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Abstract

Algorithmic decision-making systems based on artificial in-
telligence and machine learning are enabling unprecedented
levels of personalisation, recommendation and matching.
Unfortunately, these systems are fallible, and their fail-
ures have costs. I develop a formal model of algorithmic
decision-making and its supervision to explore the trade-
offs between more (algorithm-facilitated) beneficial deci-
sions and more (algorithm-caused) costly errors. The model
highlights the importance of algorithm accuracy and human
supervision in high-stakes environments where the costs of
error are high, and shows how decreasing returns to scale in
algorithmic accuracy, increasing incentives to ’game’ popu-
lar algorithms, and cost inflation in human supervision might
constrain optimal levels of algorithmic decision-making.

Keywords— algorithmic decision-making; data-driven
decision-making; organisational design.

1 Introduction

Algorithmic decision-making systems, including those
based on machine learning and Artificial Intelligence (AI),
are rapidly being adopted across the economy and society,
where they process fast-growing datasets to deliver person-
alised, interactive, ‘smart’ goods and services. Early excite-
ment about the benefits of these systems have started to be
tempered with concerns about their risks, particularly as they
are adopted in highly sensitive domains like health, policing
or education [1]. These concerns include algorithmic fair-
ness when biases in the input data generate discriminatory
decisions [2], potential manipulation of users [3] and ’filter
bubbles’ [4, 5].

But even in the absence of biases in their inputs, ill-intent
on their designers, or emergent, hard to predict effects, al-
gorithms make errors, and these errors have costs. This al-
gorithmic fallibility is behind several recent controversies in
online platforms:

• YouTube advertising controversy: YouTube placed
adverts from global brands on videos with hate speech
and offensive content. [6]

• Facebook video controversy: Facebook did not pre-
vent the diffusion of violent content in its platform. [7]

• Google autocomplete controversy: The search auto-
complete feature directed users looking for information
about the Holocaust to far-right and Nazi websites [8]

This points to an important trade-off between more
(algorithm-facilitated) beneficial decisions and more
(algorithm-caused) costly errors, that should be taken into
account by their designers, users and regulators.
Evidence to manage this societal trade-off is however
lacking, and this explains recent calls for a programme of
research on the impact of algorithmic decision-making “a
practical and broadly applicable social-systems analysis
[that] thinks through all the possible effects of AI systems
on all parties [drawing on] philosophy, law, sociology,
anthropology and science-and-technology studies, among
other disciplines” [11]. Although Economics does not
appear in this list, its emphasis on formalising the analysis
of trade-offs has much to contribute to these important
debates.
In this paper, I pursue this agenda by developing a economic
model of algorithmic decision-making which builds on
past analyses of economic organisations as information-
processing systems composed of unreliable agents, and



particularly on Sah and Stiglitz’s work about the design
of organisational architectures to manage the risks of this
unreliability. [13, 12, 14]
After reviewing this literature in Section 2, I describe
the model in Section 2, using it to explore the following
questions:

• In what scenarios should we leave decisions to algo-
rithms, and how accurate do those algorithms need to
be?

• How can we organise humans and algorithms to
achieve desired outcomes?

• What is the optimal number of decisions that these
decision-making systems can make, and what factors
determine their value?

Section 4 sets out some of the model’s policy and organisa-
tional implications, and Section 5 concludes with a discus-
sion of next steps.

2 Related Work

2.1 Economic agents as information proces-
sors

There is nothing new about the idea that economic agents
and the systems they form act as computers that receive, pro-
cess and communicate information. Hayek, for example, ar-
gued that the market system is superior to socialism because
it uses information from prices to coordinate decentralised
economic decisions, harnessing local pools of knowledge
hard to access for decision-makers at the centre [15]. Tra-
ditional models of firm behaviour and markets (including
the theory of general of equilibrium) describe the economic
problem as a computation of the solution in a optimisation
task [16].
This optimisation is constrained by prices that reflect ma-
terial scarcity of natural resources, labour and capital, but
not by information (which is assumed to be freely accessi-
ble), or by agent’ ability of agents to compute that informa-
tion (which is assumed to be unlimited). Perfect rationality
and infallibility in decision-making follow on from these as-
sumptions [17].
Herbert Simon challenged this view, contending that eco-
nomic actors have limited cognitive and computational capa-
bilities, and that this makes their rationality ’bounded’ rather
than perfect [18]. This means that cognitive resources are
scarce and need to be allocated carefully [19]. One way in

which organisations do this is by developing routines and
heuristics to automate behaviour. This creates an important
economic function for algorithms that encode those routines,
allowing humans to focus on those activities where they have
a comparative advantage.
This analysis also implies that organisations with better ar-
chitectures to process information should outperform oth-
ers. These architectures can be modelled as networks whose
nodes are workers and managers that process information
and make decisions. [20, 21].

