[knowledge base]
Diamond Open Access

Test functions and Distributions (Open Mathematics Knowledge Base)

Open Mathematics Collaboration*†

July 23, 2020

Abstract

In this work, we present a list of mathematical results about test functions and distributions theory for future implementation in a digital Open Mathematics Knowledge Base.

keywords: functional analysis, test functions, distributions, pure mathematics, knowledge base

The most updated version of this paper is available at https://osf.io/xne52/download

Introduction

- A. [1–4]
- B. OMKB = Open Mathematics Knowledge Base (see [5])
- C. This article is constantly being updated.
- D. Test functions and Distributions (OMKB) = 108 mathematical entries (67 pages)
- E. 1 entry = notation or definition or proposition or theorem

^{*}All authors with their affiliations appear at the end of this paper.

[†]Corresponding author: sabrinas@icmc.usp.br | Join the Open Mathematics Collaboration

Overview

F. [6]

Important: guidelines for advanced search

- G. In order to maximize the efficiency while using this document, note the following guidelines for **advanced search** in *Acrobat Reader*.
- H. Acrobat Reader \rightarrow Preferences \rightarrow Search \rightarrow Range of words for proximity searches ≈ 10
 - I. Acrobat Reader \rightarrow open the search window \rightarrow advanced settings \rightarrow show more options \rightarrow select a folder where the PDF is located \rightarrow check the proximity box \rightarrow choose match all of the words

#approximate identity #convolution #definition #sequence of functions #test functions space

1. The term approximate identity on \mathbb{R}^n will denote a sequence of functions

$$h_j(x) = j^n h(jx), \ j = 1, 2, \dots,$$

where
$$h \in \mathcal{D}(\mathbb{R}^n), h \geq 0$$
, and $\int_{\mathbb{R}^n} h(x) dx = 1$

#approximate identity #convolution #space of distributions #test functions space #theorem

- 2. If $(h_j)_{j\geq 1}$ is an approximate identity on \mathbb{R}^n , $\phi \in \mathcal{D}(\mathbb{R}^n)$, and $u \in \mathcal{D}'(\mathbb{R}^n)$ \Longrightarrow
 - (a) $\lim_{j\to\infty} \phi * h_j = \phi$ in $\mathcal{D}(\mathbb{R}^n)$
 - (b) $\lim_{j\to\infty} u * h_j = u$ in $\mathcal{D}'(\mathbb{R}^n)$

$\# compact \ subset \ \# notation$

3. K = compact subset

#compact support #continuously differentiable #definition #Fréchet space #test functions space

- 4. Let K be a compact on Ω , $\mathcal{D}_K(\Omega) = \{ f \in C^{\infty}(\Omega) | \operatorname{supp}(f) \subset K \}$
- 5. $\mathcal{D}_K(\Omega)$ is a subspace of $C^{\infty}(\Omega)$
- 6. $\mathcal{D}_K(\Omega)$ is a Fréchet space
- 7. $C_0^{\infty}(\Omega) = \{ f \in C^{\infty}(\Omega) | \operatorname{supp}(f) \text{ is compact and } \operatorname{supp}(f) \subset \Omega \}$

#continuous function #proposition #space of distributions #support of distributions

8. If $f \in C^0(\Omega)$ and $T \in \mathcal{D}'(\Omega) \Longrightarrow \operatorname{supp}(f) = \operatorname{supp}(T_f)$ where $T_f(\phi) = \int_{\Omega} \phi(x) f(x) dx$, for all $\phi \in \mathcal{D}(\Omega)$

#continuous linear mapping #continuously differentiable #notation #test functions space

9. L is a continuous linear mapping of $\mathcal{D}(\mathbb{R}^n)$ into $\mathcal{C}^{\infty}(\mathbb{R}^n)$

#continuous linear mapping #convolution #space of distributions #test functions space #theorem

- 10. If $u \in \mathcal{D}'(\mathbb{R}^n)$ and $L\phi = u * \phi$ with $\phi \in \mathcal{D}(\mathbb{R}^n) \Longrightarrow L$ is a continuous linear mapping of $\mathcal{D}(\mathbb{R}^n)$ into $\mathcal{C}^{\infty}(\mathbb{R}^n)$ which satisfies $\tau_x L = L\tau_x$, with $x \in \mathbb{R}^n$
- 11. If L is a continuous linear mapping of $\mathcal{D}(\mathbb{R}^n)$ into $\mathcal{C}(\mathbb{R}^n)$ which satisfies $\tau_x L = L\tau_x$, with $x \in \mathbb{R}^n \Longrightarrow$ there is an unique $u \in \mathcal{D}'(\mathbb{R}^n)$ such that $L\phi = u * \phi$ with $\phi \in \mathcal{D}(\mathbb{R}^n)$

