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Abstract

This is an introductory collection of theorems in topology.
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Introduction

1. We present some basic theorems in Topology using the fewest number
of mathematical symbols, without losing information.

2. The idea is to provide a global overview of the results without worrying
about their proofs.

3. This white paper is being updated from time to time.

∗All authors with their affiliations appear at the end of this white paper.
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Metalinguistic Symbols

4. A metalinguistic symbol is not part of the language.

5. The symbol ∶= means that what is on the left side is defined by the
right side of it.

6. Depending on the context, ≡ and 󳆋≡ are used to state a theorem.

7. For example, in the statement of a theorem, ≡ can be read as is, are,
has, have etc.

8. [1, 2]

2



Archimedean Property

9. Theorem

(∀x ∈ F ∃n ∈ N ∶ n > x) ≡ (F has the Archimedean Property)

10. F ∶= ordered field

11. (9) means that N is unbounded in F .

12. Theorem
Q,R ≡ Archimedean Property

13. Q ∶= set of rational numbers

14. R ∶= set of real numbers

15. [3]
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Density Theorem

16. Theorem
(x, y ∈ R, x < y) → (∃q ∈ Q ∶ x < q < y)

17.
Q is dense in R

18. [3]
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Open Interval

19. Definition
(a, b) = {x ∈X 󳈌 a < x < b}

20. (a, b) ∶= open interval in X

21. X ∶= set

22. [3]
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Open Set

23. Definition

(∀x ∈X ∶ x ∈ (a, b) ⊆X) ≡ X ∶= open set in R

24. Definition
X ∶= open set in Y if

(i) X ⊆ Y
(ii) ∀x ∈X ∶ x ∈ (a, b) ⊆X

25. X,Y ∶= sets

26. (a, b) ∶= open interval in R

27. [3]
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Open Interval, Open in R
28. Theorem

∀(a, b) ∶ (a, b) ≡ open set in R

29. Theorem

(∀h. h ∶= half-open interval in R) → (h 󳆋≡ open set in R)

30. Theorem

(∀c. c ∶= closed interval in R) → (c 󳆋≡ open set in R)

31. (a, b) ∶= open interval in R

32. [3]
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Infinite Interval, Open in R
33. Theorem

a ∈ R → (a,∞) ≡ open in R

34. Theorem
b ∈ R → (−∞, b) ≡ open in R

35. (a,∞), (−∞, b) ∶= infinite open intervals in R

36. [3]
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Empty Set, Set of Real Numbers, Open in R
37. Theorem

∅,R ≡ open in R

38. [3]
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Open Subset of R, Open in R
39. Theorem

(X ≡ open in R) ↔ (∀x ∈X, ∃c > 0, c ∈ R ∶ (x − c, x + c) ⊆X)

40. X ⊆ R; (x − c, x + c) ∶= open interval in R

41. [3]
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Union of Open Sets in R
42. Theorem

A ∪B ≡ open in R

43. A,B ∶= open sets in R

44. [3]
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Union of a collection of sets

45. Definition
󱮊X ∶= union of all elements of X

46. ⋃X ∶= {y 󳈌 ∃Y ∈X, y ∈ Y }

47. X ∶= collection of sets

48. Y ∶= set

49. [3]
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Intersection of a collection of sets

50. Definition

󱮉X ∶= intersection of all elements of X

51. ⋂X ∶= {y 󳈌 ∀Y ∈X, y ∈ Y }

52. X ∶= collection of sets

53. Y ∶= set

54. [3]
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Union of Open Subsets of R, Open in R
55. Theorem

󱮊X ≡ open in R

56. X ∶= set of open subsets of R

57. ⋃X ∶= union of all elements of X

58. [3]
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Upper/Lower Bound in R
59. Definition

(∃m ∈ R ∶ ∀s ∈ S, s ≤m) ≡ (m ∶= upper bound of S)

60. Definition

(∃k ∈ R ∶ ∀s ∈ S, s ≥ k) ≡ (k ∶= lower bound of S)

61. ∅ ≠ S ⊆ R

62. [4]
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Bounded Set

63. Definition

bounded set ∶= bounded above and below

64. [3]
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Bounded Open Intervals

65. Theorem

(∀X ⊆ R, X ≠ ∅, X ∶= open set in R) → (X =󱮊B)

66. B ∶= set of all bounded open intervals in X

67. ⋃B ∶= union of all elements of B

68. [3]
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Pairwise Disjoint Open Intervals

69. Theorem

(∀X ⊆ R, X ≠ ∅, X ∶= open set in R) → (X =󱮊
c
P )

70. ⋃c ∶= countable union

71. P ∶= set of pairwise disjoint open intervals

72. [3]

18



Modal operators

73. Definitions

74. ◻,󳃂 ∶= (unary) modal operators

75. ◻ ∶= necessarily

76. 󳃂 ∶= possibly

77. ϕ ∶= formula

78. 󳃂ϕ ≡ ¬ ◻ ¬ϕ

79. [5]
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Intersection of Open Sets in R
80. Theorem

A ∩B ≡ open in R

81. Theorem
n

󱮉
i=1

Ai ≡ open in R

82. Theorem ∞
󱮉
i=1

Ai ≡ ¬ ◻ open in R

83. A,B,Ai ∶= open sets in R

84. ⋂Ai ∶= arbitrary intersection of Ai

85. ¬◻ ∶= not necessarily

86. [3]
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Closed Set in R, Complement of a Set

87. Definition

(R󳆑X ≡ open in R) → (X ∶= closed in R)

88. X ⊆ R

89. R󳆑X ∶= complement of X in R

90. [3]
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Intersection of Closed Sets

91. Theorem
A ∩B ≡ closed in R

92. A,B ∶= closed sets in R

93. [3]
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Accumulation Point of a Set in R
94. Definition

(R 󰑡 x ∶= accumulation point of S ↔
↔∀a, b ∈ R (a < x < b→ ∃y ∈ S(a < y < b ∧ y ≠ x)))

≡ every open interval containing x contains at least one point of S
different from x

95. S ⊆ R

96. (R 󰑡 x) ≡ (x ∈ R)

97. [3]
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Closed in R, Accumulation Points

98. Theorem

(C ≡ closed in R) ↔ (x ≡ accumulation point of C → x ∈ C)

99. C ⊆ R

100. [3]
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Closure of a Set in R, Intersection

101. Definition

S ⊆ R → S ∶=󱮉{C 󳈌 S ⊆ C, C ≡ closed in R}

102. S ∶= closure of S in R

103. S ∶= intersection of all closed sets in R containing S

104. Theorem
S ≡ closed in R

105. [3]
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Closure, Accumulation Point, Closed in R
106. Theorems

107.
S ⊆ S

108.
(C ≡ closed in R, S ⊆ C) → (S ⊆ C)

109.
S = S ∪ {x ∈ R 󳈌 x ≡ accumulation point of S}

110.
(S ≡ closed in R)↔ (S = S)

111.
(x ∈ S) ↔ ∀X (x ∈X → ∃s ∈X)

112. s ∈ S ⊆ R

113. S ∶= closure of S in R

114. X ∶= open interval

115. [3]
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Open Disk in C, Neighborhood

116. Definition
Nr(c) ∶= {z ∈ C ∶ 󳈌z − c󳈌 < r}

117. Nr(c) ∶= r-neighborhood of c (open disk in C)

118. c ∶= center of the open disk

119. r ∶= radius of the open disk

120. [3]
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Open in C
121. Definition

(∀z ∈X ∃D ∶ z ∈D ⊆X) → (X ∶= open in C)

122. Theorem

(X ≡ open in C) ↔ (∀w ∈X ∃d > 0 ∶ Nd(w) ⊆X)

123. w ∈X ⊆ C; d ∈ R

124. D ∶= open disk

125. Nd(w) ∶= open disk in C (d-neighborhood of w)

126. [3]
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Closed in C
127. Definition

(C󳆑X ≡ open in C) → (X ≡ closed in C)

128. X ⊆ C

129. C󳆑X ∶= complement of X in C

130. [3]
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Accumulation Point of a Set in C
131. Definition

(C 󰑡 z ≡ accumulation point of S ↔
↔∀a ∈ C ∀r ∈ R+ (z ∈ Nr(a)→ ∃w ∈ S(w ∈ Nr(a) ∧w ≠ z)))
≡ every open disk containing z contains at least one point of S

different from z

132. S ⊆ C

133. (C 󰑡 z) ≡ (z ∈ C)

134. Nr(a) ∶= open disk in C (r-neighborhood of a)

135. [3]
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Closed in C, Accumulation Points

136. Theorem
(C ≡ closed in C) ↔ (∀z ∈ C ∶ z ∈ C)

137. C ⊆ C

138. z ∶= accumulation point of C

139. [3]
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Closure, Accumulation Point, Closed in C
140. Theorems

