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Abstract
What is the best way of discovering the underlying structure of a causal
system composed of multiple variables? One prominent idea is that learners
should manipulate each candidate variable in isolation to avoid confounds
(sometimes known as the “Control of Variables” or CV strategy). We demon-
strate that CV is not always the most efficient method for learning. Using an
optimal actor model which aims to minimize the average number of tests, we
show that when a causal system is sparse (i.e., when the outcome of interest
has few or even just one actual cause among the candidate variables) it is
more efficient to test multiple variables at once. Across a series of behavioral
experiments, we then show that people are sensitive to causal sparsity and
adapt their strategies accordingly. When interacting with a dense causal
system (high proportion of actual causes among candidate variables), they
use a CV strategy, changing one variable at a time. When interacting with a
sparse causal system they are more likely to test multiple variables at once.
However, we also find that people sometimes use a CV strategy even when
a system is sparse.

Keywords: control of variables; interventions; experimentation; causal learn-
ing; hypothesis testing

Introduction

To develop a causal understanding of the world, we often need to find out how multiple
candidate variables affect an outcome of interest. This problem arises in everyday situations
(e.g., “Which switch(es) control the bathroom fan?”), during scientific exploration (“Which
of these treatments can affect disease x?”), and plays an important part in answering
economic and social questions (“What is the impact of these policies on Gross Domestic
Product?”). Often, the quickest and most effective method of resolving causal relationships
is to conduct experiments that manipulate variables of a system (e.g., turning switches on
or off) and to observe the resulting outcome. This kind of causal experimentation is often
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(but not always) required to decouple causation and correlation (Pearl, 2009; Woodward,
2005; S. Sloman, 2005).

Both children and adults can systematically leverage the outcomes of interventions to
test causal hypotheses that would be indistinguishable based on observation alone (Lagnado
& Sloman, 2004; Lagnado, Waldmann, Hagmayer, & Sloman, 2006; Rottman & Keil, 2012;
Schulz, Gopnik, & Glymour, 2007; S. A. Sloman & Lagnado, 2005; Waldmann & Hagmayer,
2005). Furthermore, people are sometimes able to come up with highly efficient experiments
that optimize information gained per intervention or minimize the total number of tests
needed on average to discover the true causal structure (Bramley, Lagnado, & Speekenbrink,
2015; Bramley, Dayan, Griffiths, & Lagnado, 2017; Coenen, Rehder, & Gureckis, 2015;
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).

Here we consider a specific learning situation in which people are asked to explore
a causal system consisting of a number of independent variables (switches) and a depen-
dent outcome (turning on a fan). These types of problems have played a central role in
research on science education and cognitive development and are common in everyday ex-
perience (Inhelder & Piaget, 1958; Chen & Klahr, 1999; Kuhn & Brannock, 1977; Kuhn,
Iordanou, Pease, & Wirkala, 2008). An example study in this area might consider how
children and adults manipulate variables (such as water, fertilizer, or sunlight) that affect
the health of a plant (see Klahr, Fay, & Dunbar, 1993). An important focus of science
education research has been to teach basic principles of how learners should approach such
problems in general. Educators have specifically focused on teaching students the principle
of isolating or controlling variables (i.e., the idea that variables should be tested individually
while holding everything else constant, Kuhn & Brannock, 1977). As we review below, iso-
lating variables represents a general strategy for approaching many types of causal learning
problems and often results in non-confounded evidence.

In this paper, we take a broader perspective on multivariate experimentation and
consider under what circumstances testing individual variables is more or less effective. In
particular, through an analysis of an optimal actor model, we show that the most efficient
strategy for understanding a multivariate causal system critically depends on the proportion
of causally relevant variables (which we will refer to as causal sparsity). The key take away
from our analyses is that in causally sparse environments, where the proportion of causes
among the candidate variables is low, changing multiple variables at once is more effective
than controlling variables individually. We demonstrate across four experiments that naive
learners adapt their intervention strategies in line with these computational predictions. We
also highlight interesting ways in which people deviate from the optimal actor benchmark.
Indeed, despite people’s ability to adapt their strategies, we consistently find a group-
level bias towards controlling individual variables even when changing multiple is more
efficient. We also find that some participants seek out confirmative evidence—i.e., they
make interventions they should already know the outcome of (e.g., Klayman, 1995)—
and favor outcome-positive evidence—i.e., they make interventions they expect to produce
the effect rather than something equally informative that they expect to not produce the
effect— in line with a positive testing strategy (e.g., Coenen et al., 2015; Klayman, 1995;
McKenzie, 2004; White, 2009). We discuss what these deviations suggests about strategy
selection during causal experimentation.
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Learning through experiments

We start by describing the two main strategies that are considered in the paper, before
turning to the optimal actor analysis.

Test one variable at a time

The ability to learn about the effects of multiple variables has long been considered
a hallmark of mature logical and inductive reasoning. Beginning with Inhelder and Pi-
aget (1958), researchers have been particularly interested in the development of what is
often called the control of variables (CV) strategy (for a recent review on the CV principle,
see Zimmerman, 2007). This is an epistemic strategy where learners systematically test
the effect of every variable in isolation to avoid confounding evidence by changing one vari-
able at a time. For example, to find out what factors affect the health of a plant, the CV
principle prescribes that one should change a single variable, say, the watering regime, with-
out changing the amount of fertilizer, lighting, and humidity (Kuhn & Brannock, 1977).
Although this is not always made explicit, the success of this strategy requires that the
unchanged variables are held at their default values (e.g., same level of fertilizer and light)
and not left to vary freely.

In the education literature, considerable emphasis has been placed on teaching chil-
dren the CV principle (e.g., Chen & Klahr, 1999; Kuhn & Brannock, 1977; Kuhn & Angelev,
1976). In fact, its normative status is so pervasive that it features as one of the assessment
criteria in national standards for science education (e.g., see Next Generation Science Stan-
dards, 2013, p.52).

A common finding from empirical studies is that children require extensive training
to acquire the CV principle and teaching them to transfer it to novel tasks is an even bigger
challenge (e.g., Kuhn et al., 1995; Klahr et al., 1993; Kuhn & Phelps, 1982). Adults and
adolescents, although more likely to use the strategy spontaneously, still show a tendency
to test multiple features at once instead of testing them individually (Kuhn et al., 1995).
Interesting exceptions have been found in more complex tasks. For example, Bramley et al.
(2017) allowed adults to fix any subset of the variables of a multivariate system and observe
the consequences on the other variables with the goal of finding out the underlying causal
structure. In this task, the most informative tests — according to an optimal model —
typically involved leaving most variables uncontrolled. However, participants often chose to
test one causal relationship at a time by holding most variables at a constant value. Note
that, participants might have been more likely to test individual variables in this rather
complex task (with a vast hypothesis space), because the need to reduce the cognitive load
was particularly severe.

In sum, CV is a widely regarded epistemic principle for learning about causal systems
composed of multiple variables. Mastery of this principle is often equated with cognitive
maturity and accomplishment within Science, Engineering, Technology, and Mathematics
(STEM) curricula. A key advantage of a CV strategy is that it results in unconfounded
data that is easy to interpret.

Going forward, we will consider a particular instantiation of the CV principle that
applies to multivariate causation. We will refer to it simply as the Test One strategy, which
we define as the sequential causal activation of individual variables (potential causes of some
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outcome), while all other potential causes are kept inactive to prevent any confounding
impact on the outcome. We will give a more formal definition of this strategy below.

Test half or test multiple variables

Changing variables one-by-one has the benefit of isolating the effect of every variable
without the confounding influence of the others. It is therefore particularly helpful when
one believes that many variables could potentially affect the outcome. However, consider
the case in which a learner expects only very few, or perhaps just a single variable, to
affect the outcome, and is faced with a number of equally plausible candidate variables.
In that case, an alternative strategy is to test multiple variables at once, to see if any of
them affects the outcome at all. For example, imagine trying to figure out which out of 20
switches in a poorly labeled basement fuse box controls the bedroom light. In this case, a
possible strategy for identifying the correct switch is to turn on half (10 out of 20) of the
switches to find out which half contains the target switch, and then continue testing half of
the remaining switches until only one remains. Compared to testing switches one-by-one,
this strategy will reduce the number of basement trips.

The Test Multiple or (more specifically) Test Half strategy has been studied by psy-
chologists in a different type of information-seeking task, based on the popular “Twenty
Questions” game. In this task, children or adults have to identify a target object or person
among a given set by asking as few yes/no questions as possible. Here, too, the optimal
strategy (in terms of expected information gain, see next section) is to ask questions tar-
geting features that apply to half the possibilities under consideration (e.g., “Is the person
female?”, if the hypotheses are people and half are each sex), because it reduces the number
of alternatives more rapidly than asking about specific identities directly (e.g., Navarro &
Perfors, 2011; Mosher & Hornsby, 1966). In analogy to the switch testing example, in-
quiring about a feature means asking if any of the individuals sharing that feature is the
target, just as turning on multiple switches asks if any of those switches has an effect on the
outcome (the fan). An alternative approach to asking about shared features would be to
test each person individually (e.g., “Is it Bob?”). This is similar to a Test One strategy that
turns on one switch at a time. In experiments using versions of the Twenty Questions game,
both adults and, to a lesser degree, children have been shown to be able to use the Test Half
method successfully (Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 2014; Ruggeri
& Feufel, 2015; Ruggeri, Lombrozo, Griffiths, & Xu, 2016; Ruggeri & Lombrozo, 2015).
Analogous “divide-and-conquer” strategies have also emerged in the problem solving liter-
ature, for example the symmetry strategy described in the n-ball problem (Simmel, 1953;
Ormerod, MacGregor, Chronicle, Dewald, & Chu, 2013).

