness # topological property

13]
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Uniform Topology

482

483

484.
485.
486.
487.
488.
489.
490.
491.
492.
493.

494.

495.

. Definition

p(z,y) = sup{d(zp,y) | k € K}

Cd:RxR-R;  d(z,y)=|z-y;

(S, d) = metric space

K := index set

p:KSxKS—>S

(%S, p) = metric space

p:=uniform metric on S

Theorem: p induces T,.

T, := product topology on kg

Theorem: 7, is finer than 7,

13]

K g .= set of functions from K to S

7. := uniform topology on ©S

T, <
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Convergence

496. Definition

(VUcS(seU)IKeN:n>K —->s,elU) = (s, 5)

497. (S, T) := topological space

498. (sp,) := sequence

499. VneN:s,€ S

500. U := open set

501. (s, = s) := s, converges to s € S

502. (3]
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Metrizable Topological Space,
Induced by a Metric, Convergence

503.

504.

505.

506.

507.

508.

509.

510.

b1l.

Theorem
Sp—> S =
= VB (s)cS3IKeN:n>K = s,eB.(s) =
= VreR"IKeN:n>K = d(s,,s)<r
(S, T) = metrizable topological space
T := induced by the metric d
seS
(s,) := sequence
VneN (s,€9)
B, (s) := open ball (radius r, center s)

(s, — s) = s, converges to s € S

13]
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Cauchy Sequence

512.

513.
b14.
515.
H16.
517.
b18.

519.

Definition

VreR"IKeN:m>n>K = d(spy,s,)<r

(S, T) := metrizable topological space

T := induced by the metric d
(sp) := sequence in S; s, > s
(sp) := Cauchy sequence

-0 := not necessarily

Theorem: V(s!) = Cauchy sequence :

3]
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Cauchy Sequence Bounded by a Rational
Number

H20. Theorem

V(xz,): (x,) = Cauchy sequence of rational numbers —
— (x,) =bounded by qeQ

521. (x,) := Cauchy sequence of rational numbers

522. [3
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Complete Metric Space
523. Definition
(V(sp):s, >s€S) = (S,d):=complete metric space
524. (S,d) := metric space

525. (s,) := Cauchy sequence

526. 3]
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Subsequence
b27. Definition
(fog:N—9):=subsequence of f
528. (s,) := sequence in S
529. (sp) = (f:N =S VneN: f(n)=s,)
530. g: N =N
b31. g := strictly increasing function

532. 3]
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Cauchy Sequence, Subsequence, Convergence

533. Theorem
(IseS:sy,, »>s) = (s, )

534. (S, d) := metric space
535. (s,) := Cauchy sequence in S
536. (s, ) := subsequence of (s,)

537. (3]
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Complete Metric Space, Cauchy Sequence,
Subsequence, Convergence

538. Theorem

((S,d) = complete) < (V(s,)in S, I(sy,): sp, > s5€5)
539. (.S, d) := metric space
540. (s,) := Cauchy sequence in S

541. (s, ) := subsequence of (s,)

542. [3
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Bounded Sequence

H43. Theorem

{s,} =bounded — (s,) =Dbounded

(IM eR":Vn,meN, d(s,,$,) < M) - ((s,) =Dbounded in )

544. (S,d) := metric space

545. (sp) := sequence in S
546. [3]
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Metric Space, Cauchy Sequence, Bounded

H47. Theorem

(S, d) = metric space, (s,) = Cauchy sequence in S =
= (s,) =bounded in S

548. [3]
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Bolzano-Weierstrass Property

H549. Definition

(V(sn) I(sp,) 8p, > s5€8) =
= (5,d) has the Bolzano-Weierstrass Property

550. (S, d) := metric space
551. (s,) := sequence bounded in S
552. (sy,) := subsequence of (s,)

553, [3]
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Euclidean Space, Unitary Space,
Complete Metric Spaces R, C"

554. Theorem
VneN: (R", d),(C" k) = complete metric spaces

HH5H. d := Euclidean metric

556. k := unitary metric

557. [3)
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Standard Bounded Metric on R, Supremum,
Complete Metric Space, Metric Induces the
Product Topology on the Index Set

