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Abstract 

Many famous scientists have reported anecdotes where a new understanding occurred to them 

suddenly, in an unexpected flash. Do people generally experience such “Eureka” moments 

when learning science concepts? And if so, do they truly receive sudden insights when 

experiencing Eureka moments, or is this impression illusory? To address these questions, we 

developed a paradigm where participants were taught the mathematical concept of geodesic, 

which generalizes the common notion of straight line to straight trajectories drawn on curved 

surfaces. After studying lessons introducing this concept on the sphere, participants (N=56) 

were tested on their understanding of geodesics on the sphere and on other surfaces. Our 

findings indicate that Eureka experiences are common when learning mathematics, with 

reports by 34 (61%) participants. Moreover, Eureka experiences proved an accurate 

description of participants’ learning, in two respects. First, Eureka experiences were 

associated with learning and generalization: the participants who reported experiencing 

Eureka’s performed better at identifying counterintuitive geodesics on new surfaces. Second, 

and in line with the first-person experience of a sudden insight, our findings suggest that the 

learning mechanisms responsible for Eureka experiences are inaccessible to reflective 

introspection. Specifically, reports of Eureka experiences and of participants’ confidence in 

their own understanding were associated with different profiles of performance, indicating 

that the mechanisms bringing about Eureka experiences and those informing reflective 

confidence were at least partially dissociated. Learning mathematical concepts thus appears to 

involve mechanisms that operate unconsciously, except when a key computational step is 

reached and a sudden insight breaks into consciousness. 

Keywords 

Insight, Concept learning, Geometrical cognition, Eureka moment, Aha! moment, 

Mathematical cognition, Reflective introspection, Consciousness.  
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Introduction 

Learning new concepts is difficult and protracted, especially in science (Brock, 2017; Carey, 

2009; Chi, 2008; diSessa, 2014; Ohlsson, 2009; Özdemir & Clark, 2007; Vosniadou, 2019; 

for some examples of long-term longitudinal studies see Blown & Bryce, 2006; Brock & 

Taber, 2020; Clark, 2006). Hence, even after several years of formal instruction, a substantial 

proportion of university students continue to fundamentally misunderstand key concepts from 

e.g. Newtonian mechanics (Caramazza, McCloskey, & Green, 1981; Clement, 1982b), 

biology (Dar-Nimrod & Heine, 2011; Shtulman, 2006), physics (Burgoon, Heddle, & Duran, 

2011; Cohen, Eylon, & Ganiel, 1983), or mathematics (Clement, 1982a; Graeber, Tirosh, & 

Glover, 1989; for a recent review on persisting misconceptions in science, see Shtulman & 

Walker, 2020). To take an illustrative example in mathematics, many middle-schoolers fail to 

add, subtract, multiply or compare two fractions, or to place simple fractions on number lines 

(Jordan et al., 2016; Resnick et al., 2016; for similar difficulties in adults, see Post & Harel, 

1991; Schneider & Siegler, 2010) – this despite the fact that fractions are typically introduced 

in 4th grade. Furthermore, many children, adolescents and even adults fail to apprehend that, 

unlike Integers, fractions form a dense set, i.e. there are infinitely many fractions between any 

two fractions (Smith, Solomon, & Carey, 2005; Vamvakoussi & Vosniadou, 2010; for a 

review see Vosniadou, Vamvakoussi, & Skopeliti, 2008). After years of study, these students 

thus are still at a loss with properties at the core of the concept of rational numbers. 

Why is concept learning so fallible, and what happens during these long periods of time? 

Most authors agree that students progress towards a better understanding little by little, in a 

gradual manner (Carey, 2009; diSessa, 2014; Nussbaum, 1989; Ohlsson, 2009; Özdemir & 

Clark, 2007; Posner et al., 1982; Thornton, 1997; Vosniadou, 2002). Under this assumption, 

learning could be slow for several reasons: for instance, the number of incremental steps to 

complete could be very large, learners may often err in wrong directions instead of 
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progressing towards a more accurate understanding, and/or progress may be fragile. Hence, 

children may find support for their intuitive (and wrong) conceptions in their everyday 

experience (Shtulman, 2022), with experience thus acting as a counterforce constantly 

undoing the progress achieved in class. Alternatively, or perhaps in complement to 

incremental learning, learners may need to go through discrete leaps of understanding in order 

to acquire difficult science concepts (Clement, 1989; Gilbert & Watts, 1983) – perhaps 

suggestively, many theorists of conceptual change (including contenders of gradual learning) 

have described key learning requirements in terms of qualitative shifts (Carey, 2009; Chi, 

2008; Ohlsson, 2009; Posner et al., 1982; Vosniadou et al., 2008). If this second suggestion 

holds, learning scientific concepts could be particularly long and fallible because the 

processes bringing about discrete leaps of understanding are themselves extremely fallible: 

they rarely complete successfully, imposing a bottleneck at key learning steps. 

Are scientific concepts sometimes acquired in discrete leaps? In the making of science at 

least, conceptual progress sometimes feels discrete. For instance, the mathematician Henri 

Poincaré described his astounding discovery of the Fuchsian functions in these terms: “At the 

moment when I put my foot on the step, the idea came to me, without anything in my former 

thoughts seeming to have paved the way for it (...). I did not verify the idea; I should not have 

had time, (...) but I felt a perfect certainty.” (Poincaré, 1946). Like Poincaré, many scientists 

recounted episodes where a new understanding occurred to them suddenly, in an unexpected 

flash. To cite but a few, Gauss, Kekulé, and Helmholtz also reported such “Eureka 

experiences” leading to major advances in mathematics, chemistry, or physics (Clement, 

1989; Gruber, 1995; Hadamard, 1954; Horvitz, 2002).  

Eureka experiences are not reserved to privileged minds. Psychologists have identified a 

number of tasks, amongst them the famous Gestaltists’ “insight problems”, which often raise 

experiences similar to Poincaré’s Eureka on Fuchsian functions (Ohlsson, 1984; Webb, Little, 
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& Cropper, 2018). Specifically, when participants solve these tasks, they produce the full 

solution at once rather than elaborating it progressively (Kaplan & Simon, 1990; Maier, 

1931); they are not aware that they are approaching the solution, even seconds before solving 

the problem (Laukkonen et al., 2021; Metcalfe, 1986a, 1986b; Metcalfe & Wiebe, 1987); and 

moreover, the solution found is immediately perceived as correct and relevant (Danek & 

Wiley, 2017; Gick & Lockhart, 1995; Laukkonen et al., 2020). Importantly, and unlike the 

episodes recounted in scientists’ memoires years after the discoveries were made, the 

conclusions of this research are based on measures collected while the participants were 

engaged in solving an experimental task, thus establishing the existence of Eureka 

experiences and their causal relation with the tasks at hand on a firm experimental ground. 

While Eureka experiences have now been proven to arise in a range of contexts (e.g. Bowden 

et al., 2005; Danek et al., 2014; MacGregor & Cunningham, 2008; Webb et al., 2018), still 

there is little empirical work, if any, testing whether people may experience Eureka’s when 

learning scientific concepts (for a review, see Brock, 2015). Several reports describe episodes 

where a student displays excitement while formulating a (correct) idea they had never 

expressed before, a sign that these students may have received a sudden insight (e.g. Blown & 

Bryce, 2006; Parnafes, 2012; Srivastava & Ramadas, 2013). Besides these case studies, to our 

knowledge only one study attempted to describe learning-related Eureka experiences at the 

population level (Liljedahl, 2005), finding reports of such experiences in 68% of students; but 

this study suffers from methodological limitations, casting doubts about its quantitative 

results. Yet, the idea that learning proceeds by sudden illuminations followed by rapid 

progress is common amongst professional teachers (Brock, 2015; Czarnocha & Baker, 2021) 

and in the general population. Many readers will probably recall episodes where they felt that 

they suddenly understood a notion: “Now, I get it!” 
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Our study was undertaken to address two main questions. First, do people generally 

experience Eureka moments when learning a new scientific concept? Second, if they do 

experience Eureka moments, is the impression to have received a sudden insight accurate or 

illusory? Two aspects of Eureka experiences were examined with this second question in 

mind. First, to assess people’s impression to have gained a new understanding, we tested 

whether Eureka experiences are associated with genuine learning progress. Second, in a 

typical Eureka moment, an idea appears to break into consciousness suddenly and 

unexpectedly – or, to quote again Poincaré’s words, this insight comes “without anything in 

[one’s] previous thinking seemingly paving the way for it”. To probe the veracity of this 

impression, we tested whether the progresses of Eureka-triggering mechanisms are accessible 

to reflective introspection. If learners’ first-person report is accurate, these mechanisms 

should be unconscious, inaccessible to reflective introspection; and in particular, their 

progress should not inform learners’ reflective judgments about their own learning.  