#continuously differentiable #definition #Fréchet space #support

- 12. $f \in C^k(\Omega) \Leftrightarrow \exists \partial^{\alpha} f$ and it's continuous, $|\alpha| \leq k$
- 13. $f: \Omega \to \mathbb{C}$ continuous, supp $(f) = \overline{\{x \in \Omega : f(x) \neq 0\}}$
- 14. $C^{\infty}(\Omega) = \{f : \Omega \to \mathbb{C} | f \text{ has continuous partial derivatives of all orders} \}$
- 15. $C^{\infty}(\Omega)$ is a Fréchet space with the Heine-Borel property

#continuously differentiable #notation #open subset #partial derivatives #test functions space

- 16. $\Omega \neq \emptyset$ is a nonempty open subset of \mathbb{R}^n
- 17. $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}_+^n$
- 18. $\partial^{\alpha} = \alpha$ -order partial derivatives, with $\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \cdot \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}$, and order $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$
- 19. For any $k = 0, 1, ..., \infty$, let $C^k(\Omega)$ denote the vector space of all k-times continuously differentiable complex-valued functions on Ω
- 20. $f \in C^0(\Omega)$ = continuous function
- 21. $C_0^{\infty}(\Omega)$ or $C_c^{\infty}(\Omega)$ is the set of all test functions on Ω

#continuously differentiable functions #convergence #proposition #sequence #test functions space

- 22. Let $(f_j)_{j\in\mathbb{N}}$ be a sequence on $\mathcal{D}(\Omega)$ and $f_j \longrightarrow 0$ on $\mathcal{D}(\Omega) \iff$
 - (a) $\exists K \subset \Omega$ compact such that $\operatorname{supp}(f_j) \subset K, \ \forall j \in \mathbb{N}$
 - (b) For all α -multi-index, $\partial^{\alpha} f_j \longrightarrow 0$ uniformly on $K, \forall j \in \mathbb{N}$
- 23. If $\Omega_1, \dots, \Omega_m \subseteq \mathbb{R}^n$ are open and $\varphi \in C_0^{\infty} \left(\bigcup_{j=1}^m \Omega_j \right) \Longrightarrow \exists \varphi_j \in C_0^{\infty} \left(\Omega_j \right)$ such that $\varphi = \varphi_1 + \dots + \varphi_m$
- 24. If $\Omega_1, \dots, \Omega_m \subseteq \mathbb{R}^n$ are open and $K \subseteq \bigcup_{j=1}^m \Omega_j \Longrightarrow \exists \varphi_j \in C_0^{\infty}(\Omega_j)$, $\varphi_j \ge 0$, $\sum_{j=1}^m \varphi_j \le 1$ with $\sum_{j=1}^m \varphi_j = 1$ on a neighborhood of K

#continuously differentiable functions #convergence #sequence #test functions space #theorem

- 25. T is a linear mapping of $\mathcal{D}(\Omega)$ into a locally convex space $Y \Longrightarrow$ each of the following properties implies the others
 - (a) T is continuous
 - (b) T is bounded
 - (c) If $\phi_j \longrightarrow 0$ in $\mathcal{D}(\Omega) \Longrightarrow T\phi_j \longrightarrow 0$ in Y
 - (d) The restrictions of T to every $\mathcal{D}_K(\Omega) \subset \mathcal{D}(\Omega)$ are continuous

#continuously differentiable functions #differential operator #proposition #test functions space

26. Every differential operator D^{α} is a continuous mapping of $\mathcal{D}(\Omega)$ into $\mathcal{D}(\Omega)$

#convergence #Heine-Borel property #sequence #test functions space #theorem #topology

