Files | Discussion Wiki | Discussion | Discussion

default Loading...

References list by topic

Menu

Loading wiki pages...

View
Wiki Version:
<p><strong><em>To suggest additional articles for this list, please go to the project <a href="https://osf.io/y5gr9/" rel="nofollow">main page</a> and insert the citation as a comment (see the blue speech-bubble tab in the upper right corner). We will periodically add suggested papers to the main list, below.</em></strong></p> <p><strong>I. RESEARCH METHODS</strong></p> <p><strong>Experimental Design:</strong></p> <p>Collins, L.M., Dziak, J.J., & Li, R. (2009). Design of experiments with multiple independent variables: a resource management perspective on complete and reduced factorial designs. Psychological methods, 14(3), 202. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796056/" rel="nofollow">Fulltext</a></p> <p>Collins, L. M., Baker, T. B., Mermelstein, R. J., Piper, M. E., Jorenby, D. E., Smith, S. S., ... & Fiore, M. C. (2011). The multiphase optimization strategy for engineering effective tobacco use interventions. Annals of behavioral medicine,41(2), 208-226. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053423/" rel="nofollow">Fulltext</a></p> <p>Kover, S.T., & Atwood, A.K. (2013). Establishing equivalence: Methodological progress in group-matching design and analysis. American Journal of Intellectual and Developmental Disabilities, 118, 3-15. <a href="http://www.aaiddjournals.org/doi/abs/10.1352/1944-7558-118.1.3" rel="nofollow">Link</a></p> <p>Mervis, C.B., & Klein-Tasman, B.P. (2004). Methodological issues in group-matching designs: α levels for control variable comparisons and measurement characteristics of control and target variables. Journal of Autism and Developmental Disorders, 34, 7-17. <a href="http://www.aspires-relationships.com/Methodological_Issues_in_Group_Matching_Designs.pdf" rel="nofollow">Fulltext</a></p> <p><strong>General research methods:</strong></p> <p>Martin, J. (1980). A garbage can model of the research process. In J. E. McGrath, J. Martin, & R. A. Kulka, Judgment calls in research (pp. 17–39). Beverly Hills, CA. <a href="http://www.gsb.stanford.edu/faculty-research/working-papers/garbage-can-model-research-process" rel="nofollow">Link</a></p> <p><strong>Multilevel and/or Longitudinal Design:</strong></p> <p>Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within accelerated longitudinal designs. Psychological Methods, 1(3), 236. <a href="http://psycnet.apa.org/journals/met/1/3/236/" rel="nofollow">Link</a></p> <p>Nye, B., Konstantopoulos, S., & Hedges, L. V. (2004). How large are teacher effects?. Educational evaluation and policy analysis, 26(3), 237-257. <a href="http://archives.sau70.org/committees/kindergarten_study/How_Large_Are_Teacher_Effects.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Philosophy of Science:</strong></p> <p>Mayo, D.G., & Spanos, A. (2006). Severe testing as a basic concept in a Neyman-Pearson philosophy of induction. British Journal of the Philosophy of Science, 57, 323-357. <a href="http://www.phil.vt.edu/dmayo/conference_2010/Mayo%20Spanos%20Severe%20Testing%20as%20a%20Basic%20Concept%20in%20NP%20Theory%20of%20Induction.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Power and Sample Size:</strong></p> <p>Bakker, M., van Dijk, A., & Wicherts, J.M. (2012). The rules of the game called psychological science. Perspectives on Psychological Science, 7, 543-554. <a href="http://emilkirkegaard.dk/en/wp-content/uploads/The-Rules-of-the-Game-Called-Psychological-Science.pdf" rel="nofollow">Fulltext</a></p> <p>Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., & Munafo, M.R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365-376. <a href="http://www.montefiore.ulg.ac.be/~lwh/Stats/low-power-neuroscience.pdf" rel="nofollow">Fulltext</a></p> <p>Killip, S., Mahfoud, Z., & Pearce, K. (2004). What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. The Annals of Family Medicine, 2(3), 204-208. <a href="http://www.annfammed.org/content/2/3/204.full" rel="nofollow">Fulltext</a></p> <p>Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling.Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 1(3), 86. <a href="http://dspace.library.uu.nl/bitstream/handle/1874/23635/hox_05_sufficient%20sample%20sizes.pdf?sequence=1" rel="nofollow">Fulltext</a></p> <p>Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling,9(4), 599-620. <a href="http://www.statmodel.com/bmuthen/ED231e/RelatedArticles/Article_097.pdf" rel="nofollow">Fulltext</a></p> <p>Spybrook, J., Raudenbush, S. W., Liu, X. F., Congdon, R., & Martínez, A. (2006). Optimal design for longitudinal and multilevel research: Documentation for the “Optimal Design” software. Survey Research Center of the Institute of Social Research at University of Michigan. <a href="http://www.rmcs.buu.ac.th/statcenter/HLM.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Qualitative Methods:</strong></p> <p>Todd, Z., Nerlich, B., McKeown, S., & Clarke, D. D. (2004). Mixing Methods in Psychology: The Integration of Qualitative and Quantitative Methods in Theory and Practice. Psychology Press. <a href="http://www.amazon.com/Mixing-Methods-Psychology-Integration-Quantitative/dp/0415186501/" rel="nofollow">Link</a></p> <p><strong>Replicable Science and Questionable Research Practices:</strong></p> <p>Brown, S. D., Furrow, D., Hill, D. F., Gable, J. C., Porter, L. P., & Jacobs, W. J. (2014). A Duty to Describe Better the Devil You Know Than the Devil You Don’t. Perspectives on Psychological Science, 9, 626-640. <a href="http://pps.sagepub.com/content/9/6/626.short" rel="nofollow">Link</a></p> <p>Ellemers, N. (2013). Connecting the dots: Mobilizing theory to reveal the big picture in social psychology (and why we should do this). European Journal of Social Psychology, 43, 1-8. <a href="http://onlinelibrary.wiley.com/doi/10.1002/ejsp.1932/abstract;jsessionid=32A854E5EE635738432E978877EC84C1.f04t04?deniedAccessCustomisedMessage=&userIsAuthenticated=false" rel="nofollow">Link</a></p> <p>Fuchs, H.M., Mirjam, J., & Fiedler, S. (2012). Psychologists are open to change, yet wary of rules. Perspectives on Psychological Science, 7, 639-642. <a href="http://www.researchgate.net/profile/Susann_Fiedler/publication/230602906_Psychologists_are_open_to_change_yet_wary_of_rules/links/0c96051c067182406e000000.pdf" rel="nofollow">Fulltext</a></p> <p>John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23, 524-532. <a href="http://www.cmu.edu/dietrich/sds/docs/loewenstein/MeasPrevalQuestTruthTelling.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Self- and Informant Report Methods:</strong></p> <p>Bartoshuk, L.M., Fast, K., & Snyder, D.J. (2005). Differences in our sensory worlds: Invalid comparisons with labeled scales. Current Directions in Psychological Science, 14, 122-125. <a href="http://cdp.sagepub.com/content/14/3/122.short" rel="nofollow">Link</a></p> <p>Vazire, S. (2006). Informant reports: A cheap, fast, and easy method for personality assessment. Journal of Research in Personality, 40, 472-481. <a href="http://www.simine.com/docs/Vazire_JRP_2006.