Importantly, using a Test Half (or Test Multiple) strategy is sometimes considered
a reasoning error (particularly in work on Control of Variables in the science education
literature). For example, a child that chooses a test that simultaneously manipulates a
plant’s light exposure, and fertilizer, would be recorded as low-performing in a classic CV
experiment (Klahr et al., 1993), because changing or setting many variables at once is
thought to confound individual variables.

The Test One and Test Half/Multiple strategies are typically studied in different kinds
of psychological tasks. However, as demonstrated by the switch example, they can both be
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reasonable approaches for testing the causal impact of multiple variables. Next, we show
how the effectiveness of each strategy depends on the structure of the environment.

Sparsity determines effectiveness of learning strategies

As the switch example shows, a crucial factor determining the effectiveness of a Test
One or a Test Half strategy is the sparsity of a causal system. We define sparsity as inversely
related to the proportion of variables causally affecting the outcome. For example, when
only one of the 20 switches controls the bathroom light (a sparse environment), a learner can
quickly narrow in on the target switch by trying many variables at once. In contrast, where
there are many effective causes (a dense environment), changing multiple at once will tend to
be ineffective because the outcome will almost always be produced and little will be learned
about which variable(s) are actually responsible due to the confound. Thus, the choice of
an effective testing strategy in a situation is a question of ecological rationality in that it
depends to a large degree on the structure of the environment (Todd & Gigerenzer, 2012;
Gigerenzer, Todd, & the ABC Research Group, 1999). Past work has shown that people
behave in an ecologically rational fashion when sparsity is varied in a number of non-causal
hypothesis testing tasks (where sparsity applied to hypotheses or events, e.g., McKenzie,
Chase, Todd, & Gigerenzer, 2012; Hendrickson, Navarro, & Perfors, 2016; Oaksford &
Chater, 1994; Langsford, Hendrickson, Perfors, & Navarro, 2014; Navarro & Perfors, 2011).
For example, Hendrickson et al. (2016) showed that people switch from requesting positive
to negative examples of a concept when the overall proportion of positive cases increases.
In the next section, we formally show why and how they should do so in causal scenarios
as well.

Modeling the effect of sparsity with an optimal actor model based on Ex-
pected Information Gain. Assume that a learner is faced with a simple causal system
with N binary independent input variables, I, and a single binary outcome, o. Given the
subset of input variables, C ⊆ I that, when active, can causally affect the outcome, the
probability of the outcome given the current setting of input variables is

P (o = 1|C) =
{

1, if ∃ c ∈ C ∧ (c = 1),
0, otherwise

(1)

In other words, the outcome occurs if and only if any of the input variables in C are currently
active (this is equivalent to an inclusive OR relationship between causes and the outcome).

The learner must now decide how to manipulate the input variables to figure out which
of them are causally relevant (that is, which variables are members of C). We assume that
the learner’s optimal strategy lies in choosing a switch setting, s ∈ S, that maximizes the
expected gain in information with respect to the system.

Expected Information Gain is a common metric for quantifying the value of
information-seeking actions, including causal interventions (see, Oaksford & Chater, 1994;
Steyvers et al., 2003).1 It is computed as the expected reduction in uncertainty over the

1While there are a range of possible measures of information (Nielsen & Nock, 2011), they disagree about
the best testing strategy only in specific fringe cases that do not apply in the current context (Bramley,
Nelson, Speekenbrink, Crupi, & Lagnado, 2014).
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hypotheses H, after having made an intervention on the system and observed an out-
come. Here, the learner’s hypotheses are possible sets causally relevant variables, that is,
H = {C1, ..., Cm}. We are considering the simple case of binary outcomes (o = 1 or o = 0)
with the likelihood of an outcome given by Equation (1). A learner’s expected information
gain is:

EIG(s|H) = SE(H)−
1∑

j=0
P (o = j|s) SE(H|s, o = j), (2)

where SE denotes the Shannon Entropy over a distribution of hypotheses (Shannon
& Weaver, 1949), which are possible sets of causes in this application. The prior Entropy is

SE(H) = −
m∑

i=1
P (Ci) logP (Ci) (3)

The updated belief for each element in H after observing an outcome follows Bayes’
rule,

P (Ci|o) = P (o|Ci)P (Ci)∑m
j=1 P (o|Cj)P (Cj) (4)

and the Shannon Entropy over the new set of hypotheses is is

SE(H|s, o) = −
m∑

i=1
P (Ci|o) logP (Ci|o) (5)

This model is myopic, in that it only optimizes the Expected Information Gain of
the next action without simulating additional future actions and outcomes (see below for
further discussion).

To model the impact of sparsity on the model predictions, we varied the number of
causes (|C|), and the number of total variables, N . Note that these quantities affect the EIG
computation in Equation 2 by constraining the hypothesis set H. For example, if |C| = 2
and N = 6, then H contains all possible combinations of two causes in six switches, which
yields 15 total hypotheses (the number of hypotheses is always

(N
|C|
)
). Each hypothesis

corresponds to a different set of causes, such that H = {{1, 2}, ..., {5, 6}}. We furthermore
assumed a flat prior belief over all hypotheses in H, that is, each hypothesis has a prior
probability of P (Ci) = 1/|H|.

Figure 1 shows model predictions for the number of variables this EIG-optimal actor
should manipulate given different values of |C| and N . The model manipulates multiple
variables on the first trial (in fact, exactly N

2 ) when it expects only a single cause. As
the number of causes increases (that is, as causal density increases), the optimal number
of variables to be manipulated decreases and quickly converges to the Test One strategy.
This relationship is modulated by N , which effectively decreases the degree of causal den-
sity (provided |C| is constant) and consequently the number of variables that should be
manipulated.

These results show that knowledge about the causal sparsity of an environment should
affect a learner’s strategy for manipulating binary variables to find out how they affect an
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Figure 1 . Effect of the number of causes (|C|) on the number of variables tested by an
EIG-optimal actor, given different numbers of potential causes (N).

outcome of interest. This means that, even within the same kind of task, there exists a
continuum of optimal strategies with respect to the number of variables to be manipulated
that ranges from Test Half to Test One.

Myopic EIG vs. optimal planning. In the experiments reported in this pa-
per, participants are given monetary incentives aligned with the goal of making efficient
interventions (Brier, 1950). Specifically, they receive a fixed payoff for identifying causally
relevant variables and have to pay a small cost every time they test the system.

This means that, although the EIG analysis presented here is optimal in maximizing
informational value for the next trial, it does not explicitly maximize monetary reward that
can result from a sequence of tests. Doing so requires a forward-looking model that takes
into account the costs of additional tests and the reward for finding the correct solution.
We derive predictions from such an optimal planning model in the Appendix.

The biggest divergence between optimal planning and myopic EIG is that the for-
mer recommends a broader number of possible strategies in sparse environments, including
changing slightly fewer and slightly more variables than half. It also makes predictions
for when a learner should stop making tests and guess the answer even if entropy is still
nonzero. Evidence suggests that people do not typically plan multiple steps into the future
when collecting information in causal systems (e.g., Bramley et al., 2015). Further, past
studies suggest that even with strongly misaligned monetary and informational incentives,
a large amount of task experience is required before people will maximize a monetary in-
centive over accuracy (Meder & Nelson, 2012; Markant & Gureckis, 2012). We therefore
chose to focus on the EIG analysis for the main body of this paper. To foreshadow the re-
sults reported later, we also do not find that the optimal planning model captures behavior
better than myopic EIG. We will address the differences between myopic EIG and optimal
planning where appropriate in the results and discussion sections of each experiment. Cru-
cially, we should note that, for all the experiments reported in this paper, the myopic EIG
strategy is always among the set of actions that the optimal planning model recommends.
That is, in sparse environments, Test Half is optimal under both models.
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Throughout the rest of this paper we will refer to the myopic EIG model as the EIG
optimal actor model, or simply EIG model. We will also occasionally use the term “optimal
learner”, which refers to an accurate model of belief updating (i.e. computing P (H|o)) in
line with Bayes’ rule in Equation (4).

Overview of Experiments

The results of the modeling presented in the previous section lead us to the core
questions of this paper: How do people manipulate variables in multivariate single-outcome
systems and how do beliefs about causal sparsity affect their inquiry strategies?