- 27. (a) A convex balanced subset $V \subset \mathcal{D}(\Omega)$ is open $\iff V \in \beta$
 - (b) τ_K of any $\mathcal{D}_K(\Omega) \subset \mathcal{D}(\Omega)$ coincides with the subspace topology that $\mathcal{D}_K(\Omega)$ inherits from $\mathcal{D}(\Omega)$
 - (c) If E is a bounded subset of $\mathcal{D}(\Omega) \Longrightarrow E \subset \mathcal{D}_K(\Omega)$ for some $K \subset \Omega$, and $\exists M_N < \infty$ such that every $\phi \in E$ satisfies

$$\|\phi\| \le M_N \ (N = 0, 1, \cdots)$$

- (d) $\mathcal{D}(\Omega)$ has the Heine-Borel property
- (e) If $(\phi_j)_{j\in\mathbb{N}}$ is a Cauchy sequence in $\mathcal{D}(\Omega) \Longrightarrow (\phi_j)_{j\in\mathbb{N}} \subset \mathcal{D}_K(\Omega)$ for some compact $K \subset \Omega$, and

$$\lim_{j,k\to\infty} \|\phi_j - \phi_k\|_N = 0 \ (N = 0, 1, \cdots)$$

- (f) if $\phi_j \longrightarrow 0$ in the topology of $\mathcal{D}(\Omega) \Longrightarrow \exists K \subset \Omega$ compact such that $\operatorname{supp}(\phi_i) \subset K$, and $D^{\alpha}\phi_j \longrightarrow 0$ uniformly as $i \longrightarrow \infty$ for every multi-index α
- (g) In $\mathcal{D}(\Omega)$ every Cauchy sequence converges

#convergence #notation #sequence

28. $\varphi_j \longrightarrow \varphi$ = the sequence φ_j converges to φ

#convergence in distribution #definition #sequences of distributions #test functions space

29.
$$(T_j)_{j\in\mathbb{N}} \subset \mathcal{D}'(\Omega)$$
 and $T \in \mathcal{D}'(\Omega)$. The sequence $T_j \longrightarrow T$ on $\mathcal{D}'(\Omega) \iff T_j(\varphi) \longrightarrow T(\varphi)$ on $\mathbb{C}, \ \forall \varphi \in C_0^{\infty}(\Omega)$

#convergence in distribution #sequences of distributions #theorem

- 30. $(T_j)_{j\in\mathbb{N}} \subset \mathcal{D}'(\Omega)$. If exists $T(\phi) \in \mathbb{R}$ such that $T_j(\phi) \longrightarrow T(\phi)$ for all $\phi \in \mathcal{D}(\Omega) \Longrightarrow T \in \mathcal{D}'(\Omega)$ and $\partial^{\alpha} T_j \longrightarrow \partial^{\alpha} T$ on $\mathcal{D}'(\Omega)$, for all α -multi-index
- 31. $(T_j)_{j\in\mathbb{N}} \subset \mathcal{D}'(\Omega)$ and $(\varphi_j)_{j\in\mathbb{N}} \subset C^{\infty}(\Omega)$. If $T_j \longrightarrow T$ on $\mathcal{D}'(\Omega)$ and $\varphi_j \longrightarrow \varphi$ on $C^{\infty}(\Omega) \Longrightarrow \varphi_j T_j \longrightarrow \varphi T$ on $\mathcal{D}'(\Omega)$

#convergence in test functions space #definition #sequences #test functions space

- 32. $(\varphi_j)_{j\in\mathbb{N}} \subset C_0^{\infty}(\Omega)$ and $\varphi \in C_0^{\infty}(\Omega)$. The sequence $\varphi_j \longrightarrow \varphi$ on $C_0^{\infty}(\Omega)$ if
 - (a) $\exists K \subset \Omega$ compact such that $\operatorname{supp}(\varphi_j) \subset K, \forall j \in \mathbb{N}$
 - (b) $\forall \alpha \in \mathbb{Z}_+^n$, $\partial^{\alpha} \varphi_j \longrightarrow \partial^{\alpha} \varphi$ uniformly

#convergence of test functions #distribution #sequences #test functions space #theorem

- 33. Let $T:C_0^\infty(\Omega)\to\mathbb{C}$ be a linear map. The following properties are equivalent
 - (a) $T \in \mathcal{D}'(\Omega)$
 - (b) If $(\varphi_j)_{j\in\mathbb{N}} \subset C_0^{\infty}(\Omega)$ and $\varphi_j \longrightarrow 0$ on $C_0^{\infty}(\Omega) \Longrightarrow T(\varphi_j) \longrightarrow 0$ (on \mathbb{C})

#convolution #definition #reflection of functions #test functions space #translation of functions