141.
S ⊆ S

142.
(C ≡ closed in C, S ⊆ C) → (S ⊆ C)

143.
S = S ∪ {z ∈ C 󳈌 z ≡ accumulation point of S}

144.
(S ≡ closed in C)↔ (S = S)

145.
(z ∈ S) ↔ ∀D (z ∈D ∧ ∃s ∈D)

146. s ∈ S ⊆ C

147. S ∶= closure of S in C

148. D ∶= open disk in C

149. [3]
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Euclidean space

150. Definition

Rn ∶= {(x1, x2, ..., xn) 󳈌 x1, x2, ..., xn ∈ R}

151. x, y ∈ Rn; k ∈ R

152. x + y = (x1 + y1, x2 + y2, ..., xn + yn)

153. kx = (kx1, kx2, ..., kxn)

154. −x = (−x1,−x2, ...,−xn)

155. x − y ∶= x + (−y) = (x1 − y1, x2 − y2, ..., xn − yn)

156. 󳈌x󳈌 =
󳆻
x21 + x22 + ... + x2n

157. 󳈌x󳈌 ∶= norm (length/magnitude) of x

158. Rn ∶= n-dimensional Euclidean space

159. [3]
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Unitary space

160. Definition

Cn ∶= {(z1, z2, ..., zn) 󳈌 z1, z2, ..., zn ∈ C}

161. Cn ∶= n-dimensional unitary space
(with the definitions of sum, scalar multiple, and norm)

162. [3]
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Generalized Triangle Inequality

163. Theorem
󳈌x + y󳈌 ≤ 󳈌x󳈌 + 󳈌y󳈌

164. x, y ∈ Rn (or x, y ∈ Cn)

165. 󳈌x󳈌 ∶= norm of x

166. [3]
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Open Ball in Rn, Neighborhood

167. Definition
Bd(a) ∶= {y ∈ Rn ∶ 󳈌y − a󳈌 < d}

168. Bd(a) ∶= open ball in Rn (center a, radius d)
(d-neighborhood of a ∈ Rn)

169. [3]
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Open in Rn, Open Ball in Rn

170. Definition

(∀x ∈X ∃B ∶ x ∈ B,B ⊆X) → (X ∶= open in Rn)

171. Definition

(Rn󳆑X ≡ open in Rn) → (X ∶= closed in Rn)

172. Rn󳆑X ∶= complement of X in Rn

173. X ⊆ Rn; B ∶= open ball in Rn

174. [3]
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Accumulation Point of a Set in Rn

175. Definition

∀B ⊆ Rn (x ∈ B, ∃s ∈ B, s ≠ x) →
→ Rn 󰑡 x ∶= accumulation point of S in Rn

176. S ⊆ Rn

177. B ∶= open ball in Rn; s ∈ S; (Rn 󰑡 x) ≡ (x ∈ Rn)

178. [3]
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Closure of a Set in Rn, Intersection

179. Definition

S ⊆ Rn → S =󱮉{C 󳈌 S ⊆ C ∧C ≡ closed in Rn}

180. S ∶= closure of S in Rn

181. S ∶= intersection of all closed sets in Rn containing S

182. [3]
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Open, Closed, Union, Intersection,
Accumulation Point, Open Ball

183. Theorems

184.
(X ≡ open in Rn) ↔ (∀x ∈ Rn ∃d > 0 ∶ Bd(x) ⊆X)

185.
∅,Rn ≡ open and closed in Rn

186.
󱮊Ai ≡ open in Rn

187.
n

󱮉
i=1

Ai ≡ open in Rn

188.
󱮉Ki ≡ closed in Rn

189.
n

󱮊
i=1

Ki ≡ closed in Rn

190.
(C ≡ closed in Rn) ↔ (∀y ∈ Rn ∶ y ∈ C)

191.
S ⊆ Rn → S ⊆ S

192.
(C ≡ closed in Rn, S ⊆ C) → (S ⊆ C)

193.

(S ⊆ Rn) → (S = S ∪ {x ∈ Rn 󳈌 x ≡ accumulation point of S})
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194.
(S ≡ closed in Rn) ↔ (S = S)

195.
(x ∈ S) ↔ ∀B (x ∈ B,∃s ∈ B)

196. x ∈ Rn

197. Bd(x) ∶= open ball (center x, radius d)

198. Ai ∶= open sets in Rn; i ∈ N = {1, 2, 3, ...}

199. ⋃Ai ∶= union of all Ai

200. Ki ∶= closed sets in Rn

201. ⋂Ki ∶= intersection of all Ki

202. C ⊆ Rn

203. y ∶= accumulation point of Rn

204. S ∶= closure of S in Rn

205. B ∶= open ball

206. s ∈ S

207. [3]
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Topology on S

208. Definition
T ∶= topology on S if

(i) ∅, S ∈ T
(ii) X ⊆ T → ⋃X ∈ T

(iii) (Y ⊆ T ∧ Y ∶= finite) → ⋂Y ∈ T

209. (208.ii) means that T is closed under taking arbitrary unions.

210. (208.iii) means that T is closed under taking finite intersections.

211. S ∶= set

212. T ,X,Y ∶= sets of sets

213. P(S) ∶= power set of S (set of all subsets of S)

214. Theorem
T ⊆ P(S) ∈ P(P(S))

215. [3]
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Trivial Topology

216. Definition
T ∶= {∅, S}

217. T ∶= trivial topology (or indiscrete topology) on S

218. S ∶= set

219. [3]
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Discrete Topology

220. Definition
P(S)

221. P(S) ∶= power set ∶= discrete topology

222. S ∶= set

223. [3]
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Topological Space

224. Definition
(S,T ) ∶= topological space

225. S ∶= set

226. T ∶= topology on S

227. [3]
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Topology of a singleton

228. Definition
T ∶= {∅,{a}}

229. S = {a}

230. T ∶= unique topology on S

231. [3]
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Topologies of a set with two elements

232. Theorems

T1 = {∅,{a, b}}
T2 = {∅,{a},{a, b}}
T3 = {∅,{b},{a, b}}
T4 = {∅,{a},{b},{a, b}}

233. S = {a, b}

234. Ti ∶= topologies on S

235. [3]
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Coarser, finer, and incomparable topologies

236. Definition
T1 ⊆ T2

237. T1 is coarser than T2

238. T2 is finer than T1

239. incomparable ∶= neither finer nor coarser

240. [3]
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Standard topology on R
241. Definition

T ∶= {X ⊆ R 󳈌 ∀x ∈X ∃a, b ∈ R (x ∈ (a, b) ∧ (a, b) ⊆X)}

242. T ∶= standard topology on R

243. (a, b) ∶= open interval

244. [3]
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Standard topology on C
245. Definition

T = {X ⊆ C 󳈌 ∀z ∈X ∃a ∈ C ∃r ∈ R+(z ∈ Nr(a) ∧Nr(a) ⊆X)}

246. Nr(a) = {z ∈ C ∶ 󳈌z − a󳈌 < r} ∶= open ball

247. T ∶= standard topology on C

248. [3]
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Standard topology on Rn

249. Definition

T = {X ⊆ Rn 󳈌 ∀x ∈X ∃a ∈ Rn ∃r ∈ R+(x ∈ Br(a) ∧Br(a) ⊆X)}

250. Br(a) = {x ∈ Rn ∶ 󳈌x − a󳈌 < r} ∶= open ball

251. T ∶= standard topology on the Euclidean space Rn

252. [3]
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Topological Space, Neighborhood

253. Definition

(U ∈ T , x ∈ U) ≡ (U ∶= neighborhood of x)

254. (S,T ) ∶= topological space

255. [3]
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Accumulation Point of a Set

256. Definition

(S 󰑡 x ≡ accumulation point of A ↔
↔ ∀U ∈ T (x ∈ U → ∃y ∈ A(y ∈ U, y ≠ x)))

257. (S,T ) ∶= topological space

258. A ⊆ S

259. (S 󰑡 x) ≡ (x ∈ S)

260. [3]
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Closed, Accumulation Points, Topological Space

261. Theorem
(C ≡ closed in S) ↔ ∀x ∈ S (x ∈ C)

262. (S,T ) ∶= topological space

263. C ⊆ S

264. x ∶= accumulation points of C

265. [3]
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Closure, Topological Space

266. Definition

A ⊆ S → A ∶=󱮉{C 󳈌 A ⊆ C, C is closed in S}

267. Theorem
A is closed in S

268. (S,T ) ∶= topological space

269. A ∶= closure of A in S

270. A ∶= intersection of all closed sets in S

271. [3]
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Topological Space, Closed, Accumulation Point

272. Theorems

273.
A ⊆ A

274.
(C ≡ closed in S, A ⊆ C) → (A ⊆ C)

275.
A = A ∪ {x ∈ S 󳈌 x ≡ accumulation point of A}

276.
(A ≡ closed in S) ↔ (A = A)