To make our predictions explicit, based on the EIG-optimal actor predictions pre-
sented in Figure 1, we hypothesize that when learning about a causal system, people will
use different strategies depending on their beliefs about the sparsity of the system. When
only a few of the candidate variables are causally effective, we predict that people will test
multiple variables. When many of the candidate variables are causally effective, we expect
people will test items individually. This result would offer a further demonstration that
human intervention strategies are ecologically rational, in the sense of being well matched
to the environment where they are implemented (Todd & Gigerenzer, 2012; Parpart, Jones,
& Love, 2018).

In the following sections we present four experiments that investigate how sparsity
affects people’s causal experimentation strategies. Sparsity is manipulated in two ways,
both suggested by the model results shown in Figure 1. We first vary the number of causes
(i.e., variables that affect the outcome) in a system (Exp. 1 & 2) and second the number
of total variables available for testing (Exp. 2). We also investigate what strategies people
select given an unconstrained prior belief (when the degree of sparsity is not specified, Exp.
3). Finally, we test whether repeated interaction with sparse systems encourages learning
of efficient strategy selection (Exp. 4).

Experiment 1 - manipulating number of causes

In the first experiment, participants were presented with a simple multivariate causal
system consisting of a box (see Figure 2) that held a number of variables (switches) that
influenced the outcome (a spinning wheel). Participants’ goal was to figure out how the
system worked by manipulating the variables (turning switches on/off) and then testing
the effects of this manipulation. Sparsity was manipulated between-subjects by changing
participant’s a-priori belief about the number of causes (i.e., working switches) among the
variables. In the sparse condition participants were told that only one switch was working
(only one cause of the outcome). In the dense condition they were told that all but one
switch were working (many individually sufficient causes of the outcome). The goal of the
experiment was to assess whether and how sparsity affects people’s testing strategies. The
key dependent measure was the number of switches people manipulated on each test of the
system to figure out how the box worked.

The goal of this first experiment was to pilot the experimental paradigm used through-
out this paper in a lab setting and make sure that participants understood the main ma-
nipulation (of sparsity).
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Outcome: 
Wheel

Variables: 
Switches

Activation
Toggle

Figure 2 . A photograph of the control interface on the wooden box used in Experiment 1.

Method

Participants. Thirty participants (15 males; Mage = 23, SDage = 4) were recruited
via the subject pool of New York University’s Department of Psychology. Participants
were paid at a rate of $5 per hour and could win an additional bonus of up to $3 (see
below). Because this study was very short (it took around 5 minutes per participant),
it was conducted with participants who had completed an unrelated memory experiment
immediately prior to this one. The sample size was chosen to accommodate the number
of participants in the memory experiment. Approval for this study was obtained by New
York University’s Institutional Review Board (IRB) under the protocol “Active Learning
in Dynamic Task Environments” (IRB-FY2016-231).

Design and apparatus. Participants were presented with the wooden box depicted
in Figure 2. The dimensions of the box was approximately 35cm by 25cm. All of the sides
of the box were painted blue. The top of the box had a number of vintage electronic
components arranged as shown in the photograph. The motivation behind using a physical
box instead of a digital computer was that we planned to run a similar experiment with
children. However, subsequent adult experiments were run online and we did not observe
any systematic differences in behavior (see Experiment 2).

The box had six different toggle switches (variables), a yellow wheel (outcome), and
a red activation toggle. Each switch could be turned to the left (off) or the right (on).
The yellow wheel could either spin (outcome present) or not spin (outcome absent). The
activation toggle controlled whether the box was currently active (if inactive, the outcome
could never occur). A row of three lights along the lower left side of the box would turn on
when the box was activated by the activation toggle. In addition a yellow slot above the
activation toggle provided a place for people to insert “tokens” into the box.

Participants were randomly assigned to one of two experimental conditions. In the
sparse condition, participants were told only one of the switches caused the wheel to spin,
whereas the remaining five switches were broken. In the dense condition, participants were
told five switches caused the wheel to spin and one switch was broken. A single working
switch was sufficient to activate the wheel, and the position of the broken switches had no
effect whatsoever.

In both conditions, the wheel could only be activated if the activation toggle was
currently in its on position. Otherwise, participants were told that the box was turned off.
Thus, participants experimented with the system by first setting the variable switches in
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different ways and then setting the activation toggle to on to see what happened to the
wheel. Which exact switches were broken or working was randomly determined for each
participant via a microcomputer hidden inside the box. At the beginning of the experiment,
participants were given six plastic tokens, each of which was worth $0.50. Participants had
to pay one token every time they wanted to turn on the box via the activation toggle (see
below) by inserting the coins into the yellow coin slot.

Procedure. Participants were first familiarized with the components on the box
through verbal explanation of the experimenter. They were told about the binary (left=off,
right=on) nature of the switches, and the difference between broken and working switches.
Depending on the condition, participants were then told that they had to identify the
one working switch (sparse condition) or the one broken switch (dense condition). Before
starting the task, participants in both conditions were shown the same two demonstration
trials. First, while the activation toggle was turned off, the experimenter turned all six
switches to their on position and subsequently turned on the activation toggle, causing the
wheel to spin. Second, after turning the activation toggle off again, the experimenter set
all switches to their off state and turned the activation toggle back on, which did not cause
the wheel to spin.

In the main part of the experiment, participants could repeatedly test different set-
tings of the switches to find out which one was broken/working. On each trial, they could
change the switches in any way they liked while the activation toggle was turned off. They
could then test their chosen switch setting by turning the activation toggle on and observing
the effect on the wheel. Before the start of each new trial, the activation toggle had to be
turned off again.

To incentivize participants to be efficient (i.e., to use as few trials as possible), they
had to pay one of their six plastic tokens (worth $0.50 each) each time they performed a
test by inserting it into a coin slot on the box. Participants could test the box up to six
times (hence the use of six tokens), but could stop whenever they were ready to make their
judgment. After their final test, they had to indicate to the experimenter which of the
switches they thought was broken/working. If their choice was correct, they could trade in
any remaining tokens for their corresponding monetary value. If their choice was incorrect
or they used up all their tokens, they received no bonus.

Results and discussion.
Performance. Before comparing strategies in detail, we evaluated the overall per-

formance in the task. Final accuracy in identifying the working/broken switch at the end
was 100% in the sparse condition and 80% in the dense condition. This difference was
not statistically significant (Fisher’s exact test, 95% CI [0.43,∞], p = 0.22). On average,
participants made 3.6 (SD = 1.45) interventions in the sparse condition, compared to 4.6
(SD = 1.92) interventions in the dense condition. Note that this difference is in line with
the predictions of the EIG analysis reported above (the EIG-optimal strategy in the dense
condition requires more steps), but given the number of participants in this experiment this
was not statistically significant (t(28) = 1.61, 95% CI= [−0.27, 2.27], p = 0.12).

Strategy classification. To characterize participants behavior over multiple trials,
we used the same strategy classification scheme across all experiments. For a sequence of
example trials that would have been classified as each strategy, see Table 1. Note that in the
upcoming strategy definitions we will use the term zero EIG to talk about trials in which
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the participants’ test could not yield any additional information according to the Expected
Information Gain equation described above (Equation (2)). Zero EIG could result, for
example, from a participant testing the same switch twice or turning on multiple variables
in the dense condition (which would yield any additional information since the outcome
always occurred). Furthermore, we will use the term potential causes to designate variables
that, according to the EIG-optimal actor, could still be causes of the outcome. Conversely,
noncauses are variables that a participant has ruled out through prior tests.

• Test One: The participant followed the Controlling Variables principle and tested a
single switch on every trial, while turning off any potential causes.

– Pure Test One: The participant used Test One on all trials.
– Noisy Test One: The participant used Test One with interspersed zero EIG trials.

• Test Multiple (sparse condition only): The participant turned on several switches
on every trial. Importantly, this strategy could only be used in the sparse condition,
because manipulating more than one switch in the dense condition always led to zero
EIG.

– Pure Test Half : Participant manipulated exactly half of the remaining potential
causes on every trial (rounding odd numbers up or down).

– Pure Test Multiple: The participant turned on several (but not always exactly
half) of the remaining potential causes on every trial. Note that it was possible
that a participant in this category used a forward looking strategy, which does
not require testing exactly half (see Appendix A).

– Noisy Test Multiple: The participant used a Test Half or Test Multiple strategy
but with interspersed zero EIG trials.

Note that with an odd number of potential causes, both rounding up and down from
the central value gets counted as a viable testing Half/Multiple strategy. That means
that on a trial with three remaining variables, changing one can actually be part of
the Test Half/Multiple strategy (see the last trial of Pure Test Multiple in Table 1,
for example).

• Other : Any strategy that does not fall into the above categories. also included par-
ticipants who switched back and forth between Testing One and Testing Multiple.
For example, this category would include participants who started testing variables
one-by-one and then changed their strategy to changing half of the variables, and vice
versa.

The goal of these definitions was to strike a balance between accurately summarizing our
participants’ behavior and parsimony in terms of the number of categories we assigned.
Throughout this paper, we will report additional behavioral markers of strategy use in
addition to these categories to ensure we provide a comprehensive picture of the data.
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Table 1
Example sequences of the first three trials for different strategies given six binary variables.
Trials on which the outcome occurred are denoted with an asterisk (∗). The outcome of the
third trial has no impact on the actions depicted in this table.