- 34. Let f be a function in \mathbb{R}^n and $x \in \mathbb{R}^n$. The functions $\tau_x f, \widetilde{f} : \mathbb{R}^n \to \mathbb{R}$ are defined by
 - $\tau_x f(y) = f(y x)$, for all $y \in \mathbb{R}^n$
 - $\widetilde{f}(y) = f(-y)$, for all $y \in \mathbb{R}^n$
- 35. If $f \in \mathcal{D}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n \Longrightarrow$
 - (a) $\tau_x f \in \mathcal{D}(\mathbb{R}^n)$
 - (b) $\widetilde{f} \in \mathcal{D}(\mathbb{R}^n)$
- 36. If $x, y, 0 \in \mathbb{R}^n$ and $\tau_x f, \widetilde{f} : \mathbb{R}^n \to \mathbb{R} \Longrightarrow$
 - (a) $\tau_x \tau_y = \tau_{x+y} = \tau_y \tau_x$
 - (b) $(\tau_x f)^{\widetilde{}} = \tau_{-x} \widetilde{f}$
 - (c) $\tau_0 f = f$

#convolution #definition #space of distributions #test functions space #translation

37. $u \in \mathcal{D}'(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$. The function $\tau_x u : \mathcal{D}(\mathbb{R}^n) \to \mathbb{R}$ is defined by $\tau_x u(\phi) = u(\tau_{-x}\phi),$

for all $\phi \in \mathcal{D}(\mathbb{R}^n)$

 $\# convolution \ \# proposition \ \# space \ of \ distributions \ \# translation$

38. If
$$u \in \mathcal{D}'(\mathbb{R}^n) \Longrightarrow \tau_x u \in \mathcal{D}'(\mathbb{R}^n)$$

39. If
$$u \in \mathcal{D}'(\mathbb{R}^n)$$
, $x \in \mathbb{R}^n$, and a multi-index $\alpha \Longrightarrow D^{\alpha}(\tau_x u) = \tau_x(D^{\alpha}u)$

#convolution of a distribution and a continuously differentiable function #definition

40. If $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$, their convolution $(u * \phi)$ is defined by $(u * \phi)(x) = u(\tau_x \widetilde{\phi}),$

for all $x \in \mathbb{R}^n$

#convolution of a distribution and a continuously differentiable function and a test function #theorem

41. Suposse $u \in \mathcal{D}'(\mathbb{R}^n)$ has compact support, $\phi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ and $\psi \in \mathcal{D}(\mathbb{R}^n)$

(a)
$$\tau_x(u * \phi) = (\tau_x u) * \phi = u * (\tau_x \phi)$$
 if $x \in \mathbb{R}^n$

(b) $u * \phi \in C^{\infty}(\mathbb{R}^n)$ and

$$D^{\alpha}(u * \phi) = (D^{\alpha}u) * \phi = u * (D^{\alpha}\phi)$$

for every multi-index α

(c)
$$u * \psi \in \mathcal{D}(\mathbb{R}^n)$$

(d)
$$u * (\phi * \psi) = (u * \phi) * \psi = (u * \psi) * \phi$$

#convolution of a distribution and a test function #definition

42. If $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$, their convolution $(u * \phi)$ is defined by $(u * \phi)(x) = u(\tau_x \widetilde{\phi}),$

for all $x \in \mathbb{R}^n$

#convolution of a distribution and two test functions #theorem #translation

43. If
$$u \in \mathcal{D}'(\mathbb{R}^n)$$
, $\phi, \psi \in \mathcal{D}(\mathbb{R}^n) \Longrightarrow$

(a)
$$\tau_x(u * \phi) = (\tau_x u) * \phi = u * (\tau_x \phi), \forall x \in \mathbb{R}^n$$

(b)
$$(u * \phi) \in C^{\infty}(\mathbb{R}^n)$$
 and

$$D^{\alpha}(u * \phi) = (D^{\alpha}u) * \phi = u * (D^{\alpha}\phi)$$

for every multi-index α

(c)
$$u * (\phi * \psi) = (u * \phi) * \psi$$

#convolution of a locally integrable function and a test function #definition

44. If f is a locally integrable function and $g \in \mathcal{D}(\mathbb{R}^n) \Longrightarrow (46)$ can be written as

$$(f * g)(x) = f(\tau_x \widetilde{g})$$

#convolution of complex functions #definition

45. If f and g are complex functions in \mathbb{R}^n , their convolution f * g is defined by

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy,$$

for all $x \in \mathbb{R}^n$

46. If f and g are as $(45) \Longrightarrow$

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)\widetilde{g}(y - x)dy = \int_{\mathbb{R}^n} f(y)\tau_x\widetilde{g}(y)dy,$$