To address these questions, we developed a paradigm where participants were taught the 

mathematical concept of geodesic, which generalizes the common notion of a straight line to 

straight trajectories drawn on curved surfaces (Spivak, 1979). Participants were given 1 to 7 

lessons to learn about the geodesics of the sphere, and were then administered several tasks 

testing their understanding of geodesics on the sphere and on other surfaces. In addition, they 

were asked to reflect on their own learning and assess their confidence in their own 

understanding, and also to report whether they had experienced Eureka episodes during the 

course of the experiment.  

Our analyses tested four predictions. First, before addressing questions about the relation 

between Eureka experiences and learning, we needed to demonstrate that our paradigm was 

effective in producing learning. To that aim, we checked whether participants performed 

better in the post-teaching tests when they had studied more lessons. Second, if concept 
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learning gives rise to Eureka experiences, then participants should report Eureka experiences, 

and these reports should be modulated by our experimental manipulation (number of lessons 

studied): an indication that the experiences reported are induced by the teaching phase, not by 

e.g. personality traits of individual participants or by the general context of the experiment. 

Third, if Eureka experiences reflect genuine learning progresses, participants who report 

Eureka’s should achieve better performance in the post-teaching tests. Fourth, we compared 

the learning achievements associated to Eureka experiences vs. to participants’ reflective 

judgments of confidence in their own understanding. If Eureka-triggering mechanisms are 

inaccessible to reflective introspection, Eureka experiences should be uniquely associated to 

some learning achievements, after factoring out variations in participants’ judgments of 

confidence. Note that the reverse relation may also be true: perhaps judgments of confidence 

also relate to specific learning achievements, independently from the occurrence of Eureka 

experiences. Observing such a pattern of unique associations would indicate that the 

mechanisms triggering Eureka’s and informing reflective confidence are at least partially 

dissociated, thus suggesting that the concept learning mechanisms that are responsible for 

Eureka experiences operate unconsciously. 

 

Methods 

Our experiment comprised four phases. In the first, inclusion phase, we administered two tests 

to select participants who had a good understanding of elementary planar geometry, but were 

not yet able to identify “straight lines”1 (geodesics) on the sphere. Next, in the teaching phase, 

 
1 In order to help participants identify the concept presented as a generalization of planar straight lines, 

in our experimental material we used the common term “straight line” rather than the technical term 

“geodesic”. Accordingly, in the description of our paradigm, we will refer to the concept under study 

as that of “straight line”. 
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participants were presented with lessons about the “straight lines” of the sphere. The third 

phase, test phase, assessed participants’ understanding of the concept of straight line, 

generalized to curved surface. Lastly, in the fourth or Eureka phase, participants were asked if 

they had experienced Eureka moments during the course of the experiment. 

As explained above, in our analyses we aimed to test whether Eureka experiences were 

associated with genuine learning, and also whether Eureka experiences and confidence 

judgments were associated to the same kinds of learning. Our test phase was thus designed to 

provide a systematic assessment of participants’ understanding of straight lines, with tasks 

probing various abilities entering into the possession of a concept. Thus, we included both 

identification tasks where participants needed to recognize instances of straight lines (i.e., 

tasks assessing the extension of their concept of straight line), as well as tasks testing their 

ability to draw inferences about straight lines (i.e., tasks assessing the inferential role of their 

concept; (for an argument that both extension and inferential role participate to the 

characterization of concepts, see Carey, 2009). For both identification and inference tasks, we 

furthermore varied the domain of application of the concept: either the sphere (the domain of 

application covered in the lessons), or non-sphere surfaces that were not mentioned in the 

lessons (on contextual effects and lack of transfer in science concept learning, see e.g. Brock 

& Taber, 2020). Finally, in our identification tasks we systematically crossed two variables: 

straightness and planarity. Indeed, based on a study testing intuitions in spherical geometry 

(Izard et al., 2011), we hypothesized that people would spontaneously be biased to identify 

straight lines with planar cuts, at least on the sphere (for direct evidence supporting this 

hypothesis across many surfaces, see Barot, 2022). The systematic manipulation of planarity 

alongside straightness thus allowed us to more finely probe the nature of the geometric 

properties defining “straight lines” for our participants. Specifically, if participants rely on 
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their spontaneous intuitions, they should respond on the basis of planarity; whereas if they 

apply the criteria given in the lessons, their responses should be driven by straightness.  

These manipulations yielded nine different test conditions: 3 test conditions assessing 

participants’ identification of straight lines on the sphere (non-planar straight lines do not 

exist on the sphere so the two variables of straightness and planarity could not be fully 

crossed), 4 test conditions assessing participants’ identification of straight lines on various 

surfaces (fully crossing straightness and planarity), 1 test condition assessing inferences about 

straight lines on the sphere, and 1 test condition assessing inferences about straight lines on 

various surfaces.  

 

Participants 

Participants were recruited from a mailing list of volunteers from the greater Paris area or by 

word of mouth, with three inclusion criteria: being aged between 18 and 50 years, having 

good corrected vision, and being fluent in french. A total of 69 persons were tested, but the 

data of 13 participants were excluded from analyses because of their performance on 

inclusion tests (5 participants for poor performance in planar geometry, 3 participants for 

good performance in spherical geometry) and/or because of an experimenter error (6).  

The final sample included 56 participants (40 females, age 18-43 years, Mean = 25.5 years, 

exact age missing for 10 participants)2. All of them had attended high school. In France, 

students can choose to specialize in the humanities and quit studying mathematics after 

 
2 Participants of the 1-/7- and 3-/5-lesson conditions were recruited in two successive batches. Note 

that the average number of lessons was the same in these two batches (4 lessons), so differences 

between batches could not induce biases in our analyses, where number of lessons was encoded as a 

numerical variable. For more information about our recruitment and testing plan, see the 

Supplementary Online Material. 
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completing 10th grade. In our sample, some participants had thus received education in 

mathematics only until 10th grade, while others had received up to 7 additional years of 

mathematics education (average number of years of education in mathematics after 10th 

grade: 3.9 years).  

The study was conducting according to the ethical standards of Helsinki’s declaration. 

Participants provided written informed consent before starting the experiment. The 

experiment lasted 60 to 90 minutes and all participants received a 15€ compensation. To 

support people’s motivation to learn, a 50€ bonus was awarded to the participant who reached 

the highest score in each teaching condition. 

 

Material and Procedure 

Table 1 describes the content of the four phases of the experiment (inclusion phase, teaching 

phase, test phase, and Eureka phase)3. 

Inclusion phase 

In the first phase of the experiment, participants were administered two tests assessing 

respectively their understanding of planar and spherical geometry. They were included in the 

main analyses if they had a typical (and good) understanding of elementary planar geometry 

but were not able to identify straight lines on spheres. 

 

 

 
3 For the sake of readability, here we only describe the tasks that are analyzed in this paper. A 

comprehensive list of the tasks presented to the participants can be found in the Supplementary Online 

Material. 
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Inclusion phase Teaching phase Test phase Eureka phase 

Planar geometry test 

Straight lines 
identification on 
spheres 

Introduction: great 
circles 

1, 3, 5, or 7 lessons 
about straight lines 
on the sphere 

Confidence judgment 
(1) 

Straight lines 
identification on 
spheres 

Straight lines 
identification on 
various surfaces 

Confidence judgment 
(2) 

Reasoning about 
straight lines on the 
sphere and on other 
surfaces 

Confidence judgment 
(3) 

Eureka report 

Table 1. Tasks administered to the participants in the four phases of the experiment. 

 

Planar geometry test. This test was adapted from Izard et al. (2011 planar geometry condition, 

questions 1-20). Participants were first introduced to a planar surface, extending indefinitely, 

on which points and straight lines could be drawn. Straight lines were described as lines that 

never turn, neither on the left nor on the right, and that continue straight ahead indefinitely. 

After this introduction, participants were asked a series of twenty illustrated questions about 

the properties of straight lines on this infinite plane. For example, in one of the trials, they 

were presented with a figure showing a straight line and a point and asked whether it is 

possible to draw a new line that goes through the point and does not intersect the first line. 

Questions were presented both in writing and orally through an audio recording, and 

participants ticked their answers (yes or no) on a response sheet. Participants were included if 

they made no more than 3 errors – pilot work indicated that more than 90% of geometry-

educated adults should pass this criterion. 
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Straight lines identification on spheres. In each trial, participants were presented with a 

photograph of a sphere (a table tennis ball) with a line drawn on it, and were asked to indicate 

whether the line was “straight” or not. Three types of trials were presented (Figure 1): non-

circles (non-straight; e.g. wavy line, line looping and crossing itself to form an 8 figure), great 

circles (straight), and small circles (non-straight, but typically judged to be straight by most 

adults). Each category counted 4 trials, for a total of 12 trials presented in a randomized order. 