277.
(x ∈ A) ↔ ∀O ⊆ S (x ∈ O,∃y ∈ O,y ∈ A)

278. (S,T ) ∶= topological space

279. A ⊆ S

280. A ∶= closure of A in S

281. O ∶= open set

282. [3]
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Bases

283. Definition

(S,T ) ∶= topological space →

→ B ⊆ T ∶ ∀x ∈ T 󳆚x =󱮊
i

Bi󳆞

284. Every element of the topology can be written as a union of elements
from the basis.

285. B ∶= basis for the topology T

286. Bi ∈ B

287. ⋃Bi ∶= arbitrary union

288. T ∶= generated by B (or B generates T )

289. [3]
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Cover, Intersection Containment Property

290. Definition

(∀x ∈ S ∃A ∈ X(x ∈ A)) → (X covers S)

291. Definition

X has the intersection containment property on S

if
∀x ∈ S ∀A,B ∈ X(x ∈ A ∩B → ∃C ∈ X(x ∈ C,C ⊆ A ∩B))

292. S,A,B,C ∶= sets; X ∶= set of sets

293. [3]
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Basis, Cover,
Intersection Containment Property

294. Theorem

B ≡ basis for a topology on S

⇐⇒
B covers S,

B has the intersection containment property on S

295. S ≠ ∅

296. B ∶= collection of subsets of S

297. [3]
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Subbasis

298. Theorem

X = {(−∞, b) 󳈌 b ∈ R} ∪ {(a,∞) 󳈌 a ∈ R} 󳆋≡ basis for a topology on R

299. Theorem

B ∶= collection of all finite intersections of sets in X →
→ B forms a basis for R (because X covers R) →
→ X ≡ subbasis for the topology generated by B

300. standard topology on R ∼≻ generated by B

301. [3]
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Basis, Subbasis, Union

302. Theorem

X ∶= set of sets →
→ (X ≡ ¬ ◻ basis for T ) ∧
∧ (X ≡ subbasis for T∪x)

303. ¬◻ ∶= not necessarily

304. T ∶= topology on R

305. T∪x ∶= topology on ⋃X

306. ⋃X ∶= union of all elements of X

307. [3]

61



Basis, Intersection, Subspace Topology

308. Theorem

(S,T ) ≡ topological space with basis B, A ⊆ S →
→ BA = {U ∩A 󳈌 U ∈ B} ≡ basis for a topology TA on A

309. T ∶= subspace topology relative to A

310. [3]
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Topological Space, Subset, Intersection

311. Theorem

(S,T ) ≡ topological space, A ⊆ S → TA = {U ∩A 󳈌 U ∈ T }

312. TA ∶= topology on A

313. [3]
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Product Topology (basis, Cartesian product)

314. Definition
S1 × S2 ∶= {(x, y) 󳈌 x ∈ S1, y ∈ S2}

315. Theorem

(T1 ∶= topology on S1, T2 ∶= topology on S2) →
→ B = {U × V 󳈌 U ∈ T1, V ∈ T2} ≡ basis for T

316. T ∶= product topology on S1 × S2

317. [3]

64



Product Topology, Basis, Cartesian Product

318. Theorem

(T1 ∶= topology on S1 with basis B1,
T2 ∶= topology on S2 with basis B2) →

→ C = {U × V 󳈌 U ∈ B1, V ∈ B2} ≡ basis for T

319. Theorem

X = {U × S2 󳈌 U ∈ B1} ∪ {S1 × V 󳈌 V ∈ B2} ≡ subbasis for T

320. T ∶= product topology on S1 × S2

321. [3]
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Product Topology, Basis,
Cartesian Product (n)

322. Theorem

∀i ∈ {1, 2, ..., n} ∶ Ti ∶= topology on Si →
→ B = {U1 ×U2 × ... ×Un 󳈌 U1 ∈ T1, U2 ∈ T2, ..., Un ∈ Tn} ≡ basis for T

323. Theorem

∀i ∈ {1, 2, ..., n} ∶ Bi ∶= bases for Ti →
→ B = {U1 ×U2 × ... ×Un 󳈌 U1 ∈ B1, U2 ∈ B2, ..., Un ∈ Bn} ≡ basis for T

324. T ∶= product topology on S1 × S2 × ... × Sn

325. [3]
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General Cartesian product

326. Definition

󱮠
k∈K

Sk ∶= {f ∶K → S 󳈌 ∀k ∈K (f(k) ∈ Sk)}

327. K ∶= index set

328. Sk ∶= set for each k ∈K ∶= union of all elements Sk

329. S ∶= ⋃{Sk 󳈌 k ∈K}

330. {Sk 󳈌 k ∈K} ∶= indexed by k

331. ∏Sk ∶= general Cartesian product of {Sk 󳈌 k ∈K}

332. [3]
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Product Topology on a general Cartesian
product, Box Topology

333. Theorem

B = 󳆟󱮠Uk 󳈌 ∀k ∈K ∶ (Uk ∈ Tk) ∧ (Uk = Sk)󳆣 ≡ basis for T

334. Theorem

B󰐞 = 󳆟󱮠Uk 󳈌 ∀k ∈K 󰐞 ∶ (Uk ∈ Tk) ∧ (Uk = Sk)󳆣 ≡ basis for T 󰐞

335. K ∶= finite index set

336. K 󰐞 ∶= infinite index set

337. (Sk,Tk) ∶= topological space for each k ∈K

338. T ∶= product topology on ∏Sk

339. T 󰐞 ∶= box topology

340. T 󰐞 is strictly finer than T ,

T ⊂ T 󰐞.

341. [3]
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Kolmogorov space (T0-space)

342. Definition

∀x, y ∈ S (x ≠ y) ∃U ∈ T ∶ (x ∈ U ∧ y 󳆋∈ U) ∨ (x 󳆋∈ U ∧ y ∈ U) →
→ (S,T ) ≡ Kolmogorov space (T0-space)

343. (S,T ) ∶= topological space

344. [3]
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T1-space (Fréchet)

345. Definition

∀x, y ∈ S (x ≠ y) ∃U,V ∈ T ∶ (x ∈ U, y 󳆋∈ U, x 󳆋∈ V, y ∈ V )
→ (S,T ) ≡ T1-space (Fréchet or accessible space)

346. (S,T ) ∶= topological space

347. [3]
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Cofinite Topology

348. Definition
T ≡ cofinite topology on S

349. T ∶= topology generated by the basis B

350. B = {X ⊆ S ∶ S󳆑X is finite}

351. [3]
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Cofinite Topology on R
352. Definition

(T ∶= topology generated by the basis B,
B = {X ⊆ R ∶ R󳆑X is finite})→
→ T ≡ cofinite topology on R

353. Theorem: T is strictly coarser than Tst,

T ⊂ Tst.

354. Theorem
(R,T ) ≡ T1-space

355. Tst ∶= standard topology

356. [3]
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T1-space, Closed

357. Theorem

((S,T ) ≡ T1-space) ↔ (∀x ∈ S, {x} ≡ closed in (S,T ))

358. (S,T ) ∶= topological space

359. [3]
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T1-space, Accumulation Point

360. Theorem

x ≡ accumulation point of A
iff

∀O ⊆ S (x ∈ O) ∃∞a ∈ O

361. (S,T ) ∶= T1-space

362. A ⊆ S; a ∈ A

363. O ∶= open set

364. ∃∞ ∶= there are infinitely many

365. [3]
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Multiple limits (multiple convergence)

366. Theorem: In T1-spaces, sequences may converge to multiple limits.

367. [3]
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Line with two origins

368.
(S,T ) ≡ line with two origins (topological space)

369. Theorems

370.
(S,T ) ≡ T1-space

371.
󳆘 1

n + 1󳆝 → {0, c}

372.
B covers S

373.
B has the intersection containment property

374. S ∶= R ∪ {c}

375. c 󳆋∈ R

376. B ∶= {(a, b) 󳈌 (a, b) ⊆ R} ∪ {(−a, 0) ∪ {c} ∪ (0, b)}

377. There are two origins (0 and c).

378. B ∶= basis for a topology T on S

379. s = 󳆖 1
n+1󳆛 ∶= sequence

380. s converges to both 0 and c.

381. (a, b) ∶= open interval in R

382. [3]
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Cofinite Topology on N
383. Theorems

384.
(N,T ) ≡ cofinite topology on N

385.
(N,T ) ≡ T1-space

386.
∀m ∈ N ∶ (n)→m

387. T ∶= topology generated by the basis B

388. B = {X ⊆ N ∶ N󳆑X is finite}

389. (n) ∶= sequence

390. (n) converges to every natural number in T1-space.