for all $x \in \mathbb{R}^n$

#convolution of distributions #Dirac measure #support of distributions #theorem

47. $u, v, w \in \mathcal{D}'(\mathbb{R}^n)$

- (a) If at least one u, v has compact support $\Longrightarrow u * v = v * u$
- (b) If supp(u) and supp(v) and if at least one of these is compact $\Longrightarrow supp(u * v) \subset supp(u) + supp(v)$
- (c) If at least two of the supports supp(u), supp(v), supp(w) are $compact \Longrightarrow (u * v) * w = u * (v * w)$
- (d) If δ is the Dirac measure and a multi-index $\alpha \Longrightarrow D^{\alpha}u = (D^{\alpha}\delta)*u$
- (e) If at least one of the sets supp(u), supp(v) is compact \Longrightarrow $D^{\alpha}(u * v) = (D^{\alpha}u) * v = u * (D^{\alpha}v)$, for every multi-index α

#convolution of two distributions and a test function #definition #support of distributions

48. If $u, v \in \mathcal{D}'(\mathbb{R}^n)$, and at least one of these two distributions has compact support, define

$$L\phi = u * (v * \phi), \ \phi \in \mathcal{D}(\mathbb{R}^n)$$

definition # derivative de a distribution # space of distributions

49. Let α be a multi-index and $T \in \mathcal{D}'(\Omega)$. The formula defines the α -th derivative of T

$$(D^{\alpha}T)(\phi) = (-1)^{|\alpha|}T(D^{\alpha}\phi),$$

$$\forall \phi \in \mathcal{D}(\Omega)$$

definition # Dirac measure # distribution of infinite order

50. The Dirac measure δ is the distribution defined by

$$<\delta, \phi> = \delta_0(\phi) = \phi(0),$$

for every $\phi \in \mathcal{D}(\Omega)$

51. $I = (0,1) \subset \mathbb{R}$. T is a distribution of infinite order defined by

$$T(\phi) = \sum_{j=1}^{\infty} \phi^{(j)} \left(\frac{1}{j}\right),\,$$

 $\phi \in \mathcal{D}(\Omega)$.

#definition #distribution #locally integrable function #test functions space

52. Let $f \in L^1_{loc}(\Omega)$ be a function defined on $\Omega \subset \mathbb{R}^n$. We associate with f a distribution $T_f : \mathcal{D}(\Omega) \to \mathbb{R}$ defined by

$$\langle T_f, \phi \rangle = T_f(\phi) = \int_{\Omega} f(x)\phi(x)dx,$$

 $\forall \phi \in \mathcal{D}(\Omega)$

definition # distribution # multiplication of a continuously differentiable function and a distribution

53.
$$f \in C^{\infty}(\Omega)$$
 and $T \in \mathcal{D}'(\Omega)$. The distribution $fT : \mathcal{D}(\Omega) \to \mathbb{R}$ is defined by
$$(fT)(\phi) = T(f\phi),$$
 $\forall \phi \in \mathcal{D}(\Omega)$

#definition #Fréchet space #F-space #Heine-Borel property

- 54. (X,τ) is a F-space if τ is induced by a complete invariant metric d
- 55. (X,τ) is a Fréchet space if X is a locally convex F-space
- 56. (X, τ) has the Heine-Borel property if every closed and bounded subset of X is compact

#definition #Fréchet space #test functions space # topology

- 57. Let Ω be a nonempty open set in \mathbb{R}^n
 - (a) For every compact $K \subset \Omega$, τ_K denotes the Fréchet space topology of $\mathcal{D}_K(\Omega)$
 - (b) β is the collection of all convex balanced sets $W \subset \mathcal{D}(\Omega)$ such that $\mathcal{D}_K(\Omega) \cap W \in \tau_K$ for every compact $K \subset \Omega$
 - (c) τ is the collection of all unions of sets of the form $\phi + W$, with $\phi \in \mathcal{D}(\Omega)$ and $W \in \beta$