2.2 Human fallibility and economic organisa-
tion

In several papers published over the 1980s, Sah and Stiglitz
adopted this approach to compare the economic perfor-
mance of two organisational architectures: hierarchies
(where decision-making requires approval by different lay-
ers in the organisation), and polyarchies (where any one ac-
tor in the organisation can approve a decision) [13, 12].1

Their analysis showed that hierarchies select fewer ’good’
projects, and polyarchies tend to select more ’bad’ projects.
Inventors who generate new projects in a hierarchy will be-
come more risk-averse, potentially making that economic
system less innovative.
Recent expansions of Sah and Stiglitz’s analysis have fo-
cused on the design of complex organisational structures
formed by mixes of hierarchies and polyarchies with the aim
of reducing error [22, 23, 24]. Interestingly, although these
studies explicitly link organisational design problems with
the engineering of reliable technical systems from unreliable
components [25, 26], they do not consider the possibility
that organisational systems might be formed of both human
and non-human components, as I do here.

2.3 The economics of data-driven decisions
and predictions

The ’big data explosion’ has brought with it substantial
interest on the economic impact of data, and on the or-
ganisational structures which complement (algorithmically-
enabled) ’data-driven decision-making’. Past studies have
shown a positive relationship between company perfor-
mance and data-driven decision-making, which is also
strongly complementary to decentralised decision-making
and employee empowerment [9, 10]. One explanation for

1In doing this, they were assessing the relative merits of socialist eco-
nomic systems (hierarchies), and market-based systems (polyarchies).



this is that in data-driven organisations, employees can ac-
cess organisation-wide knowledge to inform their decisions
without having to consult with others (including managers).
However, these studies do not consider in detail how to
organise systems of algorithms and humans for decision-
making.
A recent exception to this is Agrawal et al’s analysis of the
economic impact of AI [27]. There, they define AI as a tech-
nology that increases the supply of predictions, and the num-
ber of risky decisions that an organisation can make. They
consider the complementarity between AI and human judge-
ments about the probability of different pay-offs from de-
cisions, showing that human judgement can be particularly
valuable when it detects negative pay-offs for a risky algo-
rithmic decision, helping to avoid ’bad’ scenarios.

3 The Model

3.1 A single agent makes a decision

We consider an organisation that needs to process informa-
tional inputs, making decisions about their quality. Imagine
for example a list of transactions where some of them are
fraudulent, or a list of news items where some of them are
’fake’. To begin with, there is a single algorithm a1 process-
ing this information.2 The algorithm receives an input and
decides whether to accept it or not. The input can be ’good’
or ’bad’, and the proportion of good inputs in the initial pool
of inputs is α.

The algorithm accepts good inputs with probability p11 (true
positive rate) and bad inputs with probability p12 (false pos-
itive rate). If accepted, good inputs generate a benefit of r1

and bad inputs generate a negative cost of −r2.
The expected value of a decision d1 is:

E(d1) = α p11r1− (1−α)p12r2 (1)

This value is positive if:

α p11

(1−α)p12
>

r2

r1
(2)

This represents a trade off between the risks of an algorith-
mic decision and its expected payoff. It is positive if the
odds of accepting a good input relative to accepting a bad
input outweigh the costs of bad inputs relative to the benefits

2I use the term ‘algorithm’ to refer to technologies that turn informa-
tional inputs into predictions (and depending on the system receiving the
predictions, decisions). There are many processes to do this, including rule-
based systems, statistical systems, machine learning systems and Artificial
Intelligence (AI).

of good inputs. Higher quality inputs and better algorithmic
accuracy, and declines in the cost to benefit ratio improve
the expected value of the decision and the algorithm that en-
ables it. An implication is that algorithms making decisions
in high stake environments (where the cost of an error is
large) should have high accuracy. 3

3.2 Supervision and filtering

Now we consider the situation where a human supervisor a2

enters the picture. The supervisor takes the accepted inputs
from the algorithm with probability t (this represents the fre-
quency of supervision), and processes them with a true pos-
itive rate p21 and a false positive rate p22. From one point of
view, a2 is supervising the decisions of a1. From another, a2

is filtering inputs for a2.4

The expected benefit of a decision d2 is:

E(d2) = αr1(p11t p21 +(1− t)p11)−

(1−α)r2(p12t p22 +(1− t)p12)
(4)

The net contribution of the human supervisor is positive
when the improvement in expected value for d2 outweighs
the increase in costs. When we compare this with her cost
per decision C2(t) we get:

(1−α)r2t p12(1− p22)−αr1t p11(1− p21)>C2(t) (5)

The value of supervision is the benefit of rejecting a bad
input erroneously accepted by the algorithm minus the cost
of rejecting a good input accepted by the algorithm. This
value increases when the pool of projects worsens, when the
algorithm loses accuracy, and when the costs of bad inputs
increases relative to the rewards of good inputs.