391. [3]
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T2-space (Hausdorff)

392. Definition

∀x, y ∈ S (x ≠ y) ∃U,V ∈ T ∶ (x ∈ U, y ∈ V, U ∩ V = ∅)
→ (S,T ) ≡ T2-space (Hausdorff)

393. (S,T ) ∶= topological space

394. [3]
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Unique Limit, Convergence, T2-space

395. Theorem

((sn) ≡ convergent) → 󳆗 lim
n→∞
(sn) ≡ unique󳆜

396. (S,T ) ∶= T2-space

397. (sn) ∶= sequence in T2-space

398. [3]

79



T3-space (Regular)

399. Definition

(S,T ) ≡ T1-space, X ≡ closed set,
∀x ∈ S, X ⊆ S󳆑{x}, ∃U,V ∈ T ∶ (x ∈ U, X ⊆ V, U ∩ V = ∅)→

→ (S,T ) ∶= T3-space (Regular)

400. (S,T ) ∶= topological space

401. [3]
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Clopen set

402. Definition: Both open and closed.

403. [3]
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T4-space (Normal)

404. Definition

(S,T ) ≡ T1-space, ∀(X,Y ) ∶X ∩ Y = ∅, X,Y ≡ closed, X,Y ⊆ S,
∃U,V ∈ T ∶ (X ⊆ U, Y ⊆ V, U ∩ V = ∅)→

→ (S,T ) ∶= T4-space (Normal)

405. (S,T ) ∶= topological space

406. [3]
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Separation and Countability Axioms

407. Axioms

408. Separation Axioms ≡ (definitions of) T0, T1, T2, T3, T4.
(they all “separate” points and/or closed sets from each
other by open sets)

409. Countability Axioms

(i) Separable Spaces

(ii) First-Countable Spaces

(iii) Second-Countable Spaces

410. [3]
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Separable Spaces

411. Definition
(A = S) → (A ∶= dense)

412. Definition

(∃A ∶ A ≡ dense, countable) → ((S,T ) ∶= separable)

413. A ⊆ S

414. A ∶= closure of A in S

415. (S,T ) ∶= topological space

416. [3]
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First-Countable Spaces

417. Definition
B ∶= countable basis at x if

(i) V ∈ B → x ∈ V
(ii) ∀U ∶ x ∈ U, ∃V ∈ B (V ⊆ U)

418. x ∈ S

419. U ∶= open set

420. (S,T ) ∶= topological space

421. [3]
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First-Countable, Closure, Sequence,
Convergence

422. Theorem

((S,T ) ≡ first-countable, x ∈ A) ⇒ (∃(sn) ∶ sn → x)

423. A ∶= closure of A in S

424. (sn) ∶= sequence

425. (S,T ) ∶= topological space

426. [3]
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Second-Countable Spaces

427. Definition

∃B → (S,T ) ∶= second-countable

428. Theorem
∀T ≡ second-countable → T ≡ separable

429. B ∶= countable basis of (S,T )

430. (S,T ) ∶= topological space

431. [3]
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Metric (distance function)

432. Definition
d ∶ S × S → R

(a) ∀x, y ∈ S ∶ (d(x, y) = 0)↔ (x = y)
(b) ∀x, y ∈ S ∶ d(x, y) = d(y, x)
(c) ∀x, y, z ∈ S ∶ d(x, z) ≤ d(x, y) + d(y, z)

433. Theorem: ∀x, y ∈ S ∶ d(x, y) ≥ 0.

434. [3]
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Metric space

435. Definition
(S, d) ∶= metric space

436. S ∶= set

437. d ∶= metric (distance function)

438. d ∶ S × S → R

439. [3]
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Open ball

440. Definition
Br(a) ∶= {x ∈ S 󳈌 d(a, x) < r}

441. (S, d) ∶= metric space

442. a ∈ S; r ∈ R+

443. Br(a) ≡ Br(a;d) ∶= open ball (center a, radius r)

444. B = {Br(a) 󳈌 a ∈ S, r ∈ R+} covers S.

445. [3]
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Metrizable Topological Space

446. Definition

(S,T ) is metrizable if
∃d ∶ T is generated from the open balls in (S, d)

447. d ∶= metric; d ∶ S × S → R

448. (S,T ) ∶= topological space

449. d induces T

450. T ∶= metric topology (on S) induced by d

451. Different metrics can induce the same topology.

452. [3]
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Euclidean Metric, Unitary Metric

453. Definitions

454.
d(x, y) = 󳈌x − y󳈌 ∶= Euclidean metric

455.
k(z,w) = 󳈌z −w󳈌 ∶= unitary metric

456. n ∈ Z+ = {1, 2, 3, ...}

457. d ∶ Rn ×Rn → R

458. k ∶ Cn ×Cn → C

459. (Rn, d), (Cn, k) ∶= metric spaces

460. 󳈌x − y󳈌 ∶= Euclidean norm

461. 󳈌z −w󳈌 ∶= unitary norm

462. [3]
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Square Metric on Rn

463. Definition

ρ(x, y) ∶= max{󳈌x1 − y1󳈌, ..., 󳈌xn − yn󳈌} ∶= square metric on Rn

464. ρ ∶ Rn ×Rn → R

465. n = 1 → ρ ∶= Euclidean metric

466. ρ and d induce the product topology on Rn.

467. [3]
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Discrete Metric

468. Definition

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩

0, if x = y
1, if x ≠ y

469. d ∶ S × S → R

470. d ∶= discrete metric on S

471. [3]
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Standard Bounded Metric

472. Definition

(∃M ∈ R+ ∶ ∀x, y ∈ A, d(x, y) ≤M) ≡ (A ∶= bounded in S)

473. Theorem

d ∶ S × S → R; d(x, y) = min{1, d(x, y)} ⇒
⇒ (S, d) ≡ metric space

474. Theorem
d ≡ bounded

475. Theorem
d, d induce the same topology

476. (S, d) ∶= metric space

477. A ⊆ S

478. diam A = sup{d(x, y) 󳈌 x, y ∈ A} ∶= diameter of A

479. d ∶= standard bounded metric corresponding to d

480. boundedness 󳆋≡ topological property

481. [3]
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Uniform Topology

482. Definition
ρ(x, y) ∶= sup{d(xk, yk) 󳈌 k ∈K}

483. d ∶ R ×R→ R; d(x, y) = 󳈌x − y󳈌; d 󳆋≡ bounded

484. (S, d) ≡ metric space

485. K ∶= index set

486. KS ∶= set of functions from K to S

487. ρ ∶ KS × KS → S

488. (KS,ρ) ≡ metric space

489. d ∶= standard bounded metric corresponding to d

490. ρ ∶= uniform metric on KS

491. Theorem: ρ induces Tu.

492. Tu ∶= uniform topology on KS

493. Tp ∶= product topology on KS

494. Theorem: Tu is finer than Tp,

Tp ⊆ Tu.

495. [3]
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Convergence

496. Definition

(∀U ⊆ S (s ∈ U) ∃K ∈ N ∶ n >K → sn ∈ U) ⇒ (sn → s)

497. (S,T ) ∶= topological space

498. (sn) ∶= sequence

499. ∀n ∈ N ∶ sn ∈ S

500. U ∶= open set

501. (sn → s) ∶= sn converges to s ∈ S

502. [3]
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Metrizable Topological Space,
Induced by a Metric, Convergence

503. Theorem

sn → s ≡
≡ ∀Br(s) ⊆ S ∃K ∈ N ∶ n >K ⇒ sn ∈ Br(s) ≡

≡ ∀r ∈ R+ ∃K ∈ N ∶ n >K ⇒ d(sn, s) < r

504. (S,T ) ∶= metrizable topological space

505. T ∶= induced by the metric d

506. s ∈ S

507. (sn) ∶= sequence

508. ∀n ∈ N (sn ∈ S)

509. Br(s) ∶= open ball (radius r, center s)

510. (sn → s) ∶= sn converges to s ∈ S

511. [3]
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Cauchy Sequence

512. Definition

∀r ∈ R+ ∃K ∈ N ∶m ≥ n >K ⇒ d(sm, sn) < r

513. (S,T ) ∶= metrizable topological space

514. T ∶= induced by the metric d

515. (sn) ∶= sequence in S; sn → s

516. (sn) ∶= Cauchy sequence

517. ¬◻ ∶= not necessarily

518. Theorem: ∀(s󰐞n) ≡ Cauchy sequence ∶ ¬ ◻ (s󰐞n) ≡ converges.

519. [3]
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Cauchy Sequence Bounded by a Rational
Number

520. Theorem

∀(xn) ∶ (xn) ≡ Cauchy sequence of rational numbers →
→ (xn) ≡ bounded by q ∈ Q

521. (xn) ∶= Cauchy sequence of rational numbers

522. [3]
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Complete Metric Space

523. Definition

(∀(sn) ∶ sn → s ∈ S) ⇒ (S, d) ∶= complete metric space

524. (S, d) ∶= metric space

525. (sn) ∶= Cauchy sequence

526. [3]
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Subsequence

527. Definition

(f ○ g ∶ N→ S) ∶= subsequence of f

528. (sn) ∶= sequence in S

529. (sn) ≡ (f ∶ N→ S, ∀n ∈ N ∶ f(n) = sn)