#definition #locally integrable function #test functions space

58.
$$L^1_{loc}(\Omega) = \{ f : \Omega \to \mathbb{C} \mid f\varphi \in L_1(\Omega), \forall \varphi \in C_0^{\infty}(\Omega) \}$$

#definition #space of distributions #support of distributions #test functions space #vanishes

- 59. $T \in \mathcal{D}'(\Omega)$, T vanishes in $\widetilde{\Omega} \iff \widetilde{\Omega}$ is an open of Ω and $T(\phi) = 0$ for every $\phi \in \mathcal{D}(\Omega)$
- 60. Let Υ be the union of all open $\widetilde{\Omega} \subset \Omega$ in which T vanishes. The support of T is defined by

$$\mathrm{supp}(T) = \Omega - \Upsilon$$

61. The supp(T) is a closed set

#definition #test functions space

- 62. $\phi \in \mathcal{D}(\Omega) \iff \phi \in C_0^{\infty}(\Omega)$ and $\operatorname{supp}(\phi)$ is a compact subset of Ω
- 63. $\mathcal{D}(\Omega)$ is not metrizable

64.
$$\mathcal{D}(\Omega) = \bigcup_{K \subset \Omega} \mathcal{D}_K(\Omega)$$

#derivative de a distribution #notation

65. $D^{\alpha}T$ = the α -th distributional derivative of T

Dirac measure # notation # open interval

66. $\delta = \text{the Dirac measure}$

67. I = (0,1) is an open interval on \mathbb{R}

#distribution #derivative de a distribution #derivative de a locally integrable function #proposition

68. If
$$T \in \mathcal{D}'(\Omega) \Longrightarrow D^{\alpha}T \in \mathcal{D}'(\Omega)$$

- 69. If $f \in L^1_{loc}(\Omega)$ and $D^{\alpha}f$ also exists in the classical sense and is locally integrable $\Longrightarrow D^{\alpha}f$ is also distribution
- 70. $T_{D^{\alpha}f}(\phi) = \int_{\Omega} \phi(x)(D^{\alpha}f)(x)dx$, for all $\phi \in L^{1}_{loc}(\Omega)$ and $T_{D^{\alpha}f} \in \mathcal{D}'(\Omega)$
- 71. If f has continuous partial derivatives of all orders up to N and $|\alpha| \leq N$ $\Longrightarrow D^{\alpha}T_f = T_{D^{\alpha}f}$
- 72. Any distribution has derivatives of all orders.
- 73. $T \in \mathcal{D}'(\Omega)$ and for all $j, k \in \mathbb{N}$,

$$\frac{\partial^2 T}{\partial x_i \partial x_k} = \frac{\partial^2 T}{\partial x_k \partial x_i}$$

#distribution #linear functional #space of distributions #test functions space #theorem

- 74. If T is a linear functional on $\mathcal{D}(\Omega) \Longrightarrow$ the following conditions are equivalent
 - (a) $T \in \mathcal{D}'(\Omega)$
 - (b) To every compact $K \subset \Omega$, $\exists N > 0$ and $C < \infty$ such that

$$|T(\phi)| \le C \|\phi\|_N$$

holds for every $\phi \in \mathcal{D}_K(\Omega)$

#distribution #locally integrable function #proposition #space of distributions

75. T is a distribution on $\Omega \iff T \in \mathcal{D}'(\Omega)$

76.
$$L^1_{loc}(\Omega)$$
 is a subspace of $\mathcal{D}'(\Omega)$

#distribution #locally integrable functions #space of distributions #test functions space #proposition

- 77. If $f, g \in L^1_{loc}(\Omega)$ and $T_f(\phi) = T_g(\phi)$, $\forall \phi \in C_0^{\infty}(\Omega) \Longrightarrow f = g$ almost everywhere on Ω
- 78. If $T \in \mathcal{D}'(\Omega)$ such that $T(\varphi) \ge 0$ for all $\varphi \in C_0^{\infty}(\Omega)$, $\varphi \ge 0 \Longrightarrow T$ is a positive measure

#distribution #multiplication of a continuously differentiable function and a distribution #proposition