3.3 Scale

Organisational profits are:

Π(n) = nE(d2)−C(n) (6)

3This set-up represents a binary classification problem as in [13] where
an organisation processes items of two types. If the organisation was mak-
ing recommendations or match-making, we could consider a measure of
overall accuracy p instead a false positive or false negative rate. Equation 2
would be:

α p
(1−α)(1− p)

>
r2

r1
(3)

Here, the odds of making a correct decision have to be higher than the costs
of making the wrong decision.

4This set-up could be modified to represent a situation where the super-
visor verifies the inputs rejected by an algorithm. We could then compare
the expected value of this design with one where the supervisor checks the
’good’ outputs from the algorithm.



How do they change with n?
When looking at this question, we make the following as-
sumptions: r1, r2 and t do not change with the number of in-
puts, and the human supervisor is a perfect screen (p21 = 1
and p22 = 0). We also assume that changes in the accu-
racy of the algorithm are symmetric: a1 δ p/δn = δ p11/δn
= −δ p12/δn. The true positive rate changes in the opposite
direction of the false positive rate, and at the same rate, as n
grows.
Taking all of this into account:

δE(d2)

δ (n)
= E(d2)+n(

δ p
δn

(αr1 +(1−α)(1− t)r2)+

δα

δn
(r1 p11 + r2 p12(1− t)))

(7)

If the algorithm’s accuracy and the quality of the input pool
α improve with the number of inputs, then supervision
makes a smaller contribution to profits because the number
of false positives checked and fixed by the supervisor de-
clines. The opposite is true if the accuracy of the algorithm
and/or the quality of the input pool α decline with n.
Which set of assumptions is more likely? On the one hand,
new machine learning techniques help algorithms benefit
from large training datasets. On the other, more decisions
can also degrade an algorithm’s accuracy, for example if
they force it to make predictions about unusual and novel
inputs. Further, when an algorithm becomes very popular
(makes more decisions), users might have more reasons to
try to ’game it’, bringing a decline in α .
All this means that returns to scale in algorithmic decision-
making depends on context and change over time in ways
that could be endogenous to the actions of algorithm
designers. Regarding δC/δn:

δC
δn

=
δC

δLa1

δLa1

δn
+

δC
δLa2

δLa2

δn
(8)

Here, the number of inputs verified by the supervisor, n2,
depend on the total number of inputs processed by the al-
gorithm, supervision frequency, the quality of the input pool
and algorithmic accuracy:

δn2

δn
= t

[
(α p1 +(1−α)p2)+

n(
δα

δn
(p11− p12)+

δ p
δn

(2α−1))
] (9)

We refer to it as n′2(p′,α ′).
w1 is the salary of the algorithm developers, and w2 is the
salary of the supervisors. Their respective marginal produc-
tivities are z1 and z2.

δC
δn

=
w1

z1
+

w2

z2
n′2(p′,α ′) (10)

Costs depend on the salaries and marginal productivities of
developers and supervisors, and the number of inputs a1

which the supervisors have to verify. Increases in the quality
of the input pool increases this number, and increases in the
accuracy of the algorithm will increase the workload for a2

if α > 0.5 (in this case, the number of true positives she has
to check grows faster than the decline in true negatives).
Although algorithm developers are likely to be get paid
more than supervisors, their marginal productivity will cor-
respondingly be higher: a single algorithm, or an improve-
ment in an algorithm, can be scaled up over millions of in-
puts. By contrast, supervisors need to check each input in-
dividually. This means that as the number of inputs grows,
supervisor costs could be expected to gain relative impor-
tance, potentially limiting the efficient scale of algorithmic
decision-making.

4 Implications

The model has highlighted some important factors and
dynamics in algorithmic decision-making situations. I
overview some of their implications here:

4.1 Algorithmic decision-making in environ-
ments with different stakes

First, I have shown that algorithms making decisions in sit-
uations where the stakes are high need to be very accurate
to avoid costly failures. By contrast, inaccurate algorithms
might be suitable for situations where the costs of error are
low, or where the quality of the input pool is high.5

This also means that organisations in ‘low-stakes’ envi-
ronments can experiment with novel algorithms, including
some that begin with low-accuracy. As these are improved,
they can be transferred to ‘high stake domains’.6 Algorithms
need to be adopted more carefully in domains where the
costs of errors are high, such as health or the criminal jus-
tice system, and when dealing with groups who are more
vulnerable to algorithmic errors.[1] Only highly accurate al-
gorithms will be suitable for these risky decisions, unless
they are complemented with expensive human supervision
to detect and fix errors. This could create natural limits to
algorithmic decision-making in these domains.