530. g ∶ N→ N

531. g ∶= strictly increasing function

532. [3]
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Cauchy Sequence, Subsequence, Convergence

533. Theorem
(∃s ∈ S ∶ snk → s) ⇒ (sn → s)

534. (S, d) ∶= metric space

535. (sn) ∶= Cauchy sequence in S

536. (snk) ∶= subsequence of (sn)

537. [3]
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Complete Metric Space, Cauchy Sequence,
Subsequence, Convergence

538. Theorem

((S, d) ≡ complete) ⇔ (∀(sn) in S, ∃(snk) ∶ snk → s ∈ S)

539. (S, d) ∶= metric space

540. (sn) ∶= Cauchy sequence in S

541. (snk) ∶= subsequence of (sn)

542. [3]
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Bounded Sequence

543. Theorem

{sn} ≡ bounded → (sn) ≡ bounded
≡

(∃M ∈ R+ ∶ ∀n,m ∈ N, d(sn, sm) ≤M) → ((sn) ≡ bounded in S)

544. (S, d) ∶= metric space

545. (sn) ∶= sequence in S

546. [3]
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Metric Space, Cauchy Sequence, Bounded

547. Theorem

(S, d) ≡ metric space, (sn) ≡ Cauchy sequence in S ⇒
⇒ (sn) ≡ bounded in S

548. [3]
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Bolzano-Weierstrass Property

549. Definition

(∀(sn) ∃(snk) snk → s ∈ S) ⇒
⇒ (S, d) has the Bolzano-Weierstrass Property

550. (S, d) ∶= metric space

551. (sn) ∶= sequence bounded in S

552. (snk) ∶= subsequence of (sn)

553. [3]
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Euclidean Space, Unitary Space,
Complete Metric Spaces Rn, Cn

554. Theorem

∀n ∈ N ∶ (Rn, d), (Cn, k) ≡ complete metric spaces

555. d ∶= Euclidean metric

556. k ∶= unitary metric

557. [3]
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Standard Bounded Metric on R, Supremum,
Complete Metric Space, Metric Induces the
Product Topology on the Index Set

558. Theorem

S = NR, (d ∶ R ×R→ R) ≡ standard bounded metric on R,

d∗ ∶ NR × NR→ R, d∗(x, y) = sup󳆢d(xk, yk)
k + 1 󳈌 k ∈ N󳆧 ⇒

⇒ (S, d∗ ≡ complete metric space, d∗ induces Tp)

559. Tp ∶= product topology on S = NR

560. [3]
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Covering

561. Definition

(󱮊C = S) → (C ∶= covering of S)

C covers S

562. Definition

(C ∶= covering of S) ∧ (∀U ∈ C ∶ U ≡ open set) →
→ C ∶= open covering of S

563. (S,T ) ∶= topological space

564. C ∶= collection of subsets of S

565. ⋃C ∶= union of all elements of C

566. [3]
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Compact, Subcover

567. Definition

(∀C ∶ ∃n subcover of the covering) → (S,T ) ∶= compact

568. (S,T ) ∶= topological space

569. C ∶= collection of subsets of S

570. C ∶= open covering of S

571. ∃n ∶= there is a finite number of

572. subcover of the covering ∶= subcollection that covers S

573. [3]
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Finite Intersection Property, Subcollection

574. Definition

(∀D ⊆ C ∶ 󱮉D ≠ ∅) → (C has the finite intersection property)

575. (S,T ) ∶= topological space

576. C ∶= collection of subsets of S

577. D ∶= finite subcollection

578. ⋂C ∶= intersection of all elements of C

579. [3]
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Compact, Closed,
Finite Intersection Property

580. Theorem
((S,T ) ≡ compact) ↔ (∀C ∶ 󱮉C ≠ ∅)

581. (S,T ) ∶= topological space

582. C ∶= collection of closed sets in S with the finite intersection property

583. ⋂C ∶= intersection of all elements of C

584. [3]
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Nested sequence

585. Definition
B0 ⊇ B1 ⊇ B2 ⊇ ...

586. (S,T ) ∶= compact topological space

587. Bi ∶= nonempty closed sets in S

588. Theorem: C = {Bk 󳈌 k ∈ N, j < k → Bk ⊆ Bj} has the finite intersec-
tion property.

589. C ∶= nested sequence of nonempty closed sets in S

590. [3]
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Compact, Finite Subcollection, Cover,
Finite Intersection Property, Covering,
Basis, Basic Open Sets, Basic Closed Sets

591. Theorem

(S,T ) is compact ≡
≡ ∀CS ∶ CS contains a finite subcollection that covers S ≡

≡ (∀C 󰐞 ∶ C 󰐞 has the finite intersection property) → 󱮊C 󰐞 ≠ ∅

592. (S,T ) ∶= topological space

593. CS ∶= covering of S by Bi

594. B ∶= basis for the topology T

595. Bi ∈ B

596. Bi ∶= basic open sets in S

597. B󰐞i = S󳆑Bi ∶= basic closed sets in S

598. C 󰐞 = {B󰐞i}

599. ⋃C 󰐞 ∶= union of all elements of C 󰐞

600. [3]
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Tychonoff’s Theorem

601. Theorem

(∀k ∈K ∶ (Sk,Tk) ≡ compact topological space) →

→ 󳆚󱮠
k∈K

Sk ≡ compact in Tp󳆞

602.
󱮠
k∈K

Sk = {f ∶K → S 󳈌 ∀k ∈K (f(k) ∈ Sk)}

603. K ∶= index set

604. Sk ∶= set for each k ∈K

605. {Sk 󳈌 k ∈K} ∶= indexed by k

606. S = ⋃{Sk 󳈌 k ∈K}

607. ∏Sk ∶= general Cartesian product of {Sk 󳈌 k ∈K}

608. Tp ∶= product topology

609. [3]
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Heine-Borel Theorem

610. Theorem

((A,TA) ≡ compact) ↔ (A ≡ closed and bounded in R)

611. A ⊆ R

612. (A,TA) ∶= topological space

613. [3]
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Bounded, Supremum, Infimum, Closure

614. Theorem
(A ≡ bounded) → (supA, infA ∈ A)

615. A ≠ ∅; A ⊆ R

616. A ∶= closure of A in R

617. [3]
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Covering by Sets, Open Covering by Open
Sets, Subspace

618. Definition
C ∶= covering of A by sets in S

619. Definition

(∀C ∈ C ∶ C open in S) →
→ (C ∶= open covering of A by open sets in S)

620. (S,T ) ∶= topological space

621. (A,TA) ∶= subspace of (S,T )

622. C = {Si 󳈌 Si ∈ S, A ⊆ ⋃C}

623. [3]
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Compact, Subspace, Open Covering,
Subcollection

624. Theorem
((A,TA) ≡ compact) ↔ (∀C ∶ C 󰐞 ∈ C)

625. (S,T ) ∶= topological space

626. (A,TA) ∶= subspace of (S,T )

627. C ∶= open covering of A by open sets in S

628. C 󰐞 ∶= finite subcollection that covers A

629. [3]
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T2-space, Subspace, Compact, Closed

630. Theorem

((A,TA) ≡ compact) → (A ≡ closed in S)

631. (S,T ) ∶= T2 space

632. (A,TA) ∶= subspace of (S,T )

633. [3]
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Closed, Compact, Subspace

634. Theorem
(A ≡ closed in S) → (A,TA) ≡ compact

635. (S,T ) ∶= compact topological space

636. (A,TA) ∶= subspace of (S,T )

637. [3]
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Generalized Heine-Borel Theorem

638. Theorem

((A,TA) ≡ compact) ↔ (A ≡ closed and bounded in Rn)

639. A ⊆ R

640. (A,TA) ∶= topological space

641. [3]
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Sequentially Compact

642. Definition

∀n((sn) ∈ S, ∃(s󰐞n) ∶ s󰐞n → s) → (S, d) ≡ sequentially compact

643. (S, d) ∶= metric space

644. (sn) ∶= sequence in S

645. (s󰐞n) ∶= subsequence of (sn)

646. [3]
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Lebesgue number

647. Definition

(∀A ⊆ S, diam A < δ, ∃C ∈ C ∶ A ⊆ C) → (δ ∶= Lebesgue number for C)

648. (S,T ) ∶= topological space

649. C ∶= open covering of S

650. δ ∈ R+

651. diam A ∶= diameter of A

652. [3]
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Lebesgue’s Covering Lemma

653. Theorem

(S,T ) ≡ metrizable, sequentially compact →
→ C has a Lebesgue number

654. (S,T ) ∶= topological space

655. C ∶= open covering of S

656. [3]
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Totally bounded, r-net