Participants responded by pressing the ‘O’ key for yes (‘oui’) or the ‘N’ key for no (‘non’). 

They were included if they made at least two mistakes on the small circle trials (i.e. they 

incorrectly judged small circles to be straight lines) or if they made at least two mistakes on 

the great circle trials (i.e. they incorrectly judged that great circles are not straight). 

 

 

Figure 1. Example stimuli from the three conditions of the spheres straight lines identification task. 

 

Teaching phase 

In the second phase, participants were taught how to generalize the concept of “straight line” 

to the sphere. They were first given a one-page introduction defining the “great circles” of a 

sphere as circles that have the same radius as the sphere on which they are drawn. This 

introduction also provided illustrations of great circles drawn at different orientations. Then, 
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participants studied 1, 3, 5, or 7 lessons about straight lines in spherical geometry. The lessons 

used simple physical models to explain why great circles correspond to straight lines on the 

sphere, but smaller circles do not. These models were: rolling a toy car on a ball (the car can 

be rolled along a great circle, but not along a small circle; 2 lessons), applying scotch tape on 

a ball (the tape wrinkles if applied along a small circle, but remains smooth if applied along a 

great circle; 2 lessons), pinning a rubber band on a ball (the rubber band naturally aligns with 

a great circle; 2 lessons), and flight routes (flight routes seem curved when mapped on a 

planisphere, but prove to be the shortest route and a portion of a great circle when mapped on 

a globe; 1 lesson). For each teaching condition, different orders of presentation were created 

to ensure that each lesson appeared in each position, and that a given lesson was not always 

followed or preceded by the same lesson. 

A translated version of the teaching materials can be found on the Github repository of the 

project: https://github.com/charlusb/Analyses_Eurekamaths. 

Test phase 

At the end of the teaching phase, the first experimenter left the room and was replaced by a 

second experimenter, who was blind to the teaching condition assigned to the participants. 

This second experimenter administered three tasks: In the first task, participants judged 

whether lines drawn on a sphere were straight or not; in the second task they judged whether 

lines drawn on different surfaces were straight or not; and in the third task they were asked to 

draw inferences about the geometric properties of straight lines on the sphere and on other 

surfaces. We also measured participants’ confidence in their own understanding of straight 

lines at different time points during the test phase. 

Straight lines identification on spheres. This task was identical to the spherical geometry 

inclusion task. 

https://github.com/charlusb/Analyses_Eurekamaths
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Straight lines identification on various surfaces. Participants were presented with lines drawn 

on four different surfaces: cone (8 trials), cylinder (6 trials), cube (8 trials), and torus (4 

trials). Each trial displayed photographs of the front and back view of a surface on which a 

line had been drawn (Figure 2). Participants were asked to judge whether the line presented 

was straight or not and indicated their answer by keypress. As explained above, we suspected 

that lines corresponding to the intersection of a surface with a plane would intuitively look 

straight, as they do on the sphere (on the sphere, planar intersections correspond to circles). 

Our task thus crossed the two variables of straightness (straight, not straight) and planarity 

(planar, non-planar): 4 trials presented non-planar non-straight lines (corresponding to non-

circle lines on the sphere), 3 trials presented planar straight lines (corresponding to great 

circles on the sphere), 10 trials presented planar non-straight lines (corresponding to small 

circles on the sphere), and 9 trials presented non-planar straight lines (there are no 

corresponding examples on the sphere, but such lines can exist on other surfaces). Trials were 

presented in random order. 

Reasoning about straight lines on the sphere and on other surfaces. This task consisted of a 

list of mathematical assertions, which participants judged to be true or false: eight assertions 

about the straight lines of the sphere, followed by eight assertions about straight lines on 

arbitrary surfaces (Table 2). The assertions were presented in a fixed order, on paper. 

Participants were given written definitions for the terms ‘parallel’ and ‘perpendicular’, which 

appeared in some of the assertions. They answered by ticking one of four response options for 

each assertion: ‘true - certain’, ‘true - uncertain’, ‘false - uncertain’, and ‘false - certain’. 

These four options were introduced to help participants decide when they were unsure, but we 

only analyzed the valence of the response (true/false). 
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Figure 2. Example stimuli from the four conditions in the various surfaces straight lines identification 

task. Each trial presented two photographs showing a front and a back view of a surface and labeled as 

such. Three of the conditions correspond to lines that can be realized on the sphere (corresponding to 

great circles, small circles, and non-circles) while the last one (straight non-planar) does not exist on 

the sphere. 
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Assertion Correct 
answer 

1. On a sphere, given two straight lines, one can draw a straight line that intersects the 
first one but not the second one. False 

2. On a sphere, one can draw two straight lines that get closer to each other. True 

3. On a sphere, there is an infinity of lines perpendicular to a given line (not necessarily 
at the same point). True 

4. On a sphere, one can draw two straight lines that never intersect. False 

5. On a sphere, it is possible to draw two straight lines that are perpendicular. True 

6. On a sphere, two distinct straight lines always have two points of intersection. True 

7. On a sphere, it is possible to draw a straight line that is parallel to a first straight line 
and goes through a given point. False 

8. On a sphere, two straight lines can be drawn at a constant distance from each other. False 

9. There is a surface on which there is always one single straight line that is parallel to 
a first straight line and that goes through a given point. True 

10. There is a surface on which it is never possible to draw a straight line that is 
parallel to a first straight line and that goes through a given point. True 

11. There is a surface on which a straight line can go several times through the same 
point (intersecting itself). True 

12. There is a surface on which two straight lines can be drawn at a constant distance 
from each other. True 

13. There is a surface on which it is possible to draw several straight lines going 
through two given points. True 

14. There is a surface on which two straight lines are always intersecting. True 

15. There is a surface on which it is not possible to draw two perpendicular lines. False 

16. There is a surface on which it is not possible to draw two straight lines that 
intersect. False 

Table 2. Assertions of the reasoning task. Assertions 1-8 focus on the sphere, while assertions 9-16 

invite participants to think about various surfaces. Participants were provided with the following 

definitions on the top of the page: “Two straight lines are parallel if they never intersect. Two straight 

lines are perpendicular if they intersect at a right angle”. All the material presented here is translated 

from french. 

 

Confidence judgments. At three different times, participants indicated how much they felt 

they understood the notion of straight line, on a scale graduated from 0 to 10. The first 
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measurement of confidence was taken at the end of the teaching phase, the second 

measurement after the various surfaces straight lines identification task, and the third 

measurement after the reasoning task. One participant in the 1-lesson group inadvertently 

failed to answer the third confidence question. 

Eureka phase 

The final part of the experiment, which was administered by the first experimenter, aimed at 

measuring whether participants had experienced Eureka’s during the course of the 

experimental session. Participants were first given a description of the sensations associated 

with Eureka experiences (adapted from Jung-Beeman et al., 2004): episodes where a new 

understanding arises suddenly and unexpectedly, and is associated with a feeling of certainty. 

Participants indicated whether they experienced such episodes at some point during the 

experiment (yes or no) – this answer was used as our measure of Eureka report.  

At the end of the session, participants were presented with vignettes illustrating the different 

phases of the experiment, so that they could indicate when exactly they had experienced 

Eureka’s. A few participants were also asked to describe the insights that occurred to them in 

these occasions: they all reported insights related to the concept of straight lines on non-planar 

surfaces. 

 

Analyses 

We conducted analyses to address four questions: (i) whether the participants studying more 

lessons performed better in post-teaching tests and (ii) were more likely to report experiencing 

Eureka’s, (iii) whether the participants reporting Eureka’s showed better learning, as assessed 

by better performance in post-teaching tests, and (iv) whether Eureka reports and reflective 

judgments of confidence were associated to similar or different profiles of performance across 
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the post-teaching tests. Analyses were conducted in R using the packages afex and emmeans 

(Lenth, 2022; Singmann et al., 2021). For repeated measures analyses, we used the function 

mixed in package afex4 and included a random effect of participant. For non-repeated 

measures analyses, we used the standard glm function. The ⍺ level was set at .05. Significant 

interactions involving a numerical variable (e.g. number of lessons) were explored by 

computing linear trends by condition (function emtrends in emmeans). Significant interactions 

between categorical variables were explored by computing contrasts by condition (function 

emmeans5). Holm’s procedure was used to control for multiple comparisons when exploring 

interactions. 

Analyses scripts are available on the Github repository of the project: 

https://github.com/charlusb/Analyses_Eurekamaths. 