Strategy Example

Pure Test One –
Test One on all
trials



t1∗ t2∗ t3?
s1 1 0 0
s2 0 0 1
s3 0 0 0
s4 0 0 0
s5 0 1 0
s6 0 0 0


...

Noisy Test One –
Test One with in-
terspersed 0-EIG
trials



t1∗ t2∗ t3?
s1 1 0 0
s2 0 1 0
s3 0 1 0
s4 0 0 1
s5 0 0 0
s6 0 0 0


...

Pure Test Half –
Test Half on all
trials



t1− t2∗ t3?
s1 1 0 0
s2 1 0 0
s3 1 0 0
s4 0 1 0
s5 0 1 1
s6 0 0 0


...

Pure Test Multi-
ple – Test Multi-
ple on all trials



t1− t2∗ t3?
s1 1 0 0
s2 1 0 0
s3 0 1 0
s4 0 1 0
s5 0 1 1
s6 0 0 0


...

Noisy Test Multi-
ple – Test Mul-
tiple with inter-
spersed 0-EIG tri-
als



t1− t2∗ t3?
s1 1 0 1
s2 1 0 0
s3 1 0 0
s4 0 1 0
s5 0 1 0
s6 0 0 0


...

Note that participants were classified based on their sequence of tests up to the point
at which an optimal learner would have been able to correctly identify the working or broken
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switch (i.e., the point at which the Expected Information Gain from Equation 2 was zero
for every kind of test). Some participants made further unnecessary tests that we report
and analyze in separate parts of the result sections.

Strategy. Table 2 shows the number of participants classified into all strategy types
described in the previous section. Note that not all of the strategy types appeared in this
experiment (there were no Test Multiple or Noisy Test Multiple participants).

To simplify analyses, we further grouped participants as either using a Test One
(includes Test One and Noisy Test One), Test Multiple (includes Test Half, Test Multiple,
and Noisy Test Multiple), or Other strategy. Figure 3 shows the number of participants
in each of those broader strategy categories. The number of participants using a Test One
strategy was lower in the sparse condition (4 in 15 vs. 14 in 15, Fisher’s exact test, 95% CI
[0.0006, 0.31], p < 0.001). However, even in the sparse condition around a quarter of the
participants decided to change one variable at a time.

Note that all of the participants in the Test Multiple group of the sparse condition
actually manipulated exactly half of the switches (see Table 2). This finding supports the
fact that the myopic EIG model is a better description of behavior than the optimal planning
model that is briefly mentioned above (see Appendix A for details). Indeed, although the
optimal planning model assigns equal value to manipulating 2, 3, and 4 variables on the
first trial of Experiment 1, we only observe people manipulate exactly half.

Stopping. We found that one third (∼ 33%) of participants made at least one
additional intervention at the point when, according to the EIG-optimal actor, they should
have identified the solution already. The number of such “unnecessary” tests was higher
for participants in the sparse group (∼ 47% compared to 20% in the dense group), but
this difference did not reach statistical significance (Fisher’s exact test, 95% CI [0.55, 26],
p = 0.245). The sample size of this experiment makes it unfeasible to look for factors that
affect whether participants with no remaining uncertainty made additional interventions.
We will return to this question in the larger-N experiments reported below.

When modeling each participant’s sequence of tests, it was revealed that only 60%
of participants in the dense group had completely resolved their uncertainty (had zero
Shannon Entropy according to (5)) about the broken switch by the time they stopped
conducting tests and made a choice. Conversely, in the sparse group all participants had
resolved their uncertainty completely (the difference between conditions was significant;
Fisher’s exact test, 95% CI [1.5,∞], p = 0.017). Out of the six participants who stopped
before reaching certainty in the dense group, four did so because they used a noisy Test
One strategy and had reached the last trial (trial six), which meant they had to stop
because they used up all the given tokens. One participant stopped after only two tests
with a high risk of making an incorrect guess. Finally, the last participant among the early
stoppers chose to guess with only two candidate switches remaining (thus with a 0.5 chance
of guessing correctly), which is actually among the optimal stopping strategies predicted
by an optimal planning model (see Appendix A).

In sum, as predicted by the EIG-optimal actor model, this experiment found that
instructing participants to expect either a sparse (one cause in six variables) or a dense
(five causes in six variables) environment had an effect on how they manipulated the set of
six variables. This confirms that people’s prior beliefs about the sparsity of their environ-
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ment can induce changes in strategy selection. However, another intriguing result of this
experiment is that even in the sparse condition a proportion of participants adhered to the
Controlling Variables principle and used a Test One strategy. We will address this finding
in the results and discussions of the remaining experiments (particularly Exp. 3 & 4).

Because this experiment was designed to test in-lab instructions and the sparsity
manipulation, we lacked sufficient sample sizes for some of the analyses based on subsets
of participants. However, this study still revealed some trends indicating potentially in-
teresting patterns in stopping behavior that differed between conditions. In particular,
participants in the sparse group were more likely to make further, unnecessary tests. We
will continue exploring these differences in the next experiments.

Dense Sparse

Test
One

Test
Multiple

Other Test
One

Test
Multiple

Other
0

5

10
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rti

ci
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nt
s

Figure 3 . Strategy classification in Experiment 1.

Table 2
Detailed strategy use in Experiment 1.

condition Pure Test
One

Noisy Test
One

Pure Test
Half

Other

dense 7 7 0 1
sparse 3 1 8 3

Experiment 2 - manipulating the number of variables

In addition to the number of causes, our computational analyses above show that
the total number of variables affects the sparsity of causal systems. In Experiment 1, the
benefit of testing multiple variables over testing variables one-by-one was relatively modest.
In fact, testing half of the variables in the sparse condition would save participants less
than one step (2/3 of a step) on average, compared to testing variables individually (this
difference translated to an average saving of ∼$0.33). This may not have provided sufficient
incentive for participants to realize that a Test Half strategy would be more advantageous.
As discussed above, one way to amplify the potential impact of the sparsity manipulation is
to include more variables (see Figure 1). Figure 4 shows the average number of trials (causal
tests) needed to find the working switch for a learner in a sparse (one cause) environment
employing either a Test One or a Test Half strategy depending on the number of switches
available. We can see that as the number of switches increases, so does the benefit of the
Test Half strategy over the Test One strategy.
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Figure 4 . Expected number of trials needed to find the working switch in the sparse
condition, when using a Test One or Test Half strategy.

To test if people are sensitive to the degree of sparsity, Experiment 2 manipulated the
number of variables (switches). Participants on Amazon Mechanical Turk completed the
same task as in Experiment 1 (modified for presentation over the web), but were presented
with either 4, 6, 10, or 20 switches (all manipulations were between-subjects). As before,
they were given either sparse (one switch working) or dense (all but one working) instruc-
tions (see Appendix B for details). Although adding variables should have no effect on
behavior in the dense condition, we decided to keep the manipulation to ensure that adding
variables does not encourage a general increase in the number of variables participants
would test on each trial. By including the six switches condition again, this experiment also
served to replicate the results from Experiment 1 with an online sample.

Method

Participants. One hundred and thirty one participants (73 males) were recruited
on Amazon Mechanical Turk (15 to 18 per cell).2 Recruitment was restricted to AMT
workers within the United States aged 18 or above. Participants were paid $0.50 for their
participation, with the possibility of earning an additional bonus of up to $1 (see below).
Approval for this study was obtained by New York University’s Institutional Review Board
(IRB) under the protocol “Active Learning in Dynamic Task Environments” (IRB-FY2016-
231).

2Sample size was chosen to match the previous experiment (fluctuation in sample size resulted from
Mechanical Turk drop-outs), because it was sufficient to detect differences between the sparse and dense
groups in terms of strategy use. Furthermore, the data for some analyses (e.g., stopping, see below) could
be pooled across conditions, which is why we still anticipated benefitting from greater power based on
the observed in this experiment compared to Experiment 1. A posthoc power calculation suggested by a
reviewer, of the nonsignificant main effect of condition on number of interventions in Experiment 1 yielded
.37. This indicates the study may have been somewhat underpowered for detecting this particular effect.
The power of Experiment 2 to find the commensurate effect in its larger sample (pooling across number of
switches) was .94. Since we expect this effect to be larger for devices with more switches and the setting in
Experiment 1 was at the low end of the range, this is a conservative estimate. Participants indicated their
age, but it was not recorded due to a coding error.
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Figure 5 . Switchboard presented to participants in Experiments 2-4. Experiment 2 varied
the number of switches on the board (4, 6, 10, or 20), as shown above.

Stimuli. The task from Experiment 1 was adapted as faithfully as possible to be
run on the web with some minor changes (See Figure 5). Again, switches could be turned
on (green) or off (red). Instead of a wheel, the outcome of interest was a light bulb, which lit
up when it was turned on, and remained gray otherwise. The red activation toggle needed
to be in its “on” position for the switchboard to work. When the switch-box was turned
on, the green indicator light to the left of the activation toggle shone bright green. The
coin slot on the top right corner of the switchboard would show a brief animation of a coin
being inserted whenever a participant made an additional test (see below).