79. If $f \in C^{\infty}(\Omega)$ and $T \in \mathcal{D}'(\Omega) \Longrightarrow fT \in \mathcal{D}'(\Omega)$

#distribution #space of distributions #test functions space #theorem

80. $T \in \mathcal{D}'(\Omega) \iff T : \mathcal{D}(\Omega) \to \mathbb{C}$ is a linear map and for every compact $K \subseteq \Omega$, $\exists C_K > 0, N_K \in \mathbb{Z}_+$ such that

$$|T(\phi)| \le C_K \sum_{|\alpha| \le N_K} \sup_{x \in K} |\partial^{\alpha} \phi(x)|,$$

$$\forall \phi \in \mathcal{D}_K(\Omega)$$

distributions as derivatives # space of distributions # theorem

81. If $T \in \mathcal{D}'(\Omega)$ and K is a compact of $\Omega \Longrightarrow \exists f \in C^0(\Omega)$ and a α multi-index such that

$$T(\phi) = (-1)^{|\alpha|} \int_{\Omega} f(x) (D^{\alpha} \phi)(x) dx,$$

for every $\phi \in \mathcal{D}_K(\Omega)$

#distributions as derivatives #space of distributions #support #theorem

82. Let K be a compact, $\widetilde{\Omega}$ and Ω are open in \mathbb{R}^n , and $K \subset \widetilde{\Omega} \subset \Omega$. If $T \in \mathcal{D}'(\Omega)$, $K = \operatorname{supp}(T)$, and T has order $N \Longrightarrow \exists f_{\beta}$ continuous functions in Ω (one for each multi-index β with $\beta_i \leq N+2$ for $i=1,\dots,n$) with supports in $\widetilde{\Omega}$, such that

$$T = \sum_{\beta} D^{\beta} f_{\beta}$$

83. If T is as (82) and $\phi \in \mathcal{D}(\Omega) \Longrightarrow$

$$T(\phi) = \sum_{\beta} (-1)^{|\beta|} \int_{\Omega} f_{\beta}(x) (D^{\beta} \phi)(x) dx$$

#distributions as derivatives #space of distributions #support #theorem

- 84. $T \in \mathcal{D}'(\Omega)$ and $\exists g_{\alpha}$ continuous functions on Ω , one for each multi-index α , such that
 - (a) each compact $K \subset \Omega$ intersects the supports of only finitely many g_{α}

(b)
$$T = \sum_{\alpha} D^{\alpha} g_{\alpha}$$

If T has finite order \Longrightarrow the functions g_{α} can be chosen so that only finitely many are different from 0

#functions space #locally integrable function #measurable #proposition

- 85. $f \in L^1_{loc}(\Omega) \iff f : \Omega \to \mathbb{C}$ is measurable and $f|_K \in L_1(K), \forall K \subset \Omega$, K compact
- 86. $f: \Omega \to \mathbb{C}$ is measurable $\iff \operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are measurable
- 87. $X \neq \emptyset, g: X \to \mathbb{R}$. Let g be Lebesgue measurable $\iff \{x \in X : g(x) > \alpha\}$ is measurable $\forall \alpha \in \mathbb{R}$
- 88. $\int_K |f| dx < +\infty, \forall K \subset \Omega, K \text{ compact} \iff \int_{\Omega} |f\varphi| dx < +\infty, \forall \varphi \in C_0^{\infty}(\Omega)$
- 89. $f\varphi \in L_1(\Omega) \iff \int_{\Omega} |f\varphi| dx < +\infty$

#functions space #locally integrable function #notation

90.
$$Re(f)$$
 = the real part of f

91.
$$Im(f) = the imaginary part of f$$

92.
$$L^1_{loc}(\Omega)$$
 = the set of all locally integrable functions on Ω

93.
$$L_1(\Omega)$$
 = the function space defined using the 1-norm $||f|| \equiv \left(\int_{\Omega} |f| dx\right) < +\infty$

#local base #locally convex #test functions space #theorem #topology

- 94. (a) τ is a topology on $C_0^{\infty}(\Omega)$ and β is a local base of τ
 - (b) $(C_0^{\infty}(\Omega), \tau)$ is a locally convex topological vector space

#local base #locally convex #test functions space #theorem #topology

- 95. τ is a topology in $\mathcal{D}(\Omega)$ and β is a local base for τ
- 96. τ makes $\mathcal{D}(\Omega)$ into a locally convex topological vector space

#natural numbers #non-negatives integers #notation #real numbers

- 97. \mathbb{N} = the set of natural numbers
- 98. \mathbb{Z}_{+} = the set of non-negative integers numbers
- 99. \mathbb{R} = the set of real numbers