HH8. Theorem

S="R, (d:RxR - R) =standard bounded metric on R,

E(ﬂ?k, yk)
kE+1
= (5,d" = complete metric space, d* induces 7))

d*: "R x "R - R, d*(:lf,y)zsup{ |k€N} =

559. T, := product topology on S = NRr

560. [3]
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Covering

561. Definition
(LJC=5) - (C:=covering of 95)
C covers S
562. Definition
(C := covering of S) A (VU €C: U = open set) —
— (C:=open covering of S
563. (S, T) := topological space
564. C := collection of subsets of S
565. JC := union of all elements of C

566. 3]
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Compact, Subcover

H567. Definition

(VC : 3, subcover of the covering) — (5,7 ) := compact

568. (S, T) := topological space

569. C := collection of subsets of S
570. C := open covering of S

571. 3,, := there is a finite number of

572. subcover of the covering := subcollection that covers S

573. |3
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Finite Intersection Property, Subcollection

574. Definition

(VDcC:(1D+@) — (C has the finite intersection property)

575. (S, T) = topological space

576. C := collection of subsets of S

577. D := finite subcollection

578. M C := intersection of all elements of C

579. 3]
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Compact, Closed,
Finite Intersection Property

580. Theorem
((S,T) = compact) < (VC:()C + o)

581. (S, T) := topological space
582. C := collection of closed sets in S with the finite intersection property
583. N C := intersection of all elements of C

584. 3]
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Nested sequence

H&8H. Definition
By2B12By> ...

586. (S, T) := compact topological space
587. B, := nonempty closed sets in S

588. Theorem: C ={Bj |k eN, j <k — By c B,} has the finite intersec-
tion property.

589. C := nested sequence of nonempty closed sets in S

590. [3]
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Compact, Finite Subcollection, Cover,
Finite Intersection Property, Covering,
Basis, Basic Open Sets, Basic Closed Sets

591. Theorem
(S,T) is compact =
= V(Cgq:Cg contains a finite subcollection that covers S =
= (VC':C' has the finite intersection property) — (JC'#@
592. (S,T) := topological space
593. Cg := covering of S by B;
594. B := basis for the topology T
595. B; e B
596. B, := basic open setsin S
597. B! = S\DB, := basic closed setsin S
598. C' = {B!}
599. UJC' := union of all elements of C’

600. [3]
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Tychonoft’s Theorem

601. Theorem

(Vk e K : (S, Tr) = compact topological space) —
— (H Sk = compact in 7;,)

keK

602.
[[Se={f:K—>S|VkeK (f(k)eSk)}

keK

603. K := index set

604. S} := set for each k € K

605. {S) | k € K} := indexed by k

606. S =U{Sk|ke K}

607. TSk := general Cartesian product of {S; | k € K}

608. 7, := product topology
609. |[3]

116



Heine-Borel Theorem
610. Theorem

((A,Ta) = compact) < (A =closed and bounded in R)

611. AcR
612. (A, Ta) = topological space

613. 3]
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Bounded, Supremum, Infimum, Closure

614. Theorem
(A =bounded) — (supA,infAe A)

615. A+g@; AcCR
616. A := closure of Ain R

617. [3]
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Covering by Sets, Open Covering by Open
Sets, Subspace

618. Definition
C := covering of A by sets in S

619. Definition
(VC'eC:Copenin §) —
— (C := open covering of A by open sets in S)
620. (S, 7T) := topological space
621. (A, Ty) := subspace of (S, T)
622. C={S;|S; €S, AcUC}
623. [3]
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Compact, Subspace, Open Covering,
Subcollection

624. Theorem
((A,Ta) = compact) < (VC:C'€C)

625. (5,T) := topological space

626. (A, 7Tx) := subspace of (S,T)

627. C := open covering of A by open sets in .S
628. C’ := finite subcollection that covers A

629. [3]
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Ty-space, Subspace, Compact, Closed
630. Theorem
((A,Th) = compact) — (A= closed in S)
631. (S,7T):= Ty space
632. (A, T4) := subspace of (S, T)

633. 3]
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Closed, Compact, Subspace

634. Theorem
(A=closedin §) - (A,Ta) = compact

635. (S, T ) := compact topological space
636. (A, T4) := subspace of (S,7T)

637. [3]
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Generalized Heine-Borel Theorem
638. Theorem
((A,Ta) = compact) <> (A=closed and bounded in R")
639. AcR
640. (A, Ta) = topological space