657. Definition

(S =󱮊{Br(x) 󳈌 x ∈ A}) → (A has an r-net)

658. Definition

(∀r ∈ R+ ∶ (S, d) has an r-net) → (S, d) ≡ totally bounded

659. (S, d) ∶= metric space

660. r ∈ R+

661. A ∈ S; A ∶= finite

662. [3]
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Sequentially Compact Metric Space,
Totally Bounded

663. Theorem

(S, d) ≡ sequentially compact → (S, d) ≡ totally bounded

664. (S, d) ∶= metric space

665. [3]
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Metrizable Space, Compact,
Accumulation Point, Sequentially Compact,
Infinite Subset

666. Theorem

(S,T ) is compact ≡
≡ ∀S󰐞 ∶ S󰐞 has an accumulation point ≡

≡ (S,T ) is sequentially compact

667. (S,T ) ∶= metrizable space

668. S󰐞 ∶= infinite subset of S

669. [3]
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Locally Compact

670. Definition

∀x ∈ S ∃(K,TK) ∶ N(x) ⊆K → (S,T ) ∶= locally compact

671. (S,T ) ∶= topological space

672. (K,TK) ∶= compact subspace

673. N(x) ∶=-neighborhood of x

674. [3]
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One-Point Compactification

675. Definition

(S,T ) ∶= one-point compactification of S

676. (S,T ) ∶= locally compact T2 space

677. S = S ∪ {∞}

678. ∞ ∶= point at infinity

679. T = T ∪ {S󳆑K 󳈌 (K,TK)} ∶= compact subspace of (S,T )

680. [3]
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Locally Compact, T2-space,
One-Point Compactification

681. Theorem

(S,T ) ≡ locally compact T2-space →
→ (S,T ) ≡ compact T2-space

682. (S,T ) ∶= one-point compactification of (S,T )

683. [3]
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Interior of a Set, Empty Interior,
Nowhere Dense, Closure

684. Definition
A○ ∶=󱮊

i

Ui ∶= interior of A

685. Definition

(A = ∅) → (A has empty interior)

686. Definition

(A)○ = ∅ → A ∶= nowhere dense in S

687. (S,T ) ∶= topological space

688. A ⊆ S

689. Ui ⊆ A

690. Ui ∶= open set

691. A ∶= closure of A

692. [3]
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Nowhere Dense, Dense, Interior

693. Theorem

(A ≡ nowhere dense in S) ↔ (S󳆑A)○ ≡ dense in S

694. (S,T ) ∶= topological space

695. A ⊆ S

696. (S󳆑A)○ ∶= interior of (S󳆑A)

697. [3]
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Meagre, Nonmeagre, Comeagre,
Countable Union, Nowhere Dense,
First Category, Second Category

698. Definition

A =󱮊
c
A󰐞 →

→ A ∶= meagre (or a set of first category)

699. Definition

(A 󳆋≡ meagre) → A ∶= nonmeagre (or a set of second category)

700. Definition
(A ≡ meagre) → S󳆑A ∶= comeagre

701. (S,T ) ∶= topological space

702. A ⊆ S

703. ⋃c ∶= countable union

704. A󰐞 ∶= nowhere dense sets

705. [3]

135



Baire Category Theorem

706. Theorem

(i) (∀A ∶ A ≡ comeagre, A ⊆ S) → A ≡ dense in S

(ii) S ≡ nonmeagre

707. (S,T ) ∶= (locally compact T2-space) ∨ (completely metrizable space)

708. [3]
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Image, Inverse Image

709. Definitions

710. f ∶X → Y ; A ⊆X ; B ⊆ Y

711. f[A] = {f(x) 󳈌 x ∈ A} ∶= image of A under f

712. f−1[B] = {x ∈X 󳈌 f(x) ∈ B} ∶= inverse image of B under f

713. [3]
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Continuous Functions

714. Definition

(∀V ∈ U ∶ f−1[V ] ∈ T ) → (f ∶= continuous)

715. Theorem

(∀A ∶ f−1[A] ∶= open) → (f ≡ continuous)

716. (X,T ), (Y,U) ∶= topological spaces

717. f ∶X → Y

718. A ∶= open set

719. Continuity may depend on both, the function and the topologies.

720. Theorem

(∀V ∈ U , f(x) ∈ V, ∃U ∈ T , x ∈ U ∶ f[U] ⊆ V ) →
→ (f ≡ continuous at x ∈X)

721. [3]
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Continuous Function

722. Theorem

(f ≡ continuous) ↔ (∀x ∈ A ∶ f ≡ continuous)

723. (A,T ), (B,U) ∶= topological spaces

724. f ∶ A→ B

725. [3]
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Continuity in Metrizable Spaces

726. Theorem

(f ≡ continuous at x ∈ A) ↔
↔ (∀󰂃 > 0 ∃δ > 0 ∶ d(x, y) < δ → ρ(f(x), f(y)) < 󰂃)

727. (A,T ), (B,U) ∶= metrizable topological spaces

728. d,ρ ∶= metrics

729. T ,U ∶= induced by d and ρ, respectively

730. f ∶ A→ B

731. [3]
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Continuous Function, Metrizable Spaces,
Open Ball, Sequence, Convergence

732. Theorem

f is continuous at x ≡
≡ ∀B󰂃(f(x);ρ) ∃Bδ(x;d) ∶ f[Bδ(x;d)] ⊆ B󰂃(f(x);ρ) ≡

≡ (xn → x) ⇒ (f(xn)→ f(x))

733. (A,T ), (B,U) ∶= metrizable topological spaces

734. d,ρ ∶= metrics

735. T ,U ∶= induced by d and ρ, respectively

736. f ∶ A→ B

737. x ∈ A

738. B󰂃(f(x);ρ) ∶= open ball in U (center f(x), radius 󰂃 > 0, metric ρ)

739. Bδ(x;d) ∶= open ball in T (center x, radius δ > 0, metric d)

740. (xn) ∶= sequence

741. (xn → x) ∶= xn converges to x

742. [3]

141



Uniformly Continuous Function

743. Definition

∀󰂃 > 0 ∃δ > 0 ∀a, b ∈ A (d(a, b) < δ → ρ(f(a), f(b)) < 󰂃) →
→ f ∶= uniformly continuous on A

744. (A,T ), (B,U) ∶= metrizable topological spaces

745. d,ρ ∶= metrics

746. T ,U ∶= induced by d and ρ, respectively

747. f ∶ A→ B

748. [3]
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Homeomorphism

749. Definition

(f ≡ bijection ∶ O ∈ T ↔ f[O] ∈ U) → (f ∶= homeomorphism)

750. (A,T ), (B,U) ∶= topological spaces

751. f ∶ A→ B

752. [3]
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Homeomorphic (Topologically Equivalent)
Spaces

753. Definition
∃fh → (A,T ) ≡t (B,U)

754. (A,T ), (B,U) ∶= topological spaces

755. (fh ∶ A→ B) ∶= homeomorphism

756. ≡t ∶= topological equivalence

757. [3]
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Topological Property (Topological Invariant)

758. Definition

topological invariant ∶= property preserved under homeomorphisms

(T has P ) ∧ (U ≡t T ) → (U has P )

759. P ∶= topological property

760. (A,T ), (B,U) ∶= topological spaces

761. ≡t ∶= topological equivalence

762. Examples of topological invariants: compactness, being a T2-space,
separation axioms (T0-T4), countability axioms, metrizability.

763. [3]

145



T2-space, Topological Invariance

764. Theorem

((A,T ) ∶= T2-space) ∧ ((B,U) ≡t (A,T )) → (B,U) ≡ T2-space

765. (A,T ), (B,U) ∶= topological spaces

766. ≡t ∶= topological equivalence

767. [3]
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Tychonoff Space

768. Definition

(T ≡ T1-space) ∧
∧ (∀x ∈ S, ∀A ⊆ S󳆑{x}, ∃f ∶ S → [0, 1], f(x) = 0, f[A] = {1})→

→ T ∶= Tychonoff space

769. (S,T ) ∶= topological space

770. A ∶= closed set

771. f ∶= continuous function

772. [3]
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Completely Regular Space (T
312

-space)

773. Definition

(∀x ∈ S, ∀A ⊆ S󳆑{x}, ∃f ∶ S → [0, 1], f(x) = 0, f[A] = {1})→
→ T ∶= completely regular space (T312-space)

774. (S,T ) ∶= topological space

775. A ∶= closed set

776. f ∶= continuous function

777. [3]
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Urysohn’s Lemma

778. Theorem

((S,T ) ≡ T4-space) ∧ (A ∩B = ∅) →
→ ∃f ∶ S → [0, 1], f[A] = {0}, f[B] = {1}

779. A,B ∶= closed subsets of S

780. f ∶= continuous function

781. [3]
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T4-space, Tychonoff Space