Effect of the number of lessons on test phase performance 

First, to assess whether our paradigm effectively induced learning, we tested whether 

participants’ objective performance in post-teaching tests varied as a function of the number 

of lessons studied. For the sake of simplicity, and to reduce the number of statistical tests 

performed, all the tasks of the test phase were analyzed in a single analysis. Accuracy was 

 
4 Afex’ function mixed is built on glmer from lme4. To assess the significance level of each fixed 

effect, mixed performs a likelihood test comparing the full glmer model to restricted models obtained 

by setting the parameters corresponding to the effect under study to 0. In all the statistics reported 

here, main effects and interactions were assessed while averaging over the levels of the categorical 

variables of non-interest – so the results are independent of the choice of particular baseline levels for 

categorical variables. 
5 Function emmeans uses the full-model glmer fit from afex’ mixed to compute estimated marginal 

means by condition. Similarly, emtrends estimates the marginal slopes associated to numerical 

variables. In all the statistics reported here, means and slopes were estimated while averaging over the 

levels of the categorical variables of non-interest. These estimated values, as well as the contrasts 

computed on them, are thus independent of the choice of particular baseline levels for categorical 

variables. 
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entered in a logistic mixed model analysis, with a random effect for participant, a categorical 

variable for test condition (total of 9 test conditions corresponding to 3 test conditions in the 

sphere straight line identification task: non-circle lines, great circles, small circles; 4 test 

conditions in the various surfaces straight line identification task: non-planar non-straight, 

planar straight, planar non-straight, non-planar straight; and 2 test conditions in the reasoning 

task: sphere, surfaces), numerical variables for teaching condition (number of lessons studied) 

and education in mathematics (number of years studying mathematics), as well as interactions 

between test condition and number of lessons, and between test condition and education in 

mathematics. If our manipulation was successful, we expected this analysis to yield a main 

effect of the number of lessons, and/or a significant interaction between test condition and 

number of lessons.  

Effect of the number of lessons on Eureka experiences 

To analyze whether studying a mathematical concept triggers Eureka experiences, we tested 

whether Eureka reports were modulated by the experimental manipulation introduced in the 

teaching phase, i.e. the number of lessons presented. Eureka reports were entered in a logistic 

regression with two numerical variables for the number of lessons studied and participants’ 

years of education in mathematics. An effect of the number of lessons in this analysis would 

indicate that the Eureka reports observed in our study are causally related to the teaching 

phase, and not simply to the general context of the experiment. Furthermore, it would allow 

us to exclude explanations based exclusively on inter-individual variations in e.g. personality 

traits or education in mathematics.  

Relation between Eureka experiences and test phase performance 

We next tested whether the participants who experienced Eureka’s reached a better level of 

understanding, as indicated by better performance in the test phase. To do so, we used a 
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logistic mixed model on accuracy with a random effect for participant and fixed effects for 

test condition (categorical variable with 9 levels as above), Eureka report (binary variable 

indicating whether the participant reported experiencing any Eureka’s during the course of the 

experiment or not), and an interaction between test condition and Eureka report. We then 

conducted a second version of this analysis with additional variables for number of lessons 

and years of education in mathematics and their interaction with test condition. This second 

analysis is more conservative and detects relations between Eureka experiences and 

performance that cannot be explained through the influence of the teaching condition or 

participants’ education in mathematics. However, the first analysis without covariates is 

potentially informative as well: if teaching condition and education in mathematics constitute 

the main source of variance between participants, introducing these variables as covariates 

may drastically reduce variability and render relations between Eureka experiences and 

performance impossible to detect. 

Relation between Eureka experiences and confidence 

The last series of analyses aimed at testing whether confidence in one’s own understanding 

and Eureka experiences reflect similar or different learning processes. To approach this 

question, we first tested whether Eureka reports and confidence judgments were correlated to 

each other. Pairwise comparisons were conducted between four measures: the three ratings of 

confidence collected throughout the test phase, and the Eureka report collected at the end of 

the experiment. For each comparison, we conducted two Spearman correlation analyses, first 

without covariates, and second with number of lessons and years of education in mathematics 

as covariates. In each version of the analysis, p-values were corrected for multiple 

comparisons using Holm’s procedure. 

Second, we tested whether Eureka reports and confidence ratings were related to learning the 

same aspects of the target mathematical concept. To do so, we conducted a logistic mixed 
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model analysis on test phase accuracy with a random effect for participant and fixed effects 

for test condition (categorical variable with 9 levels as above), Eureka report, confidence 

ratings, as well as interactions of Eureka report and confidence ratings with test condition. 

Again, two versions of this analysis were conducted: one without variables accounting for 

number of lessons and years of education in mathematics, and one including these variables 

and their interaction with test condition as fixed effects. Since the correlation analysis found 

all three ratings of confidence to be highly correlated, here we used the mean of participants’ 

three ratings. Observing significant interactions of test condition with Eureka report and 

confidence rating in this analysis would indicate that Eureka experiences and reflective 

judgments of confidence are related to different learning achievements, and would thus 

suggest that the processes giving rise to Eureka experiences are inaccessible to reflective 

introspection.  

 

Results 

 

Effect of the number of lessons on test phase performance 

Performance varied across test conditions (main effect of test condition, p < .001, Table 3), 

ranging from 33.1% (straight line identification: straight non-planar lines on various surfaces) 

to 97.3% (straight line identification: great circles on spheres). In line with our expectations, 

the teaching phase manipulation had an impact on participants’ objective performance on 

post-teaching tests, as attested by both a main effect of the number of lessons and a significant 

interaction between test condition and number of lessons. To explore the effect of the number 

of lessons in each test condition, we computed linear trends by number of lessons for each test 

condition (Figure 3). We found a positive effect of the number of lessons on participants’ 
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ability to categorize small circles on spheres as non-straight (Estimated Trend (ET) = 0.51, 

95% CI = [0.27, 0.75], pcorr < .001), as well as, more generally, on their ability to categorize 

planar non-straight lines on various surfaces as non-straight (same type of line as small circles 

on spheres; ET = 0.16, 95% CI = [0.01, 0.31], pcorr = .017). Participants who studied more 

lessons also performed better when asked to draw inferences about the properties of straight 

lines on the sphere in the reasoning test (ET = 0.18, 95% CI = [0.02, 0.35], pcorr = .014). 

Estimated trends were non-significant in the other test conditions (pcorr’s > .28; detailed 

results are provided in the Supplementary Online Material). 

 

Logistic mixed model analysis of the effect of number of lessons on test phase accuracy 

 df χ² p 

Test condition 8 696.3 < .001 

Number of lessons 1 11.9 < .001 

Education in Mathematics 1 2.7 .097 

Test condition*Number of lessons 8 36.2 < .001 

Test condition*Education in mathematics 8 11.0 .20 

Table 3. Results of the logistic mixed model analyzing the effect of the number of lessons on test 

phase accuracy. Significant effects are highlighted in bold. LogLik = -1536.2, Random effect 

(participant): variance = .36 
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Figure 3. Effect of the number of lessons on accuracy in each test condition. Colored dots and plain 

lines display the predictions of the logistic mixed model. Error bars represent 95% CI. Transparent 

grey dots show the performance of individual participants, corrected for years of mathematics 

education. P-values from a post-hoc exploration of the linear trends by test condition, holm-corrected 

for multiple comparisons. Test conditions showing a significant effect of number of lessons are 

highlighted in bold. 

 

Effect of the number of lessons on Eureka experiences 

Thirty-four of our fifty-six participants reported experiencing a Eureka moment (61%). A 

logistic regression analysis (Table 4; Figure 4) revealed that Eureka reports were influenced 
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by the number of lessons the participants were given to read but not by their education in 

mathematics. 

 

Logistic regression analysis of the effect of number of lessons on Eureka report 

 χ² df p 

Number of lessons 7.8 1 .005 

Education in mathematics 0.7 1 .42 

Table 4. Results of the logistic regression analyzing the effect of the number of lessons on Eureka 

reports. Significant effects are highlighted in bold. 

 

 

Figure 4. Effect of the number of lessons on Eureka reports. Colored dots and plain lines display the 

predictions of the logistic regression model. Error bars represent 95% CI. Transparent grey dots show 

the responses of individual participants, corrected for years of mathematics education. 