641. [3]
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Sequentially Compact
642. Definition
Vn((s,) €S, 3(s),):s, > s) - (S,d) =sequentially compact
643. (S,d) := metric space
644. () := sequence in S

645. (s!) := subsequence of (s,,)

646. [3]
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Lebesgue number

647. Definition

(VAc S, diam A<, 3CeC: Ac(C) - (0 :=Lebesgue number for C)

648. (S, T) := topological space
649. C := open covering of S
650. § € R*

651. diam A := diameter of A

652. 3]
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Lebesgue’s Covering Lemma

653. Theorem

(S,T) =metrizable, sequentially compact —

— C has a Lebesgue number

654. (S,T) := topological space
655. C := open covering of S

656. [3]
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Totally bounded, r-net

657. Definition
(S =B (z)|zeA}) - (A hasan r-net)
658. Definition
(Vr e R":(S,d) has an r-net) — (5,d) =totally bounded

659. (.5, d) := metric space
660. r e R*
661. AeS; A:=finite

662. [3]
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Sequentially Compact Metric Space,
Totally Bounded

663. Theorem

(S,d) = sequentially compact — (5,d)=totally bounded

664. (.S, d) := metric space

665. 3]
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Metrizable Space, Compact,
Accumulation Point, Sequentially Compact,
Infinite Subset

666. Theorem

(S,T) is compact =
= VS': 5" has an accumulation point =

= (S5,7T) is sequentially compact

667. (.S,7T) := metrizable space
668. S’ := infinite subset of S

669. [3]
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Locally Compact
670. Definition
VreS I(K,Tkg): N(z) c K - (S,T):=1ocally compact
671. (S, T) := topological space
672. (K, Tx) := compact subspace

673. N(x) :=-neighborhood of x

674. [3|
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One-Point Compactification
675. Definition
(g, 7_') := one-point compactification of S
676. (S,T) := locally compact Ty space
677. S=Su{oco}
678. oo := point at infinity
679. T =T u{S\K | (K, Tx)} := compact subspace of (S,T)

680. 3]
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Locally Compact, To-space,
One-Point Compactification

681. Theorem

(S,T) = locally compact To-space —
— (8,T) = compact Ty-space

682. (S,T) := one-point compactification of (S, 7)

683. 3]
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Interior of a Set, Empty Interior,
Nowhere Dense, Closure

684.

685.

686.

687.

638.

689.

690.

691.

692.

Definition
A°:= JU; := interior of A
i
Definition
(A=) - (A has empty interior)
Definition

(A)° =@ — A:=nowhere dense in S
(S, T) := topological space
AcS
U cA

U; := open set

A := closure of A

3]
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Nowhere Dense, Dense, Interior

693. Theorem

(A =nowhere dense in S) < (S\A)°=dense in S

694. (S, T) := topological space
695. AcS
696. (S\A)° := interior of (S\A)

697. [3
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Meagre, Nonmeagre, Comeagre,
Countable Union, Nowhere Dense,
First Category, Second Category

698. Definition
A=A -
— A:=meagre (or a set of first category)

699. Definition

(A £ meagre) — A :=nonmeagre (or a set of second category)

700. Definition
(A = meagre) — S\A := comeagre

701. (S, T) := topological space
702. AcS
703. U, = countable union

704. A’:= nowhere dense sets

705. [3]
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Baire Category Theorem

706. Theorem

(i) (VA: A= comeagre, AcS) - A=densein S

(#4) S = nonmeagre
707. (S, T) = (locally compact To-space) v (completely metrizable space)

708. [3]
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Image, Inverse Image

709. Definitions

710. f: X ->Y;, AcX, BcY

711. fl[A]={f(x)|x € A} := image of A under f

712. f7UB]={x e X | f(z) € B} := inverse image of B under f

713. [3]
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Continuous Functions

714. Definition

(VVeld: f[V]eT) - (f:=continuous)

715. Theorem

(VA: f'[A] := open) — (f = continuous)

716. (X, T),(Y,U) := topological spaces

7. f: XY

718. A := open set

719. Continuity may depend on both, the function and the topologies.
720. Theorem

(VWeld, f(x)eV, 3UeT, xelU: f[U]cV) >

— (f = continuous at x € X)

721 [3)
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Continuous Function
722. Theorem
(f = continuous) < (Vre A: f = continuous)
723. (A, T),(B,U) := topological spaces
4. f:A-> B