782. Theorem

(∀T ∶ T ≡ T4-space) → (T ≡ Tychonoff space)

783. T ∶= topological space

784. [3]
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Tietze Extension Theorem

785. Theorem

(S,T ) ≡ T4-space,
(C,TC) ⊆s (S,T ),
C ≡ closed in S,

a, b ∈ R ∶ a < b,
f ∶ C → [a, b] continuous

󲿎⇒
f can be extended to g ∶ S → [a, b] continuous

786. ⊆s ∶= subspace relation

787. [3]
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Disconnection, Disconnected, Connected

788. Definitions

789.
(U,V ) ∶= disconnection of S

790.
∃(U,V ) → (S,T ) ∶= disconnected

791.
󳆋∃ (U,V ) → (S,T ) ∶= connected

792. (S,T ) ∶= topological space

793. U,V ∶= nonempty open sets

794. U ∩ V = ∅

795. U ∪ V = S

796. [3]
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Connected, Clopen, Uniqueness

797. Theorem
(S,T ) ≡ connected ↔ ∃!C ∶ C = {S,∅}

798. (S,T ) ∶= topological space

799. C ∶= set of clopen sets in S

800. ∃! ∶= there is exactly one

801. [3]
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Interval, Connected Subspace,
Standard Topology

802. Theorem

I ⊆ R → (I,TI) ≡ connected subspace of (R,T )

803. I ∶= interval

804. T ∶= standard topology on R

805. [3]
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Connected Subspace,
Standard Topology, Interval

806. Theorem

A ⊆ R, (A,TA) ≡ connected subspace of (R,T ) →
→ A ≡ interval

807. T ∶= standard topology on R

808. [3]
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Connected, Continuous, Image

809. Theorem

(A,T ) ≡ connected, f ∶ A→ B continuous →
f[A] ≡ connected

810. (A,T ), (B,U) ∶= topological spaces

811. [3]
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Intermediate Value Theorem

812. Theorem

(S,T ) ≡ connected, f ∶ S → R continuous →
→ f[S] ≡ interval

813. (S,T ) ∶= topological space

814. [3]
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Topology Generated by a Set,
Connected Subspace

815. Theorem

A = {(Ak,TAk
) 󳈌 k ∈K},

󱮉{Ak 󳈌 k ∈K} ≠ ∅,
A =󱮊{Ak 󳈌 k ∈K},

T ∗ is generated by 󱮊{TAk
󳈌 k ∈K}

󲿎⇒
(A,T ∗) ≡ connected subspace of (S,T )

816. (S,T ) ∶= topological space

817. (Ak,TAk
) ∶= connected subspace of (S,T )

818. T ∗ ∶= topology

819. [3]
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Components

820. Definitions

821.
x ∼ y ↔ ∃(A,TA) ∶ x, y ∈ A

822.
connected components of S ∶= equivalence classes of ∼

823. (S,T ) ∶= topological space

824. ∼ ∶= equivalence relation on S

825. (A,TA) ∶= connected subspace of (S,T )

826. [3]
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Connected Subspace, Clopen, Closed,
Component

827. Theorem

(i) ∀x ∈ S ∃!M ∶ x ∈M
(ii) (A,TA) ≡ connected subspace of (S,T ) → A ⊆M

(iii) (A,TA) ≡ connected subspace of (S,T ), A ≡ clopen in S →
→ A ⊆M

(iv) ∀M ∶M ≡ closed in S

828. (S,T ) ∶= topological space

829. M ∶= component of S

830. [3]
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Totally Disconnected

831. Definition

∀x, y ∈ S, x ≠ y, ∃(U,V ) ∶ x ∈ U, y ∈ V →
→ (S,T ) ∶= totally disconnected

832. (S,T ) ∶= topological space

833. (U,V ) ∶= disconnection of S

834. [3]
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Locally Connected Space

835. Definition

∀x ∈ S, ∀U ∶ x ∈ U →
→ ∃V, x ∈ V ∶ (V,TV ) ∶= connected, V ⊆ U

836. (S,T ) ∶= topological space

837. U,V ∶= open sets in S

838. ¬◻ ∶= not necessarily

839. connected space ≡ ¬◻ locally connected

840. [3]
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Function Space

841. Definition

function space ∶= vector space + functions (elements)

842. [3]
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Example, Function Space, RR
843. Theorems

844.
RR = {f 󳈌 f ∶ R→ R}

845.
RR ≡ vector space over R

846.
RR ≡ function space

847. f, g ∈ RR → f + g ∈ RR, (f + g)(x) = f(x) + g(x)

848. f ∈ RR, c ∈ R → cf ∈ RR, (cf)(x) = c ⋅ f(x)

849. ∀x ∈ R ∶ 0(x) = 0

850. ∀x ∈ R ∶ (−f)(x) = −f(x)

851. 0 ∶= zero vector (function)

852. −f ∶= additive inverse of f ∈ RR

853. [3]
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Normed Vector Space

854. Definitions

855.

(V, 󳈌 󳈌) ∶= normed vector space (normed linear space)

856. (󳈌 󳈌 ∶ V → R) ∶= norm (function)

(i) ∀v ∈ V, 󳈌v󳈌 = 0↔ v = 0
(ii) ∀v,w ∈ V, 󳈌v +w󳈌 ≤ 󳈌v󳈌 + 󳈌w󳈌

(iii) ∀v ∈ V, c ∈ F, 󳈌cv󳈌 = 󳈌c󳈌󳈌v󳈌

857. V ∶= vector space over a field F

858. v ∈ V → 󳈌v󳈌 ∶= norm of v

859. c ∈ F → 󳈌c󳈌 ∶= absolute value of v

860. [3]
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Banach Space

861. Definition

(V, d) ≡ complete metric space → V ∶= Banach space

862. V ∶= normed vector space induced by d

863. d ∶= metric

864. [3]
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Metric Space, Continuous Function

865. Theorem

(S, d) ≡ metric space → C(S,R) ≤ B(S,R)

866. B(S,R) = {f ∶ S → R 󳈌 f ∶= bounded}

867. C(S,R) = {f ∈ B(S,R) 󳈌 f ∶= continuous}

868. ≤ ∶= subspace relation

869. [3]
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Closed Subspace of a Banach space

870. Theorem

closed subspace of a Banach space ≡ Banach space

871. V ∶= Banach space induced by d

872. d ∶= metric

873. W ∶= subspace of V (closed in V )

874. [3]
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Pointwise Convergence

875. Definition

∀x ∈ S ∶ fn(x)→ f(x) ⇒ (fn) ∶= converges pointwise to f

876. Definition

(x ∈ S, 󰂃 > 0, ∃K ∈ N ∶ n >K → 󳈌fn(x) − f(x)󳈌 < 󰂃) ⇒
⇒ (fn) ∶= converges pointwise to f

877. (fn) ∶= sequence in C(S,R)

878. B(S,R) = {f ∶ S → R 󳈌 f ∶= bounded}

879. C(S,R) = {f ∈ B(S,R) 󳈌 f ∶= continuous}

880. [3]
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Uniform Convergence

881. Definition

(󰂃 > 0, ∃K ∈ N ∶ n >K → ∀x ∈ S, 󳈌fn(x) − f(x)󳈌 < 󰂃) →
→ (fn) ∶= converges uniformly to f

882. (fn) ∶= sequence in C(S,R)

883. B(S,R) = {f ∶ S → R 󳈌 f ∶= bounded}

884. C(S,R) = {f ∈ B(S,R) 󳈌 f ∶= continuous}

885. [3]
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Uniform Convergence, Metric Space

886. Theorem

(fn) ≡ converges uniformly to f ⇒ f ∈ C(S,R)

887. (S, d) ∶= metric space

888. (fn) ∶= sequence in C(S,R)

889. B(S,R) = {f ∶ S → R 󳈌 f ∶= bounded}

890. C(S,R) = {f ∈ B(S,R) 󳈌 f ∶= continuous}

891. [3]
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Equicontinuous

892. Definition

(󰂃 > 0 → (δ > 0 ∶ ∀x, y ∈K, ∀f ∈ A, d(x, y) < δ → 󳈌f(x) − f(y)󳈌 < 󰂃)) ⇒
⇒ A ∶= equicontinuous

893. [3]
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Arzela-Ascoli Theorem

894. Theorem

A ≡ compact ↔ A ≡ (bounded ∧ equicontinuous)

895. (K,d) ∶= compact metric space

896. A ⊆ C(K,R)

897. A ∶= closed in K

898. [3]
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Homotopy

899. Definitions

900.