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Validity:</strong></p> <p>Brewer, M. B. (2000). Research design and issues of validity. Handbook of research methods in social and personality psychology, 3-16. <a href="http://wesfiles.wesleyan.edu/courses/PSYC-213-01-clwilkins/week%204/Brewer%202000.pdf" rel="nofollow">Fulltext</a></p> <p>Loevinger, J. (1957). Objective tests as instruments of psychological theory: Monograph Supplement 9. Psychological Reports, 3, 635-694. <a href="http://psycnet.apa.org/psycinfo/1959-03850-001" rel="nofollow">Link</a></p> <p><strong>II. DATA ANALYSIS</strong></p> <p><strong>Uses and Misuses of Statistics:</strong></p> <p>Scarr, S. (1997). Rules of evidence: A larger context for the statistical debate. Psychological Science, 8, 16-17. <a href="http://psych.colorado.edu/~willcutt/pdfs/Scarr_1997.pdf" rel="nofollow">Fulltext</a></p> <p>Savalei, V., & Dunn, E. (2015). Is the call to abandon p-values the red herring of the replicability crisis?. Frontiers in Psychology, 6:245. <a href="http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00245/full" rel="nofollow">Fulltext</a></p> <p><strong>Applied Problems:</strong></p> <p>Cramer, A. O., Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., ... & Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can't like parties if you don't like people. European Journal of Personality, 26(4), 414-431. <a href="http://psychosystems.org/files/Literature/CramerEJP2012.pdf" rel="nofollow">Fulltext</a></p> <p>Hyde, J. S. (1994). Can meta-analysis make feminist transformations in psychology?. Psychology of Women Quarterly, 18, 451-462. <a href="http://psycnet.apa.org/psycinfo/1995-24926-001" rel="nofollow">Link</a></p> <p>van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., ... & Scheffer, M. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87-92. <a href="http://www.pnas.org/content/111/1/87.full" rel="nofollow">Fulltext</a></p> <p>Vazire, S., & Gosling, S. D. (2004). e-Perceptions: personality impressions based on personal websites. Journal of personality and social psychology, 87(1), 123. <a href="http://www.simine.com/docs/Vazire_&_Gosling_JPSP_2004.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Biological Psychology (neuro, geno):</strong></p> <p>Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V., & van der Sluis, S. (2014). A solution to dependency: using multilevel analysis to accommodate nested data. Nature neuroscience, 17(4), 491-496. <a href="http://www.nature.com/neuro/journal/v17/n4/abs/nn.3648.html" rel="nofollow">Link</a></p> <p>Allen, E. A., Erhardt, E. B., & Calhoun, V. D. (2012). Data visualization in the neurosciences: overcoming the curse of dimensionality. Neuron, 74(4), 603-608. <a href="https://www.mrc-cbu.cam.ac.uk/wp-content/uploads/2013/01/Allen_Neuron2012.pdf" rel="nofollow">Fulltext</a></p> <p>Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The neuroscientist, 12(6), 512-523. <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.2709&rep=rep1&type=pdf" rel="nofollow">Fulltext</a></p> <p>Erez, Y., Tischler, H., Moran, A., & Bar-Gad, I. (2010). Generalized framework for stimulus artifact removal. Journal of neuroscience methods, 191(1), 45-59. <a href="http://neurint.ls.biu.ac.il/articles/Erez_Bar-Gad_JNSM_2010.pdf" rel="nofollow">Fulltext</a></p> <p>Franić, S., Dolan, C. V., Borsboom, D., Hudziak, J. J., van Beijsterveldt, C. E., & Boomsma, D. I. (2013). Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling. Psychological methods, 18(3), 406. <a href="http://sanjafranic.com/wp-content/uploads/2013/11/Can-Genetics-Help-Psychometrics-Improving-Dimensionality-Assessment-Through-Genetic-Factor-Modeling.pdf" rel="nofollow">Fulltext</a></p> <p>Logan, J. A., Petrill, S. A., Hart, S. A., Schatschneider, C., Thompson, L. A., Deater-Deckard, K., ... & Bartlett, C. (2012). Heritability across the distribution: An application of quantile regression. Behavior genetics, 42(2), 256-267. <a href="http://wrrp.psy.ohio-state.edu/downloads/logan2012b.pdf" rel="nofollow">Fulltext</a></p> <p>Medland, S. E., Neale, M. C., Eaves, L. J., & Neale, B. M. (2009). A