Procedure. The experiment followed a 4 x 2 between-subjects design. Participants
received different versions of the task with either 4, 6, 10, or 20 switches (as shown in
Figure 5), and were given either the sparse or the dense instructions.

The procedure was the same as in Experiment 1. Participants received similar in-
structions (but written) and were also asked to perform two demonstration trials in which
first all and then none of the switches were turned on, to show that the light bulb would turn
on and stay off, respectively. The per-trial payment was adjusted depending on condition,
such that participants had to pay either $0.25, $0.16, $0.1, or $0.05 per additional test in
the 4, 6, 10, or 20 switches conditions, respectively. These payments were chosen so that
the total potential bonus (starting at $1) would be zero if participants decided to test every
single switch in isolation. The remaining bonus was shown to participants to the right side
of the switchboard.

At the beginning of a trial, participants could click on as many switches as they
wanted to turn them on or off. They then had to turn the activation toggle on to observe
the effect of the light bulb. Every time they turned on the activation toggle and saw the
outcome, the cost of this test was automatically deducted from the total bonus shown on
the side of the screen. Participants could then either make another test or click a button
to proceed to the final choice. Before each new test, they had to turn the activation toggle
off again. In the choice phase, participants were asked to click on the one switch that was
broken/working and confirm their choice before receiving feedback.

Results.
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Table 3
Detailed strategy use in Experiment 2.
variables sparsity Pure Test

One
Noisy Test
One

Pure Test
Half

Pure Test
Multiple

Noisy Test
Multiple

Other

4 dense 10 5 0 0 0 2
4 sparse 9 1 5 0 0 1
6 dense 7 4 0 0 0 4
6 sparse 7 1 4 1 3 0
10 dense 7 5 0 0 0 3
10 sparse 3 0 4 6 3 0
20 dense 2 13 0 0 0 3
20 sparse 2 2 2 7 3 2
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Figure 6 . Results from Experiment 2. (A) Average Number of interventions that partic-
ipants in each group needed to find the working/broken switch. Recall, TO = Test One,
TM = Test Multiple. (B) Strategy classification. (C) Number of switches manipulated on
trial 1. Dotted lines indicate 1/2 of the total number of variables.
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Performance. Pooling across the four groups with different numbers of switches,
participants in the sparse conditions made fewer interventions (M = 4.17, SD = 2.98) than
in the dense condition (M = 8.91, SD = 8.01, t(129) = 4.5, 95% CI [2.7, 6.8], p < 0.001).
They were also more likely to make the correct choice at the end (76% vs. 43% correct,
Fisher’s exact 95% CI [1.8, 9.4], p < 0.001). As the EIG analysis predicts, this efficiency
difference was disproportionately driven by participants in the groups with larger numbers of
switches. To illustrate this, Figure 6A plots the average number of tests participants needed
to find the correct solution in every experimental group. It shows that that the number of
trials participants saved in the sparse condition compared to the dense condition increased
from 0.15 trials in the 4 variable condition to 6.53 trials in the 20 variable condition. This
finding qualitatively matches the EIG-optimal actor predictions in Figure 4.

Strategies. Table 3 shows the detailed strategy use per group, based on the defi-
nitions described in the results section of Experiment 1. Again, we further collapsed these
data into three strategy types (Test One, Test Multiple, and Other). The results for these
summary strategies is shown in Figure 6B. As expected, the vast majority of participants
in the dense group adopted a Test One strategy for all levels of the number of variables. In
the sparse condition, on the other hand, the proportion of Test One users varied with the
number of switches (Fisher’s exact test with null hypothesis of equal proportion of TO to
TM participants in each group of number of variables, p < 0.023).

Figure 6C shows how many variables participants manipulated on their very first trial.
As in Experiment 1, participants who did not use the Test One strategy were particularly
likely to change exactly half of the switches (see black dotted lines). However, we found some
variance in the number of switches changed, particularly in the 10 and 20 switches group.
Some participants chose to manipulate slightly fewer than half, and some considerably fewer
(e.g., 3 in 10 or 6 in 20 switches). Recall that the cost-minimizing strategy from an optimal
planning model (described in Appendix A) actually reveals that testing slightly fewer or
more than half is an equally good strategy in terms of expected value (Table 5 in the
Appendix). This is because it can increase the likelihood of a “quick win” if the working
switch happens to be in the smaller of the two subsets. Thus, some of these participants
were still following an optimal strategy. Furthermore, even among suboptimal participants,
some still acted much more efficiently than Test One participants. For example, testing
6 in 20 variables will still eliminate 8.4 variables, on average, from the set of potential
causes (there is a 6/20 chance of the light turning on, thus eliminating 14 variables and a
14/20 chance of the light staying off, thus eliminating 6 variables), while manipulating 1
in 20 eliminates only 1.9 on average. In sum, adding more variables increased the number
of participants in the sparse condition who adopted more efficient strategies (i.e., testing
multiple variables) than testing one variable at a time.

Stopping. As in Experiment 1, we again found that some participants (21% overall,
with 23% in the dense and 18% in the sparse condition) chose to perform further tests
after they had identified the broken/working switch (at least from the perspective of an
optimal learner yoked to their choices). With the larger sample size in this experiment
we could further analyze factors that influenced whether or not participants conducted
unnecessary tests. In particular, we were interested in whether observing the outcome of
interest (i.e., the light turning on in the sparse condition or the light not turning on in
the dense condition) influenced people’s stopping decisions. What allowed us to do this
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analysis is that sometimes the working or broken switch can be identified without ever
seeing the relevant outcome, simply by ruling out all other possibilities. The analysis was
conducted separately for the sparse condition (where the relevant outcome was the light
turning on) and the dense condition (the relevant outcome was light not turning on). In the
sparse condition, we found that among participants who, according to an optimal learner,
had identified the correct switch, those who had not yet observed the outcome were more
likely to make additional interventions than those who had activated the working switch
and seen it cause the outcome (6 out of 7, vs. 6 out of 48; Fisher’s exact test 95% CI [3.7,
1947], p < 0.001). However, in the dense condition among those participants with enough
information to identify the broken switch, the group that had not yet tested it were no more
likely to make additional tests than those that had tested it (2 out of 7, vs. 13 out of 31,
Fisher’s exact test, 95% CI [0.05, 4.1], p = 0.68).

Among those participants who stopped before finding the broken switch in the dense
condition, we found relatively little evidence for such “rational guessing”. Only 2 out of 24
of those who stopped before their bonus ran out (while they could still gain from guessing),
did so at a point where it was optimal (that is, guessing was at least as good as continuing).

Discussion. These results provide further evidence that information about sparsity
affects how people intervene on multiple-variable systems. On average, participants in the
sparse group were more likely to manipulate multiple variables at a time, whereas those
in the dense group were more likely to follow a Controlling Variables strategy (Test One).
This replicates the main result from Experiment 1 and qualitatively matches the predictions
of the EIG-optimal actor analysis above. Furthermore, this effect was strongly affected
by the total number of variables in the system. The more switches were presented to
participants (the more sparse the environment in the sparse condition, and the more dense
the environment in the dense condition), the more prominent was sparse participants’ use
of a Test Multiple strategy. Again, this finding is in line with our EIG analysis.

However, this experiment also showed, even more strongly than Experiment 1, that
the Test One strategy is a common choice even for participants in the sparse condition, who
would be better off manipulating multiple variables. In fact, in the 4 and 6 switch condition,
testing one variable was at least as common as testing multiple. Again, this suggests that
in the absence of a strong incentive to do otherwise, many people have a tendency to change
variables individually. We will further address this finding in the following experiments.

Finally, the experiment revealed an interesting pattern in participants’ decisions to
stop or continue making tests once they identified the relevant switch. In the sparse condi-
tion, participants often chose to make such additional tests when they had not yet observed
the light turn on. This finding mirrors research on many other hypothesis-testing tasks sug-
gesting that people have a bias to verify or confirm their hypotheses, even if doing so does
not lead to additional information (e.g., Klayman & Ha, 1987; Nickerson, 1998; Ruggeri et
al., 2016). In causal intervention tasks, such a tendency has specifically manifested itself
in a preference for producing the positive effects (variables turning on) that a particular
hypothesis entails (Coenen et al., 2015; Bramley et al., 2017). Because we did not find
that participants in the dense group tried to create the expected non-effect, this experiment
provides further evidence for this preference to verify positive outcomes in causal systems.
We will continue to address this question in Experiment 4 and the General Discussion.
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Experiment 3 - no sparsity information

Although many subjects automatically switched to a Test Multiple strategy in Ex-
periments 1 and 2, a distinct subset continued to test one variable at a time even in sparse
environments. One possible explanation for this finding is that Controlling Variables acts as
a kind of behavioral default when people are not given any information about the sparsity
of a system. If this is the case, then some participants may have used a Test One strategy
in earlier experiments if they were unsure or did not pay enough attention to the sparsity
instructions. To explore this possibility, Experiment 3 explored what strategy people use to
test a multivariate system when they are offered no explicit expectations about the number
of causes in the instructions. If Test One is indeed people’s default strategy, we would
expect participants to use it when testing under this new condition.