 

Relation between Eureka experiences and test phase performance 

The relation between Eureka reports and test phase performance was assessed in two mixed 

model analyses with and without covariates accounting for number of lessons and years of 
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education in mathematics. Both analyses identified a significant interaction between a 

variable measuring whether participants reported Eureka’s and the test condition variable 

(Table 5), indicating that participants who did vs. did not report experiencing Eureka’s 

differed in their performance on some of the test conditions. Exploring these interactions 

revealed that participants who experienced Eureka’s were more likely to identify lines that are 

straight despite being not planar in the various surfaces straight line identification task – the 

type of line that does not exist on the sphere (simple model: Estimated Contrast (EC) = 1.06, 

95% CI = [0.27, 1.86], pcorr = .002; model with covariates: EC = 1.22, 95% CI = [0.39, 2.05], 

pcorr < .001). In addition, there was a significant effect of Eureka experiences on participants’ 

accuracy at rejecting small circles on the sphere, but only in the model that did not account for 

number of lessons or years of education in mathematics (simple model: EC = 0.96, 

95% CI = [0.00, 1.92], pcorr = .043; model with covariates: EC = 0.39, 95% CI = [-0.67, 1.45], 

pcorr = 1.00). In all the other test conditions, the linear trends did not reach significance 

(simple model pcorr’s = 1.0; model with covariates: pcorr’s > .62; see Supplementary Online 

Material for detailed statistics by test condition). 
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Logistic mixed model analysis of the relation between Eureka report and test phase accuracy 

 No covariate model Covariates model 

 df χ² p df χ² p 

Test condition 8 724.3 < .001 8 719.7 < .001 

Eureka report 1 0.0 .98 1 1.0 .33 

Number of lessons    1 12.3 < .001 

Education in mathematics    1 2.2 .14 

Test condition*Eureka report 8 27.1 < .001 8 34.4 < .001 

Test condition*Number of lessons    8 43.0 < .001 

Test condition*Education in mathematics    8 12.0 .15 

Table 5. Results of the two mixed models analyzing the relation between Eureka report and test phase 

accuracy. Left: simple model without covariates, right: model accounting for years of education in 

mathematics and number of lessons. Simple model: Loglik = -1551.5, random effect (participant): 

variance = 0.45. Model with covariates: LogLik -1518.5, Random effect (participant): variance = 0.36. 

Significant effects are highlighted in bold. 

 

Relation between Eureka experiences and confidence 

Correlation tests 

Tests of the correlations between participants’ three ratings of confidence and their report of 

Eureka experiences were conducted twice, once without covariates, and once with number of 

lessons and years of education in mathematics as covariates. In the two versions of the 

analysis, the three ratings of confidence were strongly correlated to each other (Table 6). In 

contrast, ratings of confidence did not correlate with Eureka reports. 
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Correlation table for confidence ratings and Eureka reports 

 Confidence 1 Confidence 2 Confidence 3 Eureka 

Confidence 1 X ρ(54) = .59 
p < .001 

ρ(53) = .60 
p < .001 

ρ(54) = .27 
p = .13 

Confidence 2 ρ(52) = .57 
p < .001 X ρ(53) = .85 

p < .001 
ρ(54) = .19 

p = .33 

Confidence 3 ρ(51) = .60 
p < .001 

ρ(51) = .85 
p < .001 X ρ(53) = .17 

p = .33 

Eureka ρ(52) = .15 
p = .81 

ρ(52) = .14 
p = .81 

ρ(51) = .15 
p = .81 X 

Table 6. Spearman’s ρ coefficients and p-values for pairwise correlation tests. Above diagonal: 

without covariates, below: with number of lessons and years of education in mathematics as 

covariates. Significant correlations are highlighted in bold. All p-values were corrected for multiple 

comparisons using Holm’s method (applied separately for the analyses with and without covariates). 

Note that the third rating of confidence was missing for one participant in the 1-lesson group, hence 

the difference in degrees of freedom. Confidence 1: measured just after participants completed the 

teaching phase; Confidence 2: measured after the various surfaces straight lines identification task; 

Confidence 3: measured after the reasoning task. 

 

Relation between Eureka experiences, confidence and test phase performance 

Lastly, we tested whether Eureka experiences and reflective judgments of confidence were 

related to learning the same aspects of the concept of generalized straight lines. Again, we 

conducted two mixed model analyses, one with and one without variables accounting for 

number of lessons and years of education in mathematics. The two versions of the model 

yielded significant interactions between Eureka report and test condition, as well as between 

confidence and test condition (Table 7). The model with covariates also identified a 

significant main effect of confidence. Exploring the interaction between Eureka and test 

condition revealed again a positive relation between Eureka report and performance in the 

condition from the various surfaces straight lines identification task that has no equivalent on 

the sphere (non-planar straight lines), indicating that this relation arises independently of 

participants’ confidence in their own understanding (simple model: EC = 1.15, 
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95% CI = [0.32, 1.97], pcorr = .001; model with covariates EC = 1.26, 95% CI = [0.43, 2.10], 

pcorr < .001 .; Figure 5). None of the other test conditions showed a significant association of 

performance with Eureka report (simple model: pcorr’s > .21; model with covariates: 

pcorr’s > .68). Exploring the interaction between test condition and confidence failed to 

identify a specific association between confidence and performance in any of our single test 

conditions (simple model: pcorr’s > .09; model with covariates: pcorr’s > .29). Detailed 

statistics of the effects of Eureka report or confidence in each test condition are provided in 

the Supplementary Online Material. 

 

 

Figure 5. Relation between test phase performance, Eureka report and confidence judgments in the 

condition of the straight lines identification task that has no equivalent on the sphere (straight non-

planar lines). A. Predicted performance for participants who did vs. did not report Eureka experiences, 

and individual participants’ performance corrected for years of mathematics education, number of 

lessons, and confidence level. B. Predicted performance for participants who reported different levels 

of confidence, and individual participants’ performance corrected for years of mathematics education, 

number of lessons and Eureka report. Error bars are 95% confidence intervals. 
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Logistic mixed model analysis of the relation between Eureka report, confidence and test phase 

accuracy 

 No covariate model Covariates model 

 df χ² p df χ² p 

Test condition 8 740.5 < .001 8 736.8 < .001 

Eureka report 1 0.0 .93 1 1.4 .24 

Confidence 1 1.8 .18 1 4.3 .039 

Number of lessons    1 12.0 < .001 

Education in mathematics    1 3.0 .085 

Test condition*Eureka report 8 26.1 .001 8 34.2 < .001 

Test condition*Confidence 8 33.0 < .001 8 25.9 .001 

Test condition*Number of lessons    8 36.1 < .001 

Test condition*Education in mathematics    8 10.6 .22 

Table 7. Results of the two mixed models analyzing the relations between Eureka report, confidence 

and test phase accuracy. Left: simple model without covariates, right: model with covariates for 

number of lessons and education in mathematics. Simple model: LogLik = -1534.9, Random effect 

(participant): variance = 0.45. Covariates model: LogLik = -1505.5, Random effect (participant): 

variance = 0.36. Significant effects are highlighted in bold. 

 

Discussion 

Our study had four goals. First, as a prerequisite to our other aims, we needed to conceive a 

one-session, lab-based paradigm that effectively induces learning in mathematics. Second, 

using this paradigm, we asked whether learning a mathematical concept triggers Eureka 

experiences: episodes where a new understanding arises in a flash, suddenly and 

unexpectedly, accompanied with a feeling of certainty. Third, we tested whether Eureka 

experiences were reliable, in a first sense: that is, whether experiencing Eureka’s was 

associated with greater learning achievements. Fourth, we probed the reliability of Eureka 

experiences in a second sense: in the sense that an insight is felt to break into consciousness 

suddenly – and thus any learning that happened beforehand must be unconscious. To get at 
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this question, we analyzed whether reports of Eureka experiences and reflective judgments of 

confidence reflected the acquisition of the same or different aspects of the target concept. If 

the learning mechanisms leading to sudden flashes of insight are unconscious, we reasoned, 

they should not contribute to inform participants’ reflective judgments of confidence, and 

therefore some learning achievements should remain associated with Eureka experiences after 

factoring out variations in confidence. Below we present our findings and conclusions for 

each of these four questions. 

 

Learning about geodesics 

Participants were invited to study one to seven lessons introducing a mathematical concept: 

the concept of geodesic, generalizing the common notion of a planar straight line to straight 

trajectories drawn on curved surfaces. All lessons focused on the sphere and appealed to 

simple physical models to explain why great circles drawn on spheres correspond to lines that 

are straight, while small circles do not – which is counterintuitive. The models were meant to 

help participants ground their understanding of “straightness” on physical intuitions: for 

instance, a line is straight if, along this line, one can smoothly apply a band of scotch tape 

along it, or roll a toy car without forcing it to turn. Following this teaching phase, we assessed 

participants’ learning in a series of tasks probing key conceptual abilities: the ability to 

identify straight lines, both within the domain of application covered in the lessons (on the 

sphere), and in new contexts (non-sphere surfaces); and the ability to draw inferences about 

straight lines, again manipulating the domain of application (sphere vs. various surfaces). 