note on the parameterization of Purcell’s G× E model for ordinal and binary data. Behavior genetics, 39(2), 220-229. <a href="http://ibg.colorado.edu/cdrom2012/demoor/ModeratingCovariances/Papers/Medland_2009.pdf" rel="nofollow">Fulltext</a></p> <p>Mills, K. L., & Tamnes, C. K. (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental cognitive neuroscience, 9, 172-190. <a href="http://www.sciencedirect.com/science/article/pii/S1878929314000310" rel="nofollow">Link</a></p> <p>Mumford, J. A. (2012). A power calculation guide for fMRI studies. Social cognitive and affective neuroscience, 7(6), 738-742. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427872/" rel="nofollow">Fulltext</a></p> <p>Mumford, J. A., & Poldrack, R. A. (2007). Modeling group fMRI data. Social cognitive and affective neuroscience, 2(3), 251-257. <a href="http://www.psychology.nottingham.ac.uk/staff/rwn/PDF%20Library/c83snrpdfsimaging_files/groupfmritools.pdf" rel="nofollow">Fulltext</a></p> <p>Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. NeuroImage, 88, 79–90. <a href="http://web.mit.edu/bcs/nklab/media/pdfs/Yendiki_etal_NI2014.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Confidence Intervals:</strong></p> <p>Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods, 10, 389-396. <a href="http://www.researchgate.net/profile/Fiona_Fidler/publication/7378525_Researchers_misunderstand_confidence_intervals_and_standard_error_bars/links/0c96052054c4b56c42000000.pdf" rel="nofollow">Fulltext</a></p> <p>Fidler, F., & Loftus, G.R. (2009). Why figures with error bars should replace p values. Journal of Psychology, 217, 27-37. <a href="http://drsmorey.org/bibtex/upload/Fidler:Loftus:2009.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Dyadic data analysis:</strong></p> <p>Kashy, D. A., & Kenny, D. A. (2000). The analysis of data from dyads and groups. In H.T. Reis & C.M. Judd (Eds.), Handbook of research methods in social psychology (pp. 451-477). New York: Cambridge University Press. <a href="http://psycnet.apa.org/psycinfo/2000-07611-017" rel="nofollow">Link</a></p> <p><strong>Effect Size:</strong></p> <p>Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in medicine, 19(22), 3127-3131. <a href="http://www.aliquote.org/pub/odds_meta.pdf" rel="nofollow">Fulltext</a></p> <p>Hill, C.J., Bloom, H.S., Black, A.R., & Lipsey, M.W. (2008). Empirical benchmarks for interpreting effect sizes in research. Child Development Perspectives, 2(3), 172-177. <a href="http://www.ncaase.com/docs/HillBloomBlackLipsey2007.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Latent Change Score Modeling:</strong></p> <p>Quinn, J. M., Wagner, R. K., Petscher, Y., & Lopez, D. (2014). Developmental Relations Between Vocabulary Knowledge and Reading Comprehension: A Latent Change Score Modeling Study. Child development.</p> <p><strong>Latent Class Analysis:</strong></p> <p>Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural equation modeling, 14(4), 535-569. <a href="http://statmodel2.com/download/LCA_tech11_nylund_v83.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Logistic Models:</strong></p> <p>Azen, R., & Traxel, N. (2009). Using dominance analysis to determine predictor importance in logistic regression. Journal of Educational and Behavioral Statistics, 34(3), 319-347. <a href="http://davidson.lyrasistechnology.org/islandora/object/davidson:11397/datastream/OBJ/download/Determining_the_Relative_Importance_of_Predictors_in_Logistic_Regression__An_Extension_of_Relative_Weight_Analysis.pdf" rel="nofollow">Fulltext</a></p> <p>Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in medicine, 19(22), 3127-3131. <a