725. [3]
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Continuity in Metrizable Spaces

726. Theorem

(f = continuous at z € A) <
< (Ve>036>0: d(z,y)<d = p(f(z),f(y)) <e)

727. (A, T),(B,U) := metrizable topological spaces
728. d, p := metrics

729. T,U = induced by d and p, respectively

730. f:A—> B

731. [3]
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Continuous Function, Metrizable Spaces,
Open Ball, Sequence, Convergence

732. Theorem

f is continuous at x =
= VB.(f(2):p) 3Bs(w:d) : f[By(w:d)] € B(f(a)ip) =

733. (A, T),(B,U) := metrizable topological spaces

734. d, p := metrics

735. T,U = induced by d and p, respectively

736. f:A-> B

737. xe A

738. B.(f(x);p) := open ball in U (center f(x), radius € >0, metric p)
739. Bs(x;d) := open ball in T (center z, radius ¢ > 0, metric d)

740. (x,) := sequence

741. (z, - x) := x, converges to x

742, [3)
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Uniformly Continuous Function

743. Definition

Ve>036>0Va,be A (d(a,b) <o - p(f(a),f(b))<e) —

— f:=uniformly continuous on A

744. (A, T),(B,U) := metrizable topological spaces
745. d, p := metrics

746. T ,U = induced by d and p, respectively

7. f:A-> B

748, [3|
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Homeomorphism
749. Definition
(f =bijection: O €T « f[O]eU) — (f:=homeomorphism)
750. (A, T),(B,U) := topological spaces
1. f:A-> B

752. [3]
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Homeomorphic (Topologically Equivalent)
Spaces

753. Definition
fn = (A, T) = (B,U)

754. (A, T),(B,U) = topological spaces
755. (fn+ A - B) := homeomorphism
756. =, := topological equivalence

757, [3)
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Topological Property (Topological Invariant)

758.

759.
760.
761.

762.

763.

Definition

topological invariant := property preserved under homeomorphisms

(T has P)A(U=T) - (U has P)
P := topological property
(A, T),(B,U) := topological spaces
=; := topological equivalence

Examples of topological invariants: compactness, being a To-space,
separation axioms (7y-7}), countability axioms,metrizability.

13]
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Ty-space, Topological Invariance
764. Theorem
((A,T) :=Tgospace) A ((B,U) = (A, T)) - (B,U) =Ty-space
765. (A, T),(B,U) := topological spaces

766. =; := topological equivalence

767, [3)
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Tychonoff Space

768. Definition

(T = Ty-space) A
n(VoeS, VAcS\{z}, 3f:5~[0,1], f(z) =0, f[A]={1}) —
— 7T := Tychonoff space
769. (S, T) := topological space
770. A := closed set

771. f := continuous function

772, [3)

147



Completely Regular Space (Tgl—space)
2

773. Definition
(VeeS, VAcS\{z}, 3f:5->[0,1], f(z)=0, f[A]={1}) >
— ] := completely regular space (TS%—space)
774. (S, T) := topological space
775. A := closed set
776. f := continuous function

777. 3]
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Urysohn’s Lemma

778. Theorem

((S,T) =Tyspace) A (AnB=2) -
~ 3f:5-[0,1], f[A]=A{0}, f[B]={1}

779. A, B := closed subsets of S

780. f := continuous function

781, (3]
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T s-space, Tychonoff Space
782. Theorem

(VT : T =Ty-space) — (7 =Tychonoff space)

783. T := topological space

784. 3]
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Tietze Extension Theorem

785. Theorem

(S,T) = T4-space,

(C,Tc) <5 (S,T),

C = closed in S,

a,be R:a<b,

f:C - [a,b] continuous
—

f can be extended to ¢:S — [a,b] continuous

786. S, := subspace relation

787, [3)
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Disconnection, Disconnected, Connected

788. Definitions

789.
(U,V') := disconnection of S
790.
I(U,V) - (S,T):=disconnected
791.