Method

Participants. Fifty-seven participants (35 males; Mage = 36, SDage = 13) were
recruited on Amazon Mechanical Turk.3 Recruitment was restricted to AMT workers within
the United States aged 18 or above. Participants were paid $0.50 for their participation,
with the possibility of earning an additional bonus of up to $1. Approval for this study was
obtained by New York University’s Institutional Review Board (IRB) under the protocol
“Active Learning in Dynamic Task Environments” (IRB-FY2016-231).

Stimuli. Materials were the same as the 6 switch condition of Experiment 2. In a
between-subject design, participants were again randomly assigned to a switchboard that
either had one broken or one working switch.

Procedure. The procedure was the same as in the previous experiment with the
exception that participants were given the same set of instructions in both conditions.
Instead of being told to find the one broken or one working switch, they were instructed
to “find out which switch(es) are working or broken”. After the switch testing phase,
participants were asked to indicate which switch(es) were working or broken, now being
able to make multiple selections.

Results and discussion. In analyzing behavior from this experiment, we focused
on the number of switches manipulated on the first trial of the experiment, which is the
most informative trial to reveal their naive expectations. Analyzing their trial-by-trial
behavior using the classification scheme from earlier experiments was infeasible here, be-
cause it would require knowing participants’ prior beliefs over the number of causes. Fig-
ure 7 shows the proportion of participants that chose to turn on any possible number of
switches on the very first trial. Data is collapsed over both conditions, because the initial
instructions were the same and hence the first trial should not lead to different behav-
iors. The majority of participants (58%) chose to manipulate a single switch, with only
10% manipulating half. The frequency of different numbers of manipulations differs sub-
stantially from the probability of manipulating different numbers of switches at random
[.02, .09, .23, .31, .23, .09.02], χ2(5) = 170, p < .001.

3Based on previous experiments, we had no expectation about people’s behavior in the absence of any
sparsity instructions and we, therefore, decided to use a larger sample size. With an initial goal of 60, the
final number came about through irregular posting of AMT tasks.
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Figure 7 . Experiment 3: Number of switches tested on the first trial after being given
instructions to “find which switch or switches were working or broken.”

This supports the idea that Test One may be many people’s default strategy in the
absence of more specific knowledge about their environment.

Note that an optimal learner initialized with a flat prior over all possible distributions
of working or broken switches also assigns higher Expected Information Gain to testing
one over testing multiple variables. Therefore, preference for Controlling Variables found
in this experiment might be a consequence of participants selecting the most informative
strategy given their knowledge of the system. Similarly, it is possible that participants who
tested variables individually in the sparse condition of earlier experiments, simply ignored
our instructions about the number of causes and acted as if they knew nothing about the
sparsity of the system. If that was the case, their behavior would still be in line with the
optimal actor analysis presented above and not necessarily a consequence of a Test One
“default”.

Experiment 4: repeated interaction with sparse system

Experiment 3 showed that, when they are not offered specific prior information about
sparsity, people have a strong preference for testing variables individually. In Experiment 4,
we want to know to what extent using Test One in sparse conditions of earlier experiments
was driven by a similar lack of knowledge about the system (e.g., a flat prior over all
hypotheses) versus a default bias towards testing variables individually.

To test this, we had participants interact repeatedly with multiple sparse systems.
Unlike Experiment 3, we also gave them the explicit sparsity instruction again (see Appendix
B). This allowed them to learn about sparsity not only through instructions, but also
through direct experience. If people’s use of Test One was due to them doubting (or not
paying attention to) our instructions about sparsity, we expect that direct experience should
mitigate this effect of prior belief and motivate them to develop the optimal strategy over
time. If, on the other hand, some participants have a genuine bias towards Test One, we
expect them to not change their behavior over multiple exposures with sparse systems.

Method

Participants. Thirty-seven participants (26 male; Mage = 25, SDage = 11) were
recruited on Amazon Mechanical Turk4. Recruitment was restricted to AMT workers within

4The choice of sample size was due to an initial goal of 40 participants, 3 of which were not collected
due to the AMT assignments timing out. The initial goal was based on the observation that just under half
of the participants in the sparse conditions of previous experiments used a Test One strategy. Since those
were the participants we were interested in, we decided to collect a little more than double the number of
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the United States aged 18 or above. Participants were paid $1.00 for their participation,
with the possibility of earning an additional bonus of up to $1. Approval for this study was
obtained by New York University’s Institutional Review Board (IRB) under the protocol
“Active Learning in Dynamic Task Environments” (IRB-FY2016-231).

Stimuli. Materials were the same as the sparse condition with six switches in Ex-
periment 2. However, each participant tested five different switchboards sequentially. Each
board had a different color and the order of colors was randomly chosen for each participant.
As before, the working switch of every switchboard was randomly generated.

Procedure. Participants received the same instructions as in the sparse condition
of Experiment 2, with the slight modification that they were told they would be testing five
switchboards, not one. They were still told to expect one working switch per switchboard
and were reminded of this again before interacting with each of the five switchboards. The
final bonus payment was determined by randomly selecting one of the five switchboards at
the end of the task and paying participants the bonus gained from testing it.

Results and discussion.
Performance. Across all switchboards, participants made 3.01 intervention per

board on average and there was no significant increase or decrease with board number
(r = −0.03, n = 185, 95% CI [−0.17, 0.11], p = 0.68). Overall, participants isolated the
correct working switch 88% of the time (from an optimal learner’s perspective). Although
this number was lowest on the very first switchboard (78%), there was no significant overall
effect of board number on the probability of isolating the correct switch (logistic regression
with board number predictor, z = 1.56, 95% CI [−0.06, 0.57], p = 0.12).

Strategy. The crucial question we asked with this experiment was whether partici-
pants who started out using the less efficient Test One strategy would learn over time that
they could be more efficient by manipulating multiple switches. Table 4 shows the detailed
breakdown of the number of participants using each of the strategies defined in the Results
section of Experiment 1. Figure 8A and B shows the number of switches participants manip-
ulated on the first trial of each of the five switchboards, as well as their higher-level strategy
classifications. First, note that the results from the first board (top row) fall somewhere
between the strategy distributions found in Experiment 1 and Experiment 2 (6 switches con-
dition). Although more participants adopted a strategy of changing multiple variables, a
substantial number of participants used a Test One strategy. Second, this pattern remained
remarkably stable as participants interacted with the remaining four switchboards. Even
on the final iteration of the experiment, more than a third of the participants tested vari-
ables one-by-one. The distrubution of strategies did not depend on board number, Fisher’s
exact test p = .96. To check that this pattern holds at the level of individual participants,
consider Figure 8C which compares the number of switches participants manipulated on
the first trial of board 1 and on the first trial of board 5 as a transition heatmap. It shows
that the majority of participants manipulated the same number of switches on the first and
last board (black squares). In fact, of the 14 participants who tested a single variable on
board 1, only one switched to testing half by the time they were interacting with board 5.

Interestingly, there was no significant strategy difference in terms of the number of
tests participants conducted (M = 2.90 for Test Multiple participants, M = 3.06 for Test

participants compared to the cell sizes in Experiments 1 and 2. We had no a priori expectation of propensity
to switch strategies with experience on which to base additional power analyses
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One participants). However, participants who tested multiple variables were more likely to
have isolated the working switch by the time they finished testing (95% compared to 78%,
Fisher’s exact test, p < 0.001). Thus, there was still a clear advantage of using the Test
Multiple strategy, even if it did not reflect in the number of tests people made.

Stopping. As in the previous experiments, participants sometimes conducted ad-
ditional tests after they found the solution. There was a suggestive decreasing trend of the
probability of making further unnecessary tests with board number (logistic regression with
board number predictor, z = −1.93, 95% CI [−.68, 0.006], p = 0.054). While on the first
board, 19% of participants chose to do so, only 5% did so on the final (fifth) board. Overall,
we found that participants were more likely to conduct unnecessary tests when they had
not yet observed the light turn on. They made additional tests on 10 out of 23 of those
trials compared to 11 out of 139 (Fisher’s exact test 95% CI [2.8, 28], p < 0.001). This
replicates the stopping results found in Experiment 2.

Experiment 4 found that people’s strategies remained largely static over multiple
instances of interacting with sparse systems. It therefore further strengthens the finding
that a tendency to control variables can act as a persistent behavioral default. Recall
that, before testing each new switchboard, participants were once again reminded of the
fact that only a single switch was working and their repeated exposure of the task should
have strengthened this belief. Thus, it seems unlikely that, in prior experiments, Test One
participants ignored our prior instructions about sparsity and based their strategy on a flat
prior belief over all possible structures.

Table 4
Detailed strategy use in Experiment 4.