href="http://www.aliquote.org/pub/odds_meta.pdf" rel="nofollow">Fulltext</a></p> <p>O'Connell, A. A. (2006). Logistic regression models for ordinal response variables (Vol. 146). Thousand Oaks, California:: Sage Publications. <a href="http://www.sagepub.com/textbooks/Book226230" rel="nofollow">Link</a></p> <p>O'Connell, A. A., & McCoach, D. B. (Eds.). (2008). Multilevel modeling of educational data. IAP. <a href="http://books.google.co.uk/books/about/Multilevel_Modeling_of_Educational_Data.html?id=w3cpu92FO_MC" rel="nofollow">Link</a></p> <p>Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. The Journal of Educational Research, 96(1), 3-14. <a href="http://sta559s11.pbworks.com/w/file/fetch/37766848/IntroLogisticRegressionPengEducResearch.pdf" rel="nofollow">Fulltext</a></p> <p>Yelland, L. N., Salter, A. B., Ryan, P., & Laurence, C. O. (2011). Adjusted intraclass correlation coefficients for binary data: methods and estimates from a cluster-randomized trial in primary care. Clinical Trials, 8(1), 48-58. <a href="http://ctj.sagepub.com/content/8/1/48.short" rel="nofollow">Link</a></p> <p><strong>Longitudinal Analysis:</strong></p> <p>Collins, L. M., & Sayer, A. G. (2001). New methods for the analysis of change. American Psychological Association. <a href="http://www.apa.org/pubs/books/4318991.aspx" rel="nofollow">Link</a></p> <p>Hamaker, E. L., Nesselroade, J. R., & Molenaar, P. C. (2007). The integrated trait–state model. Journal of Research in Personality, 41(2), 295-315. <a href="http://www.researchgate.net/profile/Peter_Molenaar/publication/222570476_The_integrated_traitstate_model/links/0046352013bbae528b000000.pdf" rel="nofollow">Fulltext</a></p> <p>Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using Stata. STATA press. <a href="http://www.stata.com/bookstore/multilevel-longitudinal-modeling-stata/" rel="nofollow">Link</a></p> <p><strong>Meta-Analysis</strong></p> <p>Chan, M.E., & Arvey, R.D. (2012). Meta-analysis and the development of knowledge. Perspectives on Psychological Science, 7, 79-92. <a href="http://www.researchgate.net/profile/Richard_Arvey/publication/258180130_Meta-Analysis_and_the_Development_of_Knowledge/links/54432fc90cf2a76a3ccb0ee3.pdf" rel="nofollow">Fulltext</a></p> <p>Davis‐Kean, P. E., & Sandler, H. M. (2001). A meta‐analysis of measures of self‐esteem for young children: A framework for future measures. Child development, 72(3), 887-906. <a href="http://www.education.uci.edu/brownbags/childdevpdk.pdf" rel="nofollow">Fulltext</a></p> <p>Eagly, A. H., & Wood, W. (1994). Using research syntheses to plan future research. In H. M. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 485-500). New York: Russell Sage Foundation. <a href="http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=1993-99100-029" rel="nofollow">Link</a></p> <p>Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American psychologist, 32, 752. <a href="http://psycnet.apa.org/journals/amp/32/9/752/" rel="nofollow">Fulltext</a></p> <p>Tsuji, S., Bergmann, C., & Cristia, A. (2014). Community-Augmented Meta-Analyses Toward Cumulative Data Assessment. Perspectives on Psychological Science, 9, 661-665. <a href="http://pps.sagepub.com/content/9/6/661.full" rel="nofollow">Link</a></p> <p>Wood, W., & Eagly, A. H. (2009). Advantages of certainty and uncertainty. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds)., The handbook of research synthesis and meta-analysis (pp. 455-472). New York: Russell Sage. <a href="http://www.russellsage.org/publications/handbook-research-synthesis-and-meta-analysis-second-edition" rel="nofollow">Link</a></p> <p><strong>Moderation and Mediation:</strong></p> <p>Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. London: Sage.