2 (U, V) - (S,T):=connected
792. (S, T) := topological space
793. U,V := nonempty open sets
94. UnV =g
795. UuV =8

796. [3]
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Connected, Clopen, Uniqueness

797. Theorem
(S,T) = connected « 3IC:C={5,2}

798. (S, T) := topological space
799. C := set of clopen sets in S

800. 3!:= there is ezactly one

301. [3]
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Interval, Connected Subspace,
Standard Topology

802. Theorem

IcR — (I,7;) = connected subspace of (R,7T)

803. I := interval
804. 7T := standard topology on R

805. [3]
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Connected Subspace,
Standard Topology, Interval

806. Theorem

AcCR, (A, T4)=connected subspace of (R,7) —

— A =interval

807. T := standard topology on R

308. [3]
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Connected, Continuous, Image

809. Theorem

(A,T) = connected, f:A — B continuous —
f[A] = connected

810. (A,T),(B,U) := topological spaces

811. [3]
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Intermediate Value Theorem

812. Theorem

(S,T) = connected, f:S — R continuous —
— f[S] = interval

813. (S, T) := topological space

814. (3]
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Topology Generated by a Set,
Connected Subspace

815. Theorem

A={(A, Ta,) | k e K7},
m{Ak“{JEK}#E@,

A= J{Ay|keK},

T* is generated by | J{7a, | k € K}

fr—

(A, T*) = connected subspace of (S,7)

816. (.S, T) := topological space
817. (Ak,Ta,) = connected subspace of (S,7)
818. T := topology

819. [3]
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Components

820. Definitions

821.
vy < (A Ta)z,yeA

822.
connected components of S := equivalence classes of ~

823. (S,T) := topological space
824. ~ := equivalence relation on S
825. (A, T4) := connected subspace of (S,T)

826. [3]
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Connected Subspace, Clopen, Closed,
Component

827. Theorem

() Vee S AIM:xe M
(74) (A,7Ta) = connected subspace of (S,7) - Ac M

(1) (A,Tx) = connected subspace of (S,7), A=clopeninS -
- Ac M

(iv) YM: M= closedin S
828. (S,T) := topological space
829. M := component of S

830. [3]
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Totally Disconnected

831. Definition

Ve,yeS, x+y, 3(U,V):xeUyeV —
— (S,7T):=totally disconnected

832. (S, T) := topological space
833. (U, V') := disconnection of S

834. [3]
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Locally Connected Space

835. Definition

VeeS VU:2elU —
— 3V, x eV :(V,Ty) := connected, V cU

836. (S, T) := topological space
837. U,V := open sets in S
838. -0 := not necessarily

839. connected space = -0 locally connected

840. [3]
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Function Space

841. Definition

function space := vector space + functions (elements)

842. [3]
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Example, Function Space, RR

843. Theorems

844.
R={f|f:R->R}
845.
RR = vector space over R
846.

®R = function space

B4T. f,ge "R » f+ge R, (f+g)(x)= f(x)+g(x)
848. feER, ceR - cf €*R, (cf)(z) =c- f(x)
849. Vz e R:0(z) =0

850. Vz eR: (—f)(z) = —f(2)

851. 0 := zero vector (function)

852. —f := additive inverse of f e *R

853. 3]
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Normed Vector Space

854. Definitions

8H0.

(V,] |) := normed vector space (normed linear space)

856. (| |:V = R) := norm (function)

(i) YVoeV, |v|=0v=0
(i7) Yo,w eV, |v+w|<|v| + |w)

(i7i) Yv eV, ceT, |cv| =|d|v]
857. V := vector space over a field F
858. v eV — |v]:=norm of v

859. ceF — |c|:= absolute value of v

860. [3]
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Banach Space
861. Definition

(V,d) = complete metric space — V :=Banach space

862. V := normed vector space induced by d
863. d := metric

864. [3]
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Metric Space, Continuous Function
865. Theorem
(S,d) =metric space — C(S,R)<B(S,R)
866. B(S,R)={f:5—->R| f:= bounded}
867. C(S,R) ={feB(S,R)| f:= continuous}
868. < := subspace relation

869. [3]
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Closed Subspace of a Banach space
870. Theorem

closed subspace of a Banach space = Banach space

871. V := Banach space induced by d
872. d := metric
873. W := subspace of V' (closed in V)

874, (3]
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Pointwise Convergence

875. Definition

876

VeeS: f,(x)—> f(z) = (f,):=converges pointwise to f

. Definition

(xeS, e>0, AIKeN:n>K - |f,(x) - f(x)| <€) =

= (f,) := converges pointwise to f

877. (fn) == sequence in C(S,R)

878
879

880.