F ∶X × [0, 1]→ Y continuous,
∀x ∈X ∶ F (x, 0) = f(x), F (x, 1) = g(x) ∶=

∶= homotopy from f to g

901.
F deforms f into g

902.
∃ homotopy from f to g → f ≃ g

903. (X,T ), (Y,U) ∶= topological spaces

904. (f, x ∶X → Y ) ∶= continuous

905. ≃ ∶= homotopic relation

906. [3]
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The Pasting Theorem

907. Theorem

∀x ∈ A ∪B, f(x) = g(x) → h ≡ continuous

908. (X,T ), (Y,U) ∶= topological spaces

909. A,B ∶⊆X ; A,B ∶= closed; X = A ∪B

910. f ∶ A→ Y ; g ∶ B → Y ; f, g ∶= continuous

911. h ∶X → Y

912. h(x) =
⎧⎪⎪⎨⎪⎪⎩

f(x), if x ∈ A
g(x), if x ∈ B

913. [3]
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Homotopy is an Equivalence Relation

914. Theorem
≃ is an equivalence relation

915. ≃ ∶= homotopic relation

916. [3]
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Path Connected

917. Definitions

918.
X = [0, 1] → f, g ∶= paths

919.
a, b ∈ Y → f 󰐞 ∶= path in Y from a to b

920.

∀a, b ∈ Y, ∃f ∶ f ≡ path from a to b → (Y,U) ∶= path connected

921. (X,T ), (Y,U) ∶= topological spaces

922. f, g ∶X → Y

923. f 󰐞 ∶ [0, 1]→ Y continuous

924. a ∶= initial point

925. b ∶= terminal point

926. [3]
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Convex

927. Definition

∀t ∈ [0, 1], x, y ∈X → (1 − t)x + ty ∈X ⇒ (X,T ) ∶= convex

928. Theorem

∀(X,T ) ≡ convex → (X,T ) ∶= path connected

929. (X,T ) ∶= topological space

930. [3]
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Path Homotopy

931. Definitions

932. F ∶= path homotopy from f to g

(i) ∀s ∈ [0, 1] ∶ F (s, 0) = f(s), F (s, 1) = g(s)
(ii) ∀t ∈ [0, 1] ∶ F (0, t) = a, F (1, t) = b

933.
∃ path homotopy from f to g → f ≃p g

934. f, g ∶ [0, 1]→ Y ; f, g ∶= continuous functions

935. a ∶= initial point of f and g

936. b ∶= terminal point of f and g

937. F ∶ [0, 1] × [0, 1]→ Y

938. ≃p ∶= path homotopic relation

939. [3]
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Path Homotopy is an Equivalence Relation

940. Theorem
≃p is an equivalence relation

941. ≃p ∶= path homotopic relation

942. [3]
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Product of Paths

943. Definition

(f ⋆ g)(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

f(2s), if s ∈ 󳅱0, 12󳇺
g(2s − 1), if s ∈ 󳅱12, 1󳇺

944. f ∶= path in Y from a to b

945. g ∶= path in Y from b to c

946. f ⋆ g ∶= product of f and g ∶= path in Y from a to c

947. [3]
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Continuous, Paths, Path Homotopy,
Composition of Functions

948. Theorem

(X,T ), (Y,U) ≡ topological spaces,
h ∶X → Y continuous,

f, g ∶ [0, 1]→X ≡ paths in X

F ∶ [0, 1] × [0, 1]→X ≡ path homotopy from f to g

󲿎⇒
h ○ f ∶ [0, 1] × [0, 1]→ Y ≡ path homotopy from h ○ f to h ○ g

949. [3]
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Continuous, Paths,
Composition and Product of Functions

950. Theorem

(X,T ), (Y,U) ≡ topological spaces,
h ∶X → Y continuous,

f, g ∶ [0, 1]→X ≡ paths in X ; f(1) = g(0)
󲿎⇒

h ○ (f ⋆ g) = (h ○ f) ⋆ (h ○ g)

951. [3]
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Well-defined Operation on Path Homotopy
Classes

952. Theorem

(f ⋆ g)(s) =
⎧⎪⎪⎨⎪⎪⎩

f(2s), if s ∈ 󳅱0, 12󳇺
g(2s − 1), if s ∈ 󳅱12, 1󳇺

953. (Y,T ) ∶= topological space

954. f ∶= path in Y from a to b

955. g ∶= path in Y from b to c

956. f ⋆ g ∶= product of f and g ∶= path in Y from a to c

957. Theorem
[f] ⋆ [g] = [f ⋆ g]

(i) associativity: [f] ⋆ ([g] ⋆ [h]) = ([f] ⋆ [g]) ⋆ [h]
(ii) left and right identities: y ∈ Y, cy ∶ [0, 1]→ Y, cy(s) = y
(f ∶ [0, 1]→ Y ≡ path in Y from a to b) ⇒
⇒ ([ca] ⋆ [f] = [f], [f] ⋆ [cb] = [f])

(iii) inverse:
f ∶ [0, 1]→ Y ≡ path from a to b,
f ∶ [0, 1]→ Y , f(s) = f(1 − s)⇒
⇒ f ≡ path from b to a, [f] ⋆ [f] = [ca], [f] ⋆ [f] = [cb]

958. [f], [g] ∶= homotopy classes

959. ⋆ ∶= well-defined operation on [f], [g]

960. ⋆ induces ⋆

961. cy ∶= constant path

962. [3]
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Fundamental Group, Base Point, Loop

963. Definition

loop in Y based at a ∶= path that begins and ends at a

964. Theorem

(π1(Y, a), ⋆ ) ≡ fundamental group of Y relative to a

965. π1(Y, a) = {[f] 󳈌 f ∶= loop based at a}

966. [f] ∶= path homotopy class of f

967. a ∶= base point

968. [3]
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Path Connected, Isomorphism

969. Theorem

(Y,U) ≡ path connected → ∀a, b ∈ Y ∶ π1(Y, a) 󰑔 π1(Y, b)

970. (Y,U) ∶= topological space

971. 󰑔 ∶= isomorphic relation

972. [3]
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Path Components, Equivalence Classes,
Path Connected

973. Definitions

974.
a ∼ b ↔ ∃ path from a to b

975.
path components ∶= equivalence classes of ∼

976. (Y,U) ∶= topological space

977. ∼ is an equivalence relation.

978. Each equivalence class is path connected.

979. [3]
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Topological Equivalence, Isomorphism,
Fundamental Groups

980. Theorem
(X,T ) ≡t (Y,U) → (GX 󰑔 GY )

981. (X,T ), (Y,U) ∶= topological spaces

982. ≡t ∶= topological equivalence

983. 󰑔 ∶= isomorphic relation

984. GX ,GY ∶= fundamental groups

985. [3]
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The Fundamental Group of the Circle

986. Theorem
GS1 󰑔 (Z,+)

987. GS1 ∶= fundamental group of S1

988. 󰑔 ∶= isomorphic relation

989. [3]
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Lifting

990. Definition

(hf ∶X → Z continuous, g ○ hf = f) ∶= lifting of f

f lifts to hf

991. (X,T ), (Y,U), (Z,V) ∶= topological spaces

992. f ∶X → Y ; g ∶ Z → Y ; f, g ∶= continuous functions

993. [3]
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Standard Covering Map of the Circle

994. Definition
g ∶= standard covering map of S1

995. g ∶ R→ S1; g(x) = (cos 2πx, sin 2πx)

996. g wraps around the unit circle infinitely many times.

997. [3]
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Standard Covering Map, Circle, Uniqueness,
Lift

998. Theorem

d(0) = (x, y) ∈ S1, z ∈ g−1[{x, y}] ⇒
⇒ ∃!kd ∶ [0, 1]→ R, kd(0) = z

999. g ∶ R→ S1; g(x) = (cos 2πx, sin 2πx)

1000. g ∶= standard covering map of S1

1001. d ∶ [0, 1]→ S1 ∶= path

1002. ∃! ∶= there is exactly one

1003. kd ∶= lift of d

1004. [3]
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Retraction

1005. Definition

(f ∶X → A) ∶= retraction if (∀a ∈ A)f(a) = a

1006. f ∶= continuous map

1007. A ⊆s X

1008. ⊆s ∶= subspace relation

1009. A ∶= retract of X

1010. [6]
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Retract

1011. Definition

A ∶= retract of X if (∃f ∶X →X)(∀x ∈X)(∀a ∈ A)

(i) f(x) ∈ A
(ii) f(a) = a

1012. f ∶= retraction

1013. A ⊆s X

1014. ⊆s ∶= subspace relation

1015. [6]
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Absolute Retract

1016. Definition

(X ∈ K, ∀Y ∈ K ∶X ⊆ Y, X ∶= retract of Y ) →
→ (X ∶= absolute retract for K)

1017. K ∶= class of topological spaces closed under homeomorphism

1018. X ∶= topological space

1019. [6]
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Abstract Simplicial Complex

1020. Definition

(A ∈ S → ∀A󰐞 ∶ A󰐞 ∈ S) → (S ∶= abstract simplicial complex)

1021. S ∶= finite ≠ ∅

1022. ∅ ≠ A󰐞 ⊆ A

1023. [6]
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