Furthermore, our identification tasks systematically crossed line straightness against planarity 

(whether the line is the result of a planar cut of the surface), as this property strongly 

influences judgments of straightness in naïve participants (Barot, 2022). Manipulating 

planarity thus allowed us to assess whether participants succeeded in defining straight lines 
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according to the criteria presented in the lessons, even when doing so leads to a 

counterintuitive answer.  

Our results provide evidence that our teaching phase was effective, and participants learned: 

reading more lessons led to better performance in several of our post-teaching test conditions. 

Furthermore, participants’ post-test performance showed two characteristic signatures of 

conceptual learning. First, learning was difficult, as indicated by positive linear effects of the 

number of lessons on test performance in several of our test conditions. These effects show 

that learning was not completed after studying the first lesson, and was protracted: 

participants may have benefitted from the repeated presentation of the same mathematical 

information (great circles are straight, small circles are not straight), from the presentation of 

diverse physical models to ground the concept of “straightness”, and/or simply from a greater 

incubation delay. Strikingly, these effects arose even in a test condition where participants 

simply needed to recall information presented in the lessons, i.e. when judging that small 

circles drawn on a sphere are not straight. As a second signature of conceptual learning, the 

content learned was inferentially rich: participants did not only memorize the information 

presented in the lessons but were also able to draw inferences from this information. Indeed, 

participants who received more lessons to study had a better performance in a test condition 

where they needed to generalize the notion of straight line to various surfaces, beyond the 

example of the sphere (condition presenting non-straight planar lines drawn on non-sphere 

surfaces, equivalent to small circles drawn on spheres), and in a condition where they needed 

to reason about the properties of straight lines on the sphere. 

In our reasoning task, in particular, we found that the teaching phase enabled participants to 

draw non trivial inferences about the properties of straight lines in spherical geometry, and 

notably to realize that two straight lines drawn on a sphere can never be parallel: they 

necessarily cross. This property is highly counterintuitive for geometry-educated people – as 
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well as for people without any formal education in geometry (Izard et al., 2011). When tested 

on a questionnaire that inspired our planar geometry inclusion test, pretty much all U.S. 

adults, French teenagers, or Mundurucu people from the Amazon judged that it was possible 

to find parallel lines on the plane and also on the sphere (agreement on the existence of 

parallel lines on the sphere was above 90% in all groups). These widely shared and strongly 

entrenched intuitions about parallel lines resonate with the History of Mathematics. During 

nearly 2000 years, mathematicians attempted to demonstrate Euclid’s Fifth Postulate on 

parallel lines from the other simpler postulates and axioms; until Gauss, Bolyai and 

Lobachevsky finally realized that this enterprise had started on wrong premises, and that it is 

possible to define geometries that are perfectly coherent with the simpler axioms but 

nonetheless violate the postulate on parallels (Greenberg, 2007). The geometry defined by 

great circles on the sphere is an example of one such coherent “non-Euclidean” geometry. In 

that context, it is impressive to observe that a considerable proportion of our participants 

questioned or even refuted the existence of parallel lines on the sphere (45.5% of negative 

responses for two assertions of the reasoning test claiming that parallel lines exist on the 

sphere). Again, the teaching phase played a role in this understanding (linear trend of number 

of lessons for these two assertions, ET = 0.53, 95% CI = [0.08, 0.97], p = .020, controlling for 

years of education in mathematics). 

In other test conditions, we did not observe any impact of the teaching phase on performance. 

Some of these test conditions were easy and appeared compatible with people’s spontaneous 

intuitions. In our pre-teaching inclusion test, participants generally agreed that non-circle lines 

drawn on a sphere are not straight (average performance 94%), or that great circles are 

straight (average performance 84%). Accordingly, after the teaching phase, we found that all 

participants reached a good performance in these two conditions, independently of the number 

of lessons studied (average performance: non-circle lines 94%, great circles 97%). 
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Performance was also good and was not affected by the number of lessons for non-planar 

non-straight lines (94%) and planar straight lines (90%) drawn on various surfaces – the 

equivalent of respectively non-circles and great circles drawn on a sphere. 

In the two last test conditions, there was no effect of the teaching phase, and performance 

remained low in all groups, suggesting that the teaching we provided was generally 

insufficient to solve these tasks. These two conditions require a high level of generalization 

with respect to the information presented in the lessons. For example, on some surfaces it is 

possible to find straight lines that are not planar; however this is not possible on the sphere, 

and consequently, this type of line was not exemplified in the lessons. Accordingly, 

participants generally failed to recognize this type of straight line when tested on various 

surfaces (average performance 33%), and the presentation of several lessons did not seem to 

help. Second, the number of lessons presented had little impact on participants’ reasoning 

about straight lines on arbitrary surfaces (average performance 67%). This last test condition 

included questions that required a high level of generalization (e.g. thinking about a cone to 

find an example of a straight line that intersects itself), as well as very intuitive questions that 

could be solved by thinking about the plane. Both these very easy and very hard trials 

presumably contributed to reducing the effects of the teaching condition in this test condition. 

In summary, analyses of performance indicated that our participants benefited from the 

lessons presented and learned at least some aspects of the concept of generalized straight line. 

Our paradigm thus succeeded in creating conditions for studying the role of Eureka 

experiences in concept learning. 

 

Concept learning triggers Eureka experiences 

As a second conclusion, our experiment provides evidence that learning a new concept gives 
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rise to Eureka experiences. At the end of the session, participants were asked whether they 

had experienced any Eureka moments: episodes where an idea came to them suddenly and 

unexpectedly, accompanied with a feeling of certainty. The description provided to our 

participants was inspired from a study assessing the sudden insights that arise as people are 

tasked to solve word puzzles (Jung-Beeman et al., 2004), and covered the phenomenological 

components classically associated with Eureka (or “Aha!”) experiences. After reading this 

description, a little over half of our participants reported experiencing Eureka’s during the 

course of our experiment (61%).  

Surprisingly, while the idea that students experience Eureka’s in the science classroom 

appears to be widely shared amongst teachers (Brock, 2015), only one former study has 

attempted to survey Eureka experiences systematically in a population of (adult) mathematics 

students (Liljedahl, 2005). This study however suffers from severe methodological issues, 

which hampers any definitive conclusion from its results. First, reports of Eureka episodes 

were delayed in time until the end of a 13-week mathematics class, raising the risk of false 

memories. Second, and most importantly, students wrote little narratives describing their 

Eureka experiences in exchange of credits – and writing about a Eureka episode constituted 

an alternative to solving a math problem to earn these credits. Given that the population of 

students involved in the study (prospective teachers) reported high levels of math anxiety, this 

setting may have constituted a strong incentive for students to amplify or even fabricate false 

memories of Eureka experiences.  

Importantly, in our study we incorporated several checks to ensure that Eureka reports were 

not purely fabricated by participants. First, we collected Eureka reports in the same session as 

the teaching and test phases, leaving limited time for false memories to emerge6. Second, 

 
6 At first view, it may have seemed tempting to instruct participants to keep an eye for Eureka episodes 
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participants were not rewarded for reporting Eureka’s, and our instructions acknowledged that 

it is fully possible to learn a mathematical notion without experiencing any sudden epiphany. 

Third, and most importantly, we found evidence that participants’ reports of Eureka episodes 

were modulated by our experimental manipulation, in that the groups receiving more lessons 

were more likely to report Eureka’s. This finding attests that reports did not simply reflect 

variations in personality traits, or in participants’ affinity with mathematics, but rather were 

causally related to the teaching we provided. 

Fourth, Eureka experiences were related to performance in the post-teaching tests; and this 

relation was modulated across test conditions, in a pattern that held even when controlling for 

the number of lessons studied, years of education in mathematics, and participants’ 

confidence in their own understanding. This last finding allows us to exclude several 

deflationary explanations. For example, it is not the case that participants confabulated and 

reported imaginary Eureka episodes simply because they had studied many lessons and 

thought they ought to understand the notion taught very well, or because they had solved the 

post-teaching tests easily and felt confident about their own understanding. 

In summary, our findings constitute the first robust empirical evidence that learning 

mathematical concepts can induce Eureka experiences – or at least, experiences that are 

remembered as Eureka’s within the short time frame of a 60- to 90-minute experimental 

session. Note that so far, we only discussed the occurrence of a certain type of 

phenomenological experience, leaving aside the question of the reliability of the content of 

 

and report them on the spot, just as they arise. We opted against this solution, given evidence that 

asking people to watch their own mental processes can block performance specifically in so-called 

“insight problems”, i.e. problems that are typically solved by sudden insight (Schooler et al. 93). We 

also feared that warning participants that they may experience Eureka’s in the course of the 

experiment could lead them to expect these experiences to occur, thus increasing the rate of false 

positives.  
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these experiences. For instance, while Eureka experiences leave learners with the impression 

that they have just made a great leap forward in understanding, these episodes may in fact be 

decoupled from actual learning, arising at random times when a learner is engaged with a 

difficult scientific concept. Furthermore, while learners’ experience is that of a sudden flash 

of understanding, we may find that they are able to access their own progresses at will and at 

all times, not only in rare Eureka episodes. These questions will be addressed in the next two 

sections. 