. B(S,R)={f:S—>R]| f:= bounded}

. C(S,R)={feB(S,R)| f:= continuous}

13]
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Uniform Convergence

881. Definition

(e>0, AIKeN:n>K > VxeS, |fu(x) - f(z)|<e) —

— (fp) := converges uniformly to f
882. (f) == sequence in C(S,R)
883. B(S,R)={f:5—->R| f:= bounded}
884. C(S,R) ={feB(S,R)| f:= continuous}

885. [3]
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Uniform Convergence, Metric Space

886. Theorem

(fn) = converges uniformly to f = feC(S,R)

887. (S, d) := metric space

888. (fn) = sequence in C(S,R)

839. B(S,R)={f:9—->R| f:= bounded}
890. C(S,R) ={feB(S,R) | f:= continuous}

891. [3]
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Equicontinuous

892. Definition

(€>0 > (6>0:Va,ye K, Vi e A dz,y)<d—|f(z)- f(y)|<e) =

= A := equicontinuous

893. [3]
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Arzela-Ascoli Theorem

894. Theorem

A = compact < A = (bounded A equicontinuous)

895. (K, d) := compact metric space
896. AcC(K,R)
897. A := closed in K

898. [3]
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Homotopy

899

. Definitions

900.

901.

902.

903

F: X x[0,1] =Y continuous,

VreX: F($7O):f(x)7 F(.T;,l):g(x) =

:= homotopy from f to g

F' deforms f into g

3 homotopy from ftog — f~g

(X, T),(Y,U) := topological spaces

904. (f,x:X —Y):= continuous

905.

906.

~J

13]

:= homotopic relation
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The Pasting Theorem

907. Theorem

Vre AuB, f(x)=g(x) — h=continuous
908. (X,T), (Y,U) :=topological spaces
909. A, B:cX; A B:=closed; X=AuB

910. f: A=Y, g:B->Y; f,g:=continuous

911. h: X - Y
if xreA
012, h(z) =1/ @) Hwe
g(x), ifxeB
913. 3|
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Homotopy is an Equivalence Relation

914. Theorem
~ 1s an equivalence relation

915. ~ := homotopic relation

916. [3]
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Path Connected

917. Definitions

918.
919.
a,beY — f':=pathinY from a to b
920.
Va,beY, 3f: f =path from a to b — (Y,U) := path connected
921. (X, T),(Y,U) = topological spaces

922. f,g: X =Y

923. f':[0,1] = Y continuous
924. a:= initial point

925. b:= terminal point

926. [3]
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Convex

927. Definition

Vie[0,1], z,ye X > (1-t)x+tye X = (X,T):=convex

928. Theorem

V(X,T) =convex — (X,T):=path connected

929. (X,7T) := topological space

030. [3]
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Path Homotopy

931.

932.

933.

934.
935.
936.
937.
938.

939.

Definitions

F := path homotopy from f to g

(i) Vse[0,1]: F(s,0)=f(s), F(s,1)=g(s)
(i1) Vte[0,1]: F(0,t) =a, F(1,t)=b

3 path homotopy from ftog = f=~,g¢
fig:[0,1] =Y, f,g:= continuous functions
a := initial point of f and g¢
b := terminal point of f and g
F:[0,1]x[0,1] > Y
~, = path homotopic relation

3]
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Path Homotopy is an Equivalence Relation

940. Theorem
~, 18 an equivalence relation

941. ~, := path homotopic relation

042. [3]
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Product of Paths

943. Definition

f(2s),  ifse0,3]
1

(7> g)(s):= {g(23—1), if se[3,1]

944. f:=pathin Y from a to b
945. ¢ := path in Y from b to ¢

946. f * g := product of f and g := path in Y from a to ¢

047. (3]
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Continuous, Paths, Path Homotopy,
Composition of Functions

948. Theorem

(X, T),(Y,U) = topological spaces,

h: X —Y continuous,

f,g:[0,1] > X =paths in X

F:[0,1] x[0,1] = X = path homotopy from f to g
=

ho f:[0,1] x[0,1] =Y = path homotopy from ho f to hog

049. [3]
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Continuous, Paths,
Composition and Product of Functions