Board no. Pure Test
One

Noisy Test
One

Pure Test
Half

Pure Test
Multiple

Noisy Test
Multiple

Other

board 1 13 0 14 3 3 4
board 2 12 1 15 4 2 3
board 3 14 0 15 4 2 2
board 4 13 0 17 4 1 2
board 5 12 0 13 7 4 1

General Discussion

In this paper, we investigated how people test multivariate causal systems with a
single outcome of interest. Using an optimal actor model, we showed that the most efficient
strategy crucially depends on a learner’s belief about the causal sparsity of the system,
that is, on the density of causes among the total number of variables. When there are
many possible causes, learners are best off adhering to a Controlling Variables principle —
operationalized here as a strategy of turning on variables one-by-one — to isolate the specific
effect of every variable without the confounding influence of the others. If there are only very
few causes among variables, it becomes more beneficial to test multiple variables at once to
narrow down the space of actual causes quickly. Our behavioral experiments investigated
what strategies people use to test multivariate systems and whether their knowledge about
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Figure 8 . Experiment 4 Results. (A) Number of switches turned on during the first trial
of every switchboard (board 1 corresponds to first, board 5 to last switchboard that par-
ticipants interacted with). (B) Strategy classification. Note that the number of Test One
participants remains constant. (C) Number of participants choosing to manipulate a given
number of switches on the first trial of board 1 (x) and board 5 (y). The vast majority used
the same strategy on both boards.

causal sparsity had any effect on their choices. Two main findings emerged from these
experiments.

First, as predicted by the EIG-optimal actor model, participants adapted their be-
havior based on knowledge about the causal sparsity of a system (Experiments 1 & 2).
When causes were sparse (only one cause) they frequently chose to manipulate multiple
(often half of the) candidate variables. In dense tasks (N-1 causes) they were more likely to
test one variable at a time. We also found that increasing the degree of sparsity/density, by
increasing the total number of variables, amplified this effect on people’s strategies, because
it magnifies the benefits of the more effective strategy (Experiment 2). In sparse systems
with more variables, people were more likely to manipulate multiple or half of the variables.

Second, we also found a number of ways in which subjects deviated from the predic-
tions of the EIG analysis. Most strikingly, across all experiments with a sparsity manipula-
tion (i.e., all except Experiment 3), many participants showed a tendency to test variables
one-by-one even if it was more efficient to test multiple variables at once. Even after several
repetitions of the task, those who started testing variables one-by-one were very unlikely
to switch to the more efficient strategy (Experiment 4). We also found that participants
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using either strategy often continued to collect redundant (costly) information after having
already learned enough to know the correct answer. Like in Experiment 2, they were more
likely to do so when they had not yet observed the light turn on, which reveals a particu-
lar preference for collecting confirmatory evidence that has been found in other hypothesis
testing tasks.

In the remainder of this article, we will discuss how these findings contribute to our
understanding of how people should and do approach multivariate systems and how they
shed light on important determinants of strategy use during causal exploration.

Ecological rationality of experimentation strategies

In the educational literature the Controlling Variables principle (here: the Test
One strategy) is treated as a hallmark of scientific thinking and optimal experimenta-
tion (Inhelder & Piaget, 1958; Kuhn et al., 1995; Chen & Klahr, 1999). As we show in
our modeling analyses, this gives an incomplete picture of the right approach to experiment
on multivariate systems. While it is true that controlling variables is the most efficient
strategy under a variety of different assumptions, it is clearly inferior in sparse systems,
especially when there are many variables. Our analysis thus demonstrates the importance
of examining the ecological validity of strategies (Goldstein & Gigerenzer, 2002; Todd &
Gigerenzer, 2012; Ruggeri & Lombrozo, 2015; Parpart et al., 2018), that is, the fit between
a strategy and the environment it is used in.

Taking this ecological perspective allowed us to detect a novel finding with respect to
the adaptive nature of people’s causal experimentation strategies. This finding tallies with
other recent work on causal interventions, which showed that people’s strategy choices were
made adaptively with respect to internal constraints, like cognitive load, and external factors
like the match of a strategy and the task environment. For example, Coenen et al. (2015)
found that people were more likely to choose a simpler, heuristic intervention strategy when
put under time pressure, but adopted the more complex information-maximizing strategy in
an environment that was designed to yield poor results from using the heuristic. The current
finding adds to this result by demonstrating that explicit (instructed) prior knowledge about
the environment can also affect people’s strategies in an adaptive manner.

In finding that sparsity affects behavior, our experiments also add to recent evidence
from a non-causal information search task that manipulated hypothesis sparsity. In a spatial
search task, similar to the game “Battleship”, Hendrickson et al. (2016) gave people different
instructions on the number of tiles on the game board that were taken up by hidden ships.
Participants were then given the option to reveal either a ship tile or a non-ship (i.e.,
water) tile. Participants changed their strategy depending on the prior instructions. When
they expected few ship tiles (sparse hypothesis space) they chose to reveal ship tiles and
when they expected many ship tiles (dense hypothesis space) they chose to see water tiles.
Although their definition of “sparsity” is slightly different than the one used in this paper
(because of the different nature of the two tasks), both papers show how people’s meta-
beliefs about a hypothesis space impact their information seeking behavior.
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Controlling Variables default

The fact that a substantial number of participants chose to test one variable at a time
even in sparse environments was not a finding we anticipated. It is particularly surprising
given the previous literature on scientific experimentation. Teaching children to control
variables has frequently been shown to be a rather arduous task (Chen & Klahr, 1999)
and even adults sometimes have a hard time adopting this strategy (Kuhn et al., 1995).
However, participants in our experiments were not only able to use the strategy successfully
when it maximized information, but they sometimes persistently used it when it did not.
This shows that there is a potential limit to the ecological rationality claim of the previous
section. Whereas the degree of sparsity in the environment had an impact on people’s
initial strategy selection, this selection appears immutable for at least some time, even
when experience should demonstrate that a Test One strategy is inefficient.

We consider a number of explanations for this finding. First, in the education
literature, experimentation strategies are often probed by giving participants a single
forced choice between a non-confounded test (one variable changed) and a confounded test
(multiple variables changed, see Chen & Klahr, 1999; Kuhn & Brannock, 1977). However,
it is less common to allow participants to conduct and observe the results of multiple ex-
periments in sequence, which poses the challenge of interpreting the outcomes of multiple
experiments, integrate them with existing knowledge, and memorize past results (Fernbach
& Sloman, 2009). Because of these additional cognitive requirements, it is possible that the
sequential nature of our experiments motivated a portion of participants to use a strategy
that keeps the demands on storage and integration of evidence manageable. Ruling out
variables one-by-one has an advantage over Testing Half in this respect, since it only re-
quires reasoning about a single variable on every trial. This explanation would be in line
with a recent finding by Bramley et al. (2017), who showed that in more complex and open-
ended causal intervention experiments people have a preference for holding many variables
constant in order to test fewer variables at a time, presumably to minimize cognitive effort.
Note that repeated exposure to different systems, as in Experiment 4, does not change the
fact that Testing Multiple is more effortful, so this interpretation explains the observed
behavior (people not changing strategy even with repetition).

Another contributing factor might be that changing one variable at a time is explicitly
taught in STEM classes as the main method for scientific experimentation (e.g., National
Academy of Sciences, 2013; National Research Council, 1996). It is possible that students
are so well trained in this strategy that they start adopting it as a default for any exper-
imental situation and only alter it if the environment seems particularly unsuitable (e.g.,
when it’s very sparse). If so, the present studies raise the question whether this curriculum
standard might in some cases hinder efficient experimentation by promoting a narrow fo-
cus on the idea of testing variables individually irrespective of the specific situation. This
perspective lines up with recent work arguing that the kind of broad exploration often ex-
hibited by children is actually beneficial for their learning, because it allows them to explore
a wider number of hypotheses, before becoming more targeted in their information search
behavior (e.g., Lucas, Bridgers, Griffiths, & Gopnik, 2014). Also, testing multiple variables
at once can be a reasonable strategy from a purely scientific perspective. For example,
during exploratory research, it is common to change multiple factors and see if any of them
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have an effect on some outcome, before honing in more precisely on the factor(s) that are re-
sponsible. Thus, rather than teaching students a single strategy for designing experiments,
we should offer them a toolbox of strategies and teach them to to choose the right strategy
for their question and prior knowledge about a domain. To substantiate such speculations
about the impact of instruction on the Test One bias, it would be worthwhile to investigate
strategy use in children of different ages and at different stages of their education. The
authors of this paper are currently pursuing this developmental direction using a similar
paradigm to the one used in this paper.

In addition to explicit instruction of the Controlling Variables principle, it is possible
that people learned it autonomously through repeated exposure to systems like the ones
used in our experiments (e.g., switches and lights). Such exposure could have led people to
develop an inductive bias (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010) to expect
that more than one variable (switch) can bring about the relevant outcome (light). If this
assumption was deeply ingrained, encountering five different sparse systems in Experiment
4 may not have been sufficient to override it. Evidence in support of the idea that people
have some prior expectations about causal sparsity comes from a recent study by Strickland,
Silver, and Keil (2016) who show that people have different beliefs about the average number
of causes of an effect depending on the domain. Specifically, participants expected more
causes (e.g., a less sparse environment) in psychological domains, compared to physical
domains. Given that our current experiments are based on a physical system (switches) it
would be interesting to further explore if the default bias towards testing one variable at a
time is exacerbated when variables are psychological states.