 

Eureka experiences signal genuine learning progress 

As described above, experiencing Eureka’s was related to increased performance in specific 

subtests. In the previous section, we used this result to argue against deflationary explanations 

and establish a causal link between studying a concept and Eureka experiences. However, this 

finding also has stronger implications: it provides evidence that Eureka experiences do not 

simply arise when one merely engages with a novel concept, but rather signal genuine 

progress in learning.  

According to the first-person description, learning occurs right when a Eureka is experienced: 

the learner was confused beforehand, and suddenly sees the light. It should be noted that, in 

our study, we did not attempt to assess whether Eureka experiences were accurate in their 

temporal aspect, and our findings are thus compatible with several alternative scenarios. For 

example, learning could actually be completed before the learner experiences a Eureka 

moment; more specifically, the knowledge acquired would remain implicit (but could still 

show in performance tests), until brought to the fore and made explicit in a Eureka moment 

(for studies testing this hypothesis in the domain of insightful problem solving, see e.g. 

Bowers et al., 1990; Durso, Rea, & Dayton, 1994; Ellis, Glaholt, & Reingold, 2011; Novick 
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& Sherman, 2003; Smith & Kounios, 1996; a critical discussion of this line of studies can be 

found in Ash, Cushen, & Wiley, 2009). Alternatively, it is also possible that Eureka’s are felt 

before learning is actually completed: perhaps Eureka’s are experienced during the initial 

steps of learning, the details of the episode being filled retrospectively once learning is 

complete. Again, this idea finds echoes in the literature, with theoretical views proposing that 

ideas gained by sudden insight are but a rough sketch or an initial hunch, further steps of 

evaluation and elaboration taking place after the initial discovery (e.g. Clement, 1989; 

Csikszentmihalyi & Sawyer, 1995; Hadamard, 1954; Ohlsson, 2009). Deciding how Eureka 

experiences are related in time to actual learning progress remains an interesting question for 

further research. 

Our post-teaching tests used a variety of tasks to assess participants’ understanding of the 

concept of generalized straight line. Interestingly, we found that Eureka experiences predicted 

performance in one kind of generalization test: a test probing participants’ ability to identify 

counterintuitive straight lines of a type that had not been exemplified in the lessons (non-

planar straight lines on non-sphere surfaces). To succeed in this test condition, participants 

needed to overcome their naïve conception associating straightness with planarity, and instead 

apply the defining criteria for straight lines presented in the lessons. In contrast, however, 

Eureka experiences were not related to performance in a task testing a different kind of 

generalization: drawing inferences from the information taught to reason about the properties 

of straight lines on the sphere and on other surfaces. This pattern suggests that Eureka 

experiences were triggered as participants progressed in their understanding of the definitional 

properties of straight lines – identifying the core properties of the concept. Eureka experiences 

were not triggered however when participants reflected on the consequences of adopting this 

new definition – deriving the inferential role of the concept of straight line. This contrast may 

reflect a general property of learning-related Eureka experiences: Eureka experiences would 
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be triggered specifically when learners engage in deep changes affecting the core definition of 

their concepts. Further research should be undertaken to test whether similar findings would 

obtain when people learn other mathematical concepts, or even concepts from other scientific 

domains. 

 

Dissociations between Eureka experiences and confidence 

Our experiment also aimed at evaluating another aspect of the first-person Eureka experience: 

the idea that some concept learning processes (the processes susceptible to trigger Eureka 

experiences) may operate unconsciously, and remain inaccessible to reflective introspection. 

To that avail, besides asking participants to report on their Eureka experiences, we also asked 

them to reflect on their learning and evaluate their understanding of the concept of straight 

line. 

Reflective judgments of confidence were dissociated from reports of Eureka experiences in 

our findings, at two levels. First, there was no correlation between Eureka reports and 

confidence ratings. Second, and most importantly, Eureka reports and confidence ratings were 

related to different patterns of performance in the post-teaching tests. In particular, the 

relation between Eureka experiences and straight lines identification described above held 

even after factoring out variations in participants’ confidence in their understanding. Learning 

abstract definitional properties of generalized straight lines thus involved processes that 

triggered Eureka experiences, yet did not inform participants’ reflective evaluation of their 

own understanding. Conversely, we also found that confidence ratings were uniquely 

associated with a change in performance, independently of Eureka reports. In detail, however, 

while confidence was correlated to performance in one of our analysis (analysis without 

covariates for number of lesson and education in mathematics), none of our test conditions 
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showed a robust increase of performance in relation to confidence. It is thus hard to know 

whether the significant relation between confidence and performance reflects conceptual 

learning processes or processes implementing more superficial changes, such as changes in 

motivation or response strategies.  

In summary, these findings establish the existence of dissociated processes respectively 

triggering Eureka experiences or informing people’s reflective judgments about their own 

understanding. However, only the processes associated with Eureka experiences were clearly 

implicated in conceptual learning. 

The absence of a correlation between reports of Eureka experiences and confidence ratings 

may seem surprising, as this finding apparently contradicts the established relation between 

Eureka experiences and confidence (e.g. Danek & Wiley, 2017; Laukkonen et al., 2020). Our 

own instructions indeed emphasized confidence (feeling “certain”) as one key dimension of 

Eureka experiences. Participants’ explanations during debriefing proved particularly 

enlightening to understand this unexpected finding. In particular, we observed that, in a 

learning context, people may very well experience sudden flashes of insight involving a 

sensation of certainty, without feeling any more confident about their understanding of the 

concept. For example, one of our participants described a Eureka episode where she had 

suddenly realized that she did not understand straight lines. This episode was experienced as a 

Eureka moment because the participant felt suddenly certain of her own ignorance, but she 

certainly did not feel any more confident about her own understanding of straight lines. 

This example probably stands as an exception: the positive relation observed between Eureka 

reports and performance indicates that most Eureka episodes did contain information to 

advance people’s understanding of straight lines. Eureka episodes thus probably generally led 

participants to feel that they had progressed in their understanding of the concept of straight 

line, at least in the moment. However, perhaps this sensation of certainty was transient, and 
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we failed to observe a correlation between Eureka experiences and confidence because we did 

not measure participants’ confidence at the very moment where Eureka experiences occurred. 

Suggestively, we found that confidence was highest when measured just after the teaching 

phase (linear mixed model on confidence, main effect of measurement time, 

F(2,105.2) = 29.9, p < .001), i.e. when most Eureka experiences had just occurred (when 

asked to report when exactly they had experienced Eureka’s, participants identified a total of 

65 episodes, 44 of which were situated during the inclusion or teaching phase) and 

participants had not yet confronted their understanding to the generalization tests. Knowledge 

that has been gained by sudden insight may be particularly susceptible to interference from 

further testing: just like people solving problems by insights cannot describe how they found 

the solution (Bowden, 1997; Maier, 1931; Schooler & Melcher, 1995), in learning contexts 

Eureka experiences may convey knowledge without conscious access to any epistemic 

justification. Hence, while learners may be able to generalize the knowledge they gain by 

insight to new situations, doing so may lead them to realize that they cannot explain why 

these inferences are founded, and thus to lose confidence in their understanding.  

In terms of mechanisms, our findings suggest that conceptual learning may involve an 

interplay between progressive learning processes operating outside the scope of 

consciousness, and consciousness acting as a discrete filter for access to learned information 

(for a model presenting consciousness as a discrete filter on perceived information, see 

Dehaene, 2014; Dehaene, Sergent, & Changeux, 2003; for a similar idea applied to insightful 

problem solving, see Bowers et al., 1990; Ellis et al., 2011; Jung-Beeman et al., 2004; Zhong, 

Dijksterhuis, & Galinsky, 2008). Conceptual learning has been modelled computationally as a 

progressive accumulation process (e.g. Bonawitz et al., 2019; Gopnik & Wellman, 2012), 

where the learner would constantly evaluate how her conceptual representations fit with 

newly received information, and engage in conceptual change when a competing 
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representation overcomes the current one. Eureka experiences could reflect key computational 

steps in these models: they could be triggered for example when a competing representation 

reaches a certain threshold (Eureka about a new understanding), or when the current 

representation drops to a floor level (Eureka about one’s ignorance).  