5For example, the recommendation engines in online platforms like
Amazon or Netflix often make irrelevant recommendations, but the cost
of those errors is relatively low – they tend to be simply ignored.

6The technology companies that develop these algorithms often release
them as open source software for others to download and improve, making
these spill-overs possible.



If policymakers want to remove these barriers, they should
invest on R&D to improve algorithmic accuracy, encour-
age the adoption of high-performing algorithms from other
sectors, and experiment with new organisational designs to
identify and remove errors.
Even commercial organisations are not immune to some of
these problems: For example, YouTube has started blocking
adverts in videos with less than ten thousand views in re-
sponse to the controversy highlighted in the Introduction. In
those videos, the benefits of correct algorithmic ad-matching
are low because of their limited audiences, and the average
quality of inputs is low, which creates the risk of posting
adverts against offensive content. Meanwhile, Facebook re-
cently announced that it is hiring 3,000 human supervisors
(almost a fifth of its workforce as of 2016) to moderate con-
tent in its platform.

4.2 The costs and benefits of keeping humans
in the loop

The model shows that human supervision of algorithms can
be costly. The marginal productivity of human supervisors
is likely to be low compared to that of algorithm develop-
ers, potentially constraining the optimal scale for algorith-
mic decision-making (as long as we hold supervision fre-
quency constant).7

One potential strategy to contain these costs is to outsource
supervision to users, for example by providing them with
tools to report low quality inputs. YouTube, Facebook and
Google have all implemented these tools in response to their
algorithmic controversies. However, this is not a risk-free
strategy: delegating content supervisions to users can be
highly detrimental to their experience inside the platform.
Human supervision remains valuable even when the risks
from algorithmic error are low. The reason for this is that it
provides a buffer against sudden declines in organisational
performance if the accuracy of algorithms decreases or the
quality of inputs suffer a negative shock. When this happens,
the number of erroneous decisions detected by humans and
the benefit of fixing them increase. Human supervisors can
also call attention to these ’algorithmic crises’, potentially
helping to identify and address problems more rapidly.
This ’early warning sign’ or homeostatic feature of human
supervision can be particularly important if algorithmic er-
rors create costs with a delay, or costs that are hard to mea-
sure (for example if erroneous recommendations result in

7This situation has similarities with the ’unbalanced growth’ model used
in the analysis of economies composed of fast productivity growth and low
productivity growth sectors [29]

self-fulfilling prophecies, or costs that are incurred outside
the organisation).8

5 Conclusion

5.1 Extending the model

The model could be extended to capture other scenarios:
For example, I have assumed that there is certainty about
benefits and costs, and that these are constant for different
decisions. We could instead model them as a random vari-
able. This would allow us to incorporate algorithmic fairness
and bias into the analysis - If algorithmic errors are more
likely to affect vulnerable groups (who will suffer higher
costs), and these errors are less likely to be detected, this
could increase the expected cost of errors, requiring more
accurate algorithms or more human supervision in these cir-
cumstances.
I also assumed that the benefits (r1) and costs (r2) per deci-
sions do not change as the number of inputs increase. One
could however imagine scenarios where benefits increase
with n (e.g. if an organisation gains market power), or where
the costs of errors increase (e.g. if the organisation and the
errors it makes become more visible). Some of these scenar-
ios might have important implications for our understand-
ing of competitive (and anti-competitive) dynamics in data-
driven markets.
The behaviour of agents who influence the quality of the
input pool is currently exogenous to the model. We could
bring these bahaviours and the incentives that shape them
into the model, and use it to explore how the interactions be-
tween those agents (many of which are also algorithmic!)
and algorithmic decision-makers shape the supply of low
quality informational inputs (spam, scams, fake news, illicit
content etc.) in digital markets.

5.2 Operationalisation

When reviewing the literature, I mentioned previous exten-
sions of Stiglitz and Sah’s work that explored how different
organisational achitectures can be integrated to reduce error.
The model of algorithmic decision-making I have developed
here could be expanded in a similar way.

8For example, in the YouTube advertising controversy, the significant
reputational cost from previous errors was only incurred when brands no-
ticed that their adverts had been posted against offensive content. The
’fake news controversy’ after the US election is another example of hard
to measure costs: algorithms’ inability to discriminate between real news
and hoaxes creates externalities, potentially justifying stronger regulations
and more human supervision.



In addition to shedding light on some important factors and
dynamics in algorithmic decision-making, an effort to oper-
ationalise the model and its extensions with data from spe-
cific domains or organisations could inform the design of
better algorithmic decision-making systems, along the lines
of [24]. There are many opportunities to integrate economic
modelling with experimental and simulation methods as part
of an effort to bring Economics into ongoing analyses of the
impact of algorithms to which, as I have suggested in this
paper, the discipline has much to contribute.
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