Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
# uncertainty Code and data to accompany the paper: Shravan Vasishth and Andrew Gelman. How to embrace variation and accept uncertainty in linguistic and psycholinguistic data analysis. Linguistics, 59:1311--1342, 2021 doi: https://doi.org/10.1515/ling-2019-0051 Please contact Shravan Vasishth if there are any problems with this repository. The files: - The directory R has some functions that I used in this work. - code contains reproducible code and a compiled pdf file that shows the results of the code. - model has some Stan modeling results that were precomputed (see code). - Paper contains the original paper. Note that it may not compile on your particular machine. To extract R code from the Rmd file (in the code directory), use purl() in the knitr library. <pre> . ├── R │   ├── createStanDat.R │   ├── createStanDatAcc.R │   ├── gen_fake_lnorm.R │   ├── gen_fake_lnorm2x2.R │   ├── gen_fake_norm.R │   ├── magnifytext.R │   ├── multiplot.R │   ├── plotpredictions.R │   ├── plotresults.R │   └── stan_results.R ├── README.md ├── code │   ├── Uncertainty.Rmd │   ├── Uncertainty.pdf │   data │   ├── DillonE1.txt │   ├── JMVV2019replication.Rda │   ├── Lago.csv │   ├── Tucker.RData │   ├── Wagers.Rdata │   ├── agrmt_mismatch.Rda │   ├── bayesfactors.txt │   ├── data_model.Rda │   ├── data_model_dillonrep.Rda │   ├── gibsonwu2012data.txt │   ├── lmer_estimates2.Rda │   ├── lmer_estimates3.Rda │   ├── posteriorsTargetMismatch.Rda │   ├── public_article_data.txt │   ├── remafit.Rda │   ├── smallsamplesestimates.Rda │   └── tvals.Rda ├── model │   └── au_predicted_meansD13rep.Rda └── paper ├── UncertaintyVasishthGelman2021Preprint.Rnw ├── bibio.bib ├── dgruyter.sty You can extract the R code from the Rnw file by typing </pre>
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.