</p> <p>Frazier, P.A., Tix, A.P., & Barron, K.E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51, 115-134. <a href="http://faculty.coe.uh.edu/arbona/courses/epsy8334/Readings/Frazier%20Moderator%20Mediator%2004.pdf" rel="nofollow">Fulltext</a></p> <p>Kraemer, H. C., Kiernan, M., Essex, M., & Kupfer, D. J. (2008). How and why criteria defining moderators and mediators differ between the Baron & Kenny and MacArthur approaches. Health Psychology, 27, S101-108. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376898/" rel="nofollow">Fulltext</a></p> <p>Iacobucci, D., Saldanha, N., & Deng, X. (2007). A meditation on mediation: Evidence that structural equation models perform better than regressions. Journal of Consumer Psychology, 17, 140-154. <a href="http://www.researchgate.net/profile/Xiaoyan_Deng2/publication/251775994_A_Meditation_on_Mediation_Evidence_That_Structural_Equations_Models_Perform_Better_Than_Regressions/links/00b7d52b8abc022a30000000.pdf" rel="nofollow">Fulltext</a></p> <p>Ledgerwood, A., & Shrout, P. E. (2011). The tradeoff between accuracy and precision in latent variable models of mediation processes. Journal of Personality and Social Psychology, 101, 1174-1188. <a href="http://psycnet.apa.org/psycinfo/2011-16399-001/" rel="nofollow">Link</a></p> <p>Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposure–mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological methods, 18(2), 137. <a href="http://europepmc.org/articles/pmc3659198?pdf=render" rel="nofollow">Fulltext</a></p> <p><strong>Multilevel Modeling:</strong></p> <p>Krull, J. L., & MacKinnon, D. P. (1999). Multilevel mediation modeling in group-based intervention studies. Evaluation Review, 23(4), 418-444. <a href="http://ripl.faculty.asu.edu/wp-content/uploads/2013/01/Krull-MacKinnon-1999.pdf" rel="nofollow">Fulltext</a></p> <p>Krull, J. L., & MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate behavioral research, 36(2), 249-277. <a href="http://www.public.asu.edu/~davidpm/classes/publications/2001MultivariateBehavioralResearch.pdf" rel="nofollow">Fulltext</a></p> <p>McCoach, D. B., & Kaniskan, B. (2010). Using time-varying covariates in multilevel growth models. Frontiers in psychology, 1, 17. <a href="http://journal.frontiersin.org/article/10.3389/fpsyg.2010.00017/abstract" rel="nofollow">Fulltext</a></p> <p>Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of educational and behavioral statistics, 23(4), 323-355. <a href="http://isites.harvard.edu/fs/docs/icb.topic1140782.files/S98.pdf" rel="nofollow">Fulltext</a></p> <p>Yelland, L. N., Salter, A. B., Ryan, P., & Laurence, C. O. (2011). Adjusted intraclass correlation coefficients for binary data: methods and estimates from a cluster-randomized trial in primary care. Clinical Trials, 8(1), 48-58. <a href="http://ctj.sagepub.com/content/8/1/48.short" rel="nofollow">Link</a></p> <p><strong>Multiple Regression:</strong></p> <p>Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological methods, 8(2), 129. <a href="http://www.researchgate.net/profile/David_Budescu/publication/10608588_The_dominance_analysis_approach_for_comparing_predictors_in_multiple_regression/links/0c960527085ed14e21000000.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Multivariate Statistics:</strong></p> <p>Tabachnik, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). Boston: Pearson.</p> <p><strong>Scale construction:</strong></p> <p>Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological assessment, 7, 309 - 319. <a href="http://psych.colorado.edu/~willcutt/pdfs/Clark_1995.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Structural Equation Modeling:</strong></p> <p>Ding, L., Velicer, W. F., & Harlow, L. L. (1995). Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling: A Multidisciplinary Journal,2(2), 119-143. <a href="http://www.researchgate.net/profile/Wayne_Velicer/publication/233250439_Effects_of_estimation_methods_number_of_indicators_per_factor_and_improper_solutions_on_structural_equation_modeling_fit_indices/links/09e4150b680e380405000000.pdf" rel="nofollow">Fulltext</a></p> <p>Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological methods, 17(3), 354. <a href="http://psych.colorado.edu/~willcutt/pdfs/Rhemtulla_2012.pdf" rel="nofollow">Fulltext</a></p> <p>Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74. <a href="http://www.researchgate.net/profile/Karin_Schermelleh-Engel/publication/251060246_Evaluating_the_Fit_of_Structural_Equation_Models_Tests_of_Significance_and_Descriptive_Goodness-of-Fit_Measures/links/0c96051ee93e8c1279000000.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Survival Analysis:</strong></p> <p>Singer, J. D., & Willett, J. B. (1993). It’s about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational and Behavioral Statistics, 18(2), 155-195. <a href="http://www.academia.edu/download/30446807/singerwillet.pdf" rel="nofollow">Fulltext</a></p> <p><strong>Test theory:</strong></p> <p>Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. New York: Wadsworth.</p> <p>Embretson, S. E., & Reise, S. P. (2013). Item response theory for psychologists. Psychology Press. <a href="http://www.amazon.co.uk/Item-Response-Theory-Psychologists-Multivariate/dp/0805828192" rel="nofollow">Link</a></p> <p><strong>Publication culture</strong></p> <p>Ledgerwood, A., & Sherman, J.W. (2012). Short, sweet, and problematic? The rise of the short report in psychological science. Perspectives on Psychological Science, 7, 60-66. <a href="http://pps.sagepub.com/content/7/1/60.short" rel="nofollow">Link</a></p> <p><strong>Reporting Practices:</strong></p> <p>Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345, 1502-1505. <a href="http://www.law.nyu.edu/sites/default/files/upload_documents/September%209%20Neil%20Malhotra.pdf" rel="nofollow">Link</a></p> <p>Franco, A., Simonovits, G. & Malhotra, N. (2015). Underreporting in political science survey experiments: Comparing questionnaires to published results. Political Analysis. <a href="http://pan.oxfordjournals.org/content/early/2015/03/22/pan.mpv006.abstract" rel="nofollow">Link</a></p> <p>Kashy, D. A., Donnellan, M. B., Ackerman, R. A., & Russell, D. W. (2009). Reporting and interpreting research in PSPB: Practices, principles, and pragmatics. Personality and Social Psychology Bulletin, 35, 1131-1142. <a href="http://www2.psych.ubc.ca/~schaller/528Readings/KashyDonnellanAckermanRussell2009.pdf" rel="nofollow">Fulltext</a></p> <p><strong>III. BLOGS ABOUT METHODS AND STATISTICS</strong></p> <p>Dorothy Bishop. <a href="http://deevybee.blogspot.co.uk/" rel="nofollow">BishopBlog</a>.</p> <p>Suzi Gage, Kate Button and others. <a href="http://www.theguardian.com/science/sifting-the-evidence" rel="nofollow">Sifting the Evidence</a>.</p> <p><a href="http://www.jesshamrick.com/blog/" rel="nofollow">Jessica Hamrick.</a></p> <p>Åse Kvist Innes-Ker. <a href="http://asefixesscience.wordpress.com/" rel="nofollow">Åse Fixes Science</a>.</p> <p>Deborah Mayo. <a href="http://errorstatistics.com/" rel="nofollow">Error Statistics Philosophy</a>.</p> <p>Sophie Scott. <a href="https://sites.google.com/site/speechskscott/SpeakingOut/arecomediansunusual" rel="nofollow">Speaking Out</a>.</p> <p>Bobbie Spellman. <a href="http://morepops.wordpress.com" rel="nofollow">My Perspectives (on PsychScience)</a></p> <p>Simine Vazire. <a href="http://sometimesimwrong.typepad.com/" rel="nofollow">sometimes i'm wrong</a>.</p>
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.