$\# notation \ \# sequence$

100. $(\varphi_j)_{j\in\mathbb{N}}=$ a sequence

#notation #space of distributions

101. $\mathcal{D}'(\Omega)$ = the continuous dual space of $C_0^{\infty}(\Omega)$ with the topology of uniform convergence on bounded subsets of $C_0^{\infty}(\Omega)$ (space of distributions on Ω) for all $j \in \mathbb{N}$

$\# notation \ \# support$

102. supp (f) = the support of f

$\# notation \ \# test \ functions \ space$

103. $\mathcal{D}(\Omega)$ = The test functions space

#notation #topological vector space

104. (X, τ) = topological vector space with topology τ

support of a distribution # support of a test function # theorem

105. $T \in \mathcal{D}'(\Omega)$ and $\phi \in \mathcal{D}(\Omega)$

- (a) If $supp(\phi) \cap supp(T) = \emptyset \Longrightarrow T(\phi) = 0$
- (b) If $supp(T) = \emptyset \Longrightarrow T = 0$
- (c) If $\psi \in C^{\infty}(\Omega)$ and $\psi = 1$ in some open set V containing supp $(T) \Longrightarrow \psi T = T$
- (d) If $\operatorname{supp}(T)$ is a compact subset of $\Omega \Longrightarrow \exists \psi \in \mathcal{D}(\Omega)$ such that $\psi = 1$ in some open set containing $\operatorname{supp}(T)$
- (e) If supp(T) is a compact subset of $\Omega \Longrightarrow T$ has finite order. Further, T extends in an unique way to a continuous linear functional on $C^{\infty}(\Omega)$

#support of distributions #theorem

106. If $T \in \mathcal{D}'(\Omega)$, $p \in \Omega$, supp $(T) = \{p\}$, and T has order $N \Longrightarrow \exists c_{\alpha}$ constants such that

$$T = \sum_{|\alpha| \le N} c_{\alpha} D^{\alpha} \delta_p,$$

where δ_p is the evaluation functional defined by $\delta_p(\phi) = \phi(p)$

107. Every distribution the form

$$T = \sum_{|\alpha| \le N} c_{\alpha} D^{\alpha} \delta_p,$$

has $\{p\}$ for its support (unless $c_{\alpha} = 0$ for all α)

support of distributions # theorem # vanishes

108. If Υ is as (60) $\Longrightarrow T$ vanishes in Υ

Open Invitation

Please *review* this article, *add* content, co-author, and *join* the **Open Mathematics Collaboration**. Contact sabrinas@icmc.usp.br.

Open Science

The **latex file** for this paper together with other *supplementary files* are available [6].

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [7] following the structure from [5], please cite it accordingly [8]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

Acknowledgement

- + Center for Open Science https://www.cos.io
- + Open Science Framework https://osf.io

References

- [1] Hounie, Jorge. Teoria elementar das distribuicoes: (12e coloquio brasileiro de matematica, pocos de caldas 1979). Instituto de Matematica Pura e Aplicada, 1979.
- [2] Hörmander, Lars. The analysis of linear partial differential operators I: Distribution theory and Fourier analysis. Springer, 2015.

- [3] Rudin, Walter. Functional analysis. Internat. Ser. Pure Appl. Math, 1991.
- [4] Treves, François. Topological vector spaces, distributions and kernels. Acad. Press, New York, 1967.
- [5] Lobo, Matheus P. "Open Mathematics Knowledge Base." *OSF Preprints*, 28 Jun. 2020. https://doi.org/10.31219/osf.io/evq8a
- Matheus Р. "Open [6] Lobo, Journal of Mathemat-Physics (OJMP)." OSF, 21 and Apr. 2020. ics https://doi.org/10.17605/OSF.IO/6HZYP
- [7] COS. Open Science Framework. https://osf.io
- [8] Calcina, Sabrina G. S. "Test Functions and Distributions (open Mathematics Knowledge Base)." OSF Preprints, 23 July 2020. https://doi.org/10.31219/osf.io/xne52

The Open Mathematics Collaboration

Sabrina Graciela Suárez Calcina (lead author, sabrinas@icmc.usp.br)¹ https://orcid.org/0000-0001-6025-8685

Matheus Pereira Lobo (mplobo@uft.edu.br) 2,3 https://orcid.org/0000-0003-4554-1372

¹Universidade de São Paulo-ICMC (Brazil)

²Federal University of Northern Tocantins (Brazil)

³Universidade Aberta (UAb, Portugal)