950. Theorem

(X, T),(Y,U) = topological spaces,
h: X —Y continuous,
f,9:[0,1] > X =paths in X; f(1) =g(0)

pr—

ho(f*g)=(hof)x(hog)

051. [3]
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Well-defined Operation on Path Homotopy
Classes

952. Theorem f 1
28 it sel0,5
(Fxg)le) = {g((zs)—, 1), ifse E ﬂ
953. (Y, T) := topological space
954. f:=path in Y from a to b
955. g := path in Y from b to ¢
956. f % g:= product of f and g := path in Y from a to c

957. Theorem
L] =gl =1f~g]

(i) associativity: [f]* ([g] = [h]) = ([f] = [9]) * [7]
(77) left and right identities: yeVY, ¢,:[0,1] =Y, ¢,(s) =y
(f:[0,1] > Y =path in Y from a to b) =
= (le] * F1=1/] U1 la] =1/])
" f:[0,1] = Y = path from a to b,
f:[01] =Y, f(s)=f(1-s)=_ B
= [ =path from b toa, [f]>[f]=[c], [f]1*[f]=]c]

958. [f],[g] := homotopy classes
959. % := well-defined operation on [ f],[g]
960. » induces *

961. ¢, := constant path

962. [3]
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Fundamental Group, Base Point, Loop

963. Definition

964

96°.

966.

loop in Y based at a := path that begins and ends at a

. Theorem

(m1(Y,a), * ) = fundamental group of Y relative to a

m(Y,a) ={[f]| f :=loop based at a}

[ /] := path homotopy class of f

967. a := base point

968.

3]
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Path Connected, Isomorphism
969. Theorem
(Y,U) = path connected — Va,beY :m(Y,a)2m(Y,b)
970. (Y,U) := topological space

971. 2 := isomorphic relation

972. 3]
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Path Components, Equivalence Classes,
Path Connected

973. Definitions

974.
a~b < 3 path fromatob

975.

path components :=equivalence classes of ~
976. (Y,U) := topological space
977. ~ is an equivalence relation.

978. FEach equivalence class is path connected.

979. 3]
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Topological Equivalence, Isomorphism,
Fundamental Groups

980. Theorem
(X, T) = (Y,U) - (GX = Gy)

981. (X, T),(Y,U) = topological spaces
982. =; := topological equivalence
983. = := isomorphic relation

984. G x, Gy = fundamental groups

985. 3]
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The Fundamental Group of the Circle

986. Theorem
GSI = (Z, +)

987. Gg = fundamental group of S

988. = := isomorphic relation

089. [3]
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Lifting
990. Definition
(hy: X — Z continuous, gohy = f) = lifting of f
[ lifts to hy
991. (X,7T),(Y,U),(Z,V) = topological spaces
992. f: X ->Y;, g¢g:Z-Y; f g:=continuous functions

993. [3
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Standard Covering Map of the Circle

994. Definition
g := standard covering map of S!

995. g: R - Sy g(x) = (cos 27z, sin 27x)
996. g wraps around the unit circle infinitely many times.

097. [3]
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Standard Covering Map, Circle, Uniqueness,
Lift

998. Theorem

d(0) = (z,y) €S', zeg'[{z,y}] =
= 3lk;:[0,1] = R, k4(0) =z

999. g: R > S  g(x) = (cos 27z, sin 27x)
1000. g := standard covering map of S
1001. d:[0,1] — S! := path
1002. 3!:= there is exactly one
1003. kq == lift of d

1004. [3]
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Retraction

1005. Definition
(f: X - A):=retractionif (Vaec A) f(a) =a
1006. f := continuous map
1007. Acg X
1008. ¢4 := subspace relation

1009. A := retract of X

1010. |6
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Retract

1011. Definition
A:=retract of X if (3f: X - X)(Vre X)(VaceA)
(i) f(z)eA
(i) f(a)=a
1012. f := retraction
1013. Ac, X
1014. ¢4 := subspace relation

1015. (6]

194



Absolute Retract

1016. Definition

(X ek, VY eK: XY, X :=retract of Y) —
— (X := absolute retract for K)

1017. K := class of topological spaces closed under homeomorphism
1018. X := topological space

1019. [6]
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Abstract Simplicial Complex
1020. Definition

(AeS - VA': A"eS) - (S:=abstract simplicial complex)

1021. S := finite # &
1022. g+ A'c A

1023. 6]
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