Stopping decisions

In addition to deviations from the most efficient strategy, we found that participants
sometimes made additional (costly) tests even if — from the perspective of an optimal
learner — they already had enough information to determine which of the variables could
affect the outcome. Oversampling with respect to the cost structure is not an isolated
finding in information search tasks (e.g., Tversky & Edwards, 1966; Juni, Gureckis, &
Maloney, 2016). However, it is curious that in this task participants were, in principle,
getting no information from their additional tests. A similar result was recently found
in a causal learning version of the Twenty Questions game that required participants to
ask questions or make interventions in order to sequentially narrow down causally relevant
objects (Ruggeri et al., 2016). In this task particularly young children (7-year-olds), but to
lesser degree adults as well, were found to collect additional information when they already
knew enough to make a correct choice.

Our experiments also give at least some indication of the source of this suboptimal
stopping behavior. Importantly, we found that, in the sparse condition, additional tests
were much more likely when a participant had not yet observed the working switch affect
the outcome (i.e., turn on the light), but the same was not the case for the non-working effect
in the dense condition. First of all, this suggests that suboptimal stopping was not merely a
memory effect. If participants conducted extra tests because they forgot about prior ones,
they should have done so irrespective of how many variables one should manipulate in order
to gather information most efficiently. Instead, the fact that participants in the sparse group
sought to confirm the effects of the working switch might be the consequence of a type of
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positive testing strategy, that is, the desire to confirm the expected outcome(s) — here, the
causal effect — predicted by one’s hypothesis. Evidence for this kind of strategy has been
found in different kinds of hypothesis testing experiments in which participants frequently
test instances that can confirm their current hypothesis instead of trying to falsify it (e.g.,
Klayman & Ha, 1987; Wason, 1960; Mckenzie & Mikkelsen, 2000; White, 2009). Recently,
a similar tendency was found in a number of causal learning experiments showing that
participants were particularly likely to intervene on variables that would yield many effects
predicted by a structure that the learner currently considers to be plausible (Bramley et al.,
2017; Coenen et al., 2015). There also exists evidence that people in some cases perceive
the presence of causal effects as more informative (Coenen & Gureckis, 2015) and more
likely (Davis & Rehder, 2017) than non-effects that objectively have the same informational
value or likelihood. Our experiments thus further corroborate this asymmetry of effects and
non-effects.

However, the positive testing we observed was not uniquely indicative of confirmatory
testing. When participants in the dense condition had enough information to identify the
non-working switch, they did not generally confirm this by producing confirmatory case in
which only the broken switch is activated and the effect does not occur (see analyses of
Experiment 2). This is consistent with people having a positive testing strategy (Klayman,
1995; McKenzie, 2004), favoring tests in which their hypothesis predicts a positive outcome
to tests in which their hypothesis predicts a negative outcome.

Complexity

A question we have not yet touched on is how optimal strategies change when some
of the simplifying assumptions about the nature of the causal system no longer hold. For
example, consider dropping the assumption that causes are independent of one another, in
which case there may exist interactions between them (Lucas & Griffiths, 2010; Eberhardt,
Glymour, & Scheines, 2012). In that situation, learners eventually have to test combinations
of variables to ensure they uncover the complete causal structure of a system. Another
possibility is that causes take on more values than present (here: “on”) or not absent
(here: “off”). For example, causes might be disabling (i.e., preventing the outcome from
occurring, see Walsh & Sloman, 2011). In that case, the meaning of controlling a variable
changes from turning it off, to finding a neutral state in which it neither enables nor disables
the outcome. Another complicating factor that often holds in real-world causal systems is
the probabilistic nature of the relationship between causes and outcomes. Compared to
the deterministic case used in this paper, probabilistic causal links can make intervention-
planning much more difficult (e.g. Bramley et al., 2015; Steyvers et al., 2003). In future
work, we hope to explore how people plan strategies to interact with such more complex
multivariate systems.

Conclusions

This paper contributes two sets of findings to our understanding of causal experimen-
tation.

First, the model-based analyses demonstrate that, contrary to some debates in the
education literature, the principle of Controlling Variables (testing variables one-by-one) is
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not always the most efficient strategy for discriminating among multiple causes. Instead, we
show that the causal sparsity of a system determines whether the information-maximizing
strategy is to manipulate few or many variables. Second, our empirical findings highlight
some of the major determinants of self-directed causal learning behavior. They show that, in
line with the optimal actor analysis, learners can adapt their behavior based on knowledge
about abstract features of their environment (here: causal sparsity) when planning causal
experiments. However, our experiments also revealed a tendency towards habitual strategy
use, which might be based on people’s prior learning history, instructions received in the
past, or strong environmental priors. Finally, we found asymmetric preferences for seeking
effects rather than non-effects, which adds to growing evidence that biases found in other
areas of self-directed hypothesis testing also affects causal experimentation.

Acknowledgments. This research was supported by NSF grant BCS-1255538 and a John S.
McDonnell Foundation Scholar Award to TMG.

Appendix A

In addition to the informational analysis presented above, we also considered the
strategy that optimizes the expected payoff over the entire sequence of tests. Assuming
that the cost for making a test and the payoff for finding the correct solution are defined in
advance, this kind of decision problem can be solved via dynamic programming.

Here, we will derive predictions of this optimal planning model for the same basic
example used in the introduction of a system of n binary variables which can be either
(deterministic) causes or non-causes. To simplify the analysis, we only consider the most
extreme cases of a sparse system with a single cause and a dense system with N-1 causes.
These cases also correspond to most of the experiments presented in this paper. We assume
that there exists a cost, c, for conducting each test, as well as a final reward, r, for finding
the correct solution and no reward otherwise. On every trial, a learner must choose from
a set of possible actions, where an action corresponds to either turning on any number
of variables or stopping and guessing the solution, that is a ∈ A = {1, ..., n, stop}. The
state of a learner’s current belief can be summarized as the number of remaining variables
that might be the cause (in the sparse case) or non-cause (in the dense case), that is
x ∈ X = {1, ..., n}. We assume that this belief state is updated after every observation such
that proven (non-)causes are eliminated. The value of a state at trial t is:

Vxt = max
a∈A

U(xt,a), (6)

where the utility for a further test is

Uxt,a 6=stop = Ext+1 [V (xt+1)|a]− c, (7)

and the utility of stopping and guessing is

Uxt,stop = 1
xt
r. (8)

We use this model to compute the optimal solution for the first trial of a sparse (one
cause) system of 4, 6, 10, or 20 variables, with a final reward r = 1 and a sampling cost of
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Table 5
Predictions of the Optimal Planning Model for the First Trial of the Sparse Condition (one
cause).

Number changed: n=4 n=6 n=10 n=20

sparse 2 2, 3, 4 4, 5, 6 8, 9, 10, 11, 12
dense 1 1 1 1

c = r
n . Again, we assume that the learner starts with a uniform belief over which variables

are causes and non-causes. This corresponds to the 8 conditions of Experiment 2. Note
that the solution when n = 6 also applies to Experiments 1 and 4.

Predictions are shown in Table 5. Unlike the myopic EIG model, the optimal planning
strategy for the sparse case includes other methods of dividing the initial hypothesis space,
besides the exact half-split. In these cases, the added risk of needing more interventions to
find the correct solution is offset by the probability of the working switch being part of the
smaller of the two subsets, which speeds up the process of finding it. The optimal solution
for the dense case obviously remains the same as the myopic EIG solution since any test of
more than one variable yields completely uninformative evidence.

In addition to predicting the number of variables to manipulate in a given state,
this model also predicts when a learner should stop making tests altogether. In addition
to the obvious case of having found the solution, it is sometimes possible that it becomes
equally or more valuable to stop earlier and make a guess about the remaining possibilities.
For example, when there are two remaining possibilities, stopping early results in a 0.5
probability of guessing correctly and winning the remaining reward. If this value happens
to be greater than or equal too the remaining reward minus the cost of an additional test,
stopping early is a viable option. Given the same cost structure as Experiment 2, the model
predicts that an optimal actor could stop and guess if no solution is found after 2 tests on
4 switches, 4 tests on 6 switches, 8 tests on 10 switches, and 17 tests on 20 switches. This
holds assuming that, before that point, all tests were optimal (here: testing one variable at
a time).

Appendix B

The following instructions about the sparsity of the system were used in the Mechan-
ical Turk Experiments 2 and 4. In particular participants were instructed twice and tested
once on the number of working or broken switches, before proceeding to the main task. In
the beginning, participants were told (in the dense/sparse condition, respectively):

“On each switchboard, one of the switches is broken/working and all others
are working/broken”.

Then, during the demo phase, they were told again that

“Again, only one of the switches is broken/working, the rest are work-
ing/broken”.

In the quiz, participants were asked:
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“How many of the switches on the switchboard are working?”

They had to answer correctly in order to proceed to the main task.
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