Under this view, while learning may progress incrementally at the unconscious level, overt 

changes in concepts would necessarily involve the experience of a sudden leap of 

understanding. Interestingly, performance in our most difficult test of straight line 

identification (non-planar straight lines on non-sphere surfaces) appears coherent with this 

suggestion: participants did not succeed in this condition unless they had experienced a 

Eureka moment (see Figure 5). We suggest that the particular difficulty of concept learning 

may reside in this interplay between unconscious and conscious mechanisms. Hence, learning 

mechanisms may rarely reach the stage where progresses are made accessible to 

consciousness, such that students appear to stagnate for long periods of time. Moreover, after 

a Eureka experience has broadcasted a new leap in understanding, unless this insight is 

supported by external feedback it would remain isolated, not grounded in epistemic 

justifications, and thus the progress achieved would be particularly fragile. 

 

Conclusion 

We developed a paradigm where participants were taught and tested on a novel mathematical 

concept, and analyzed participants’ reports of Eureka experiences in regard to their learning 

performance. More than half of our participants reported experiencing Eureka moments 

during the experimental session; and these episodes signaled genuine learning achievements, 

in the sense that participants who experienced Eureka’s hold a more accurate and more 

generalizable representation of the concept taught than those who did not experience 
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Eureka’s. Moreover, the progresses associated with Eureka experiences failed to inform 

participants’ reflective judgments about their own learning. Our findings thus provide 

evidence that the Eureka experiences that arise while learning mathematical concepts are 

accurate, in two senses: they reflect the functioning of concept learning processes, which 

appear to be inaccessible to reflective introspection. 

Our study constitutes a first step in the investigation of learning-related Eureka experiences, 

and thus raises several questions for future research. First, are the Eureka experiences 

observed in the contexts of concept learning and problem solving qualitatively different, or do 

they reflect similar psychological processes? Second, if all Eureka experiences turn out to 

indicate the successful termination of a search process, what is the nature of the search 

involved in conceptual learning, when all the necessary information has been provided 

explicitly by a teacher? Third, what kinds of learning achievements are related to Eureka 

experiences, and could a better understanding of the nature of these experiences and the 

conditions under which they arise help design more effective teaching methods for science 

and mathematics? We hope that our research will spark interest in these questions. 
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Supplementary Material to “Now I get it !” : Eureka experiences during the acquisition of 

mathematical concepts 

Charlotte Barot, Louise Chevalier, Lucie Martin, and Véronique Izard 

 

This document has three parts. First, we present our general testing plan: how participants were assigned to 

the different experimental conditions, and which preliminary analyses were run as testing progressed. 

Second, we provide a full presentation of our paradigm, describing all the tasks that were administered to 

our participants. We also explain the reasons that lead us to discard some of these tasks from the analyses 

presented in the associated paper. Third, we present detailed results for the analyses presented in the 

associated paper; as well as for the same analyses applied to all the participants (including two groups not 

treated with a teaching phase, which were excluded from the main analyses; see ‘general testing plan’). 

I. General testing plan 

Testing was conducted in three batches. First, we administered the 1- and 7-lesson conditions in 

alternation, until we reached a sample size of 14 included participants in each group. The data of these two 

conditions was analyzed to check whether the teaching condition had an effect on test phase accuracy. We 

also inspected the data from the different tasks to check for any inconsistency, which led us to discard one 

task from analyses (see ‘detailed presentation of the tasks’). Crucially, at this first stage we did not perform 

analyses on participants’ Eureka reports in relation to performance or confidence judgments – the main 

analyses reported in our paper. 

As a second step, we tested 28 participants (15 women, age 18-48 years, Mean = 25.6 years, exact age 

missing for two participants, 2-8 years of education in mathematics after 10th grade, Mean = 4.2 years) in 

two baseline conditions without a teaching phase. The participants of the first baseline group were 

presented with the one-page document with examples of great circles that served as an introduction to the 

lessons in the teaching groups, while the participants of the second baseline group proceeded directly from 

the inclusion phase to the test phase. Although we initially planned to include these two groups in the 
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analyses, we eventually decided to exclude them, because we realized that their inclusion blurred the 

conclusions that could be derived from our experiment. First, participants of the baseline groups potentially 

evaluated their confidence based on different criteria: for example, they could feel very confident about the 

idea that small circles drawn on spheres correspond to straight lines, since they were never told that small 

circles are not straight. Similarly, while participants in the baseline groups reported Eureka experiences, 

the insights they gained in these episodes could have qualitatively different contents compared to the 

insights of the other groups. Lastly, since the baseline groups did not receive any lessons to study, it is 

unclear whether they engaged in learning at all, and thus their responses may be unrelated to the question 

at stake in our experiment - the role of Eureka experiences in concept learning.  

In the last part of this document, we present the results of our analyses with the baseline groups included. 

These analyses yield the same results as the analyses presented in the associated paper. 

Finally, in a third step, we tested participants in the 3- and 5-lesson conditions, with participants assigned 

to these two conditions in alternation. 

This testing plan was adopted because we suspected that it may be difficult to recruit enough participants 

to complete all the groups – a suspicion that proved right, as we had to stop data collection after the 3- and 

5-lesson testing batch, and could not test participants with 2, 4 or 6 lessons. Yet, we wanted to be sure to be 

able to run meaningful analyses on our data even if we had to stop data collection at some point. Thus, 

across the different batches the average number of lessons studied was kept constant (an average of 4 

lessons for the 1- and 7-lesson batch, the 3- and 5-lesson batch, and the 2- and 6- or 4-lesson batches that 

could have followed), with the exception of the baseline batch. Consequently, and given that we analyzed 

the effect of our teaching intervention (the only aspect of the experiment to vary across batches) by means 

of a numerical variable for number of lessons, differences in performance between batches could not be 

captured by this variable, and thus would not be spuriously attributed to the manipulation of the teaching 

phase. 

Because the average number of lessons is different in the baseline batch, the supplementary analyses 

presented in the third part of this document may present biases, unlike the main analyses reported in the 
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associated paper. For this reason, as well as for the reasons explained above, the reader is advised to 

consider these results with caution.  

 

 
Baseline 
groups 
(N=28) 

1-lesson 
group 

(N=14) 

3-lesson 
group 

(N=14) 

5-lesson 
group 

(N=14) 

7-lesson 
group 

(N=14) 
Planar geometry test 
(accuracy) 

98% (85% 
to 100%) 

95% (85% 
to 100%) 

98% (90% 
to 100%) 

95% (85% 
to 100%) 

98% (85% 
to 100%) 

Straight lines identification 
on the sphere, inclusion 
phase (accuracy) 

66% (50% 
to 83%) 

68%% (58% 
to 83%) 

70%% (50% 
to 83%) 

65%% (42% 
to 75%) 

68% (50% 
to 83%) 

Age (years) 
25.6 years 

(18y. to 
48y.) 

25.7 years 
(18y. to 

41y.) 

23.7 years 
(20y. to 

30y.) 

28.2 years 
(19y. to 

43y.) 

23.9 years 
(20y. to 

27y.) 

Gender 
15 Female / 

13 Male 
10 Female / 

4 Male 
11 Female / 

3 Male 
11 Female / 

3 Male 
8 Female / 6 

Male 
Education in mathematics 
(number of years after 10th 
grade) 

4.2 years 
(2y. to 8y.) 

4.1 years 
(2y. to 7y.) 

3.9 years 
(2y. to 6y.) 

3.1 years 
(2y. to 7y.) 

4.6 years 
(0y. to 7y.) 

Table S0. Demographic data (age, gender, education in mathematics) and average performance on 

inclusion tests by teaching condition (baseline, 1-, 3-, 5- or 7-lesson), for participants included in the final 

groups. Since the two baseline groups were analyzed together in the supplementary analyses of part III, 

they were pooled together in this table. 

 

II. Full description of the paradigm 

Our paradigm comprised four phases: an inclusion phase, a teaching phase, a test phase, and a final Eureka 

phase where participants were asked about Eureka experiences. Here we present the comprehensive list of 

the tasks that were administered to the participants in each of these phases, including some tasks that were 

not described and analyzed in the associated paper. 
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Inclusion phase Teaching phase Test phase Eureka phase 

Definition of straight 
lines (1) 

Planar geometry test 

Straight lines 
identification on 
spheres 

Introduction: great 
circles 

Lessons about straight 
lines on the sphere 

Confidence judgment (1) 

Subjective efficiency of 
the teaching phase 

Straight lines 
identification on 
spheres 

Definition of straight 
lines (2) 

Straight lines 
identification on 
various surfaces 

Confidence judgment (2) 

Reasoning about straight 
lines on spheres and 
on other surfaces 

Confidence judgement 
(3) 

Definition of straight 
lines (3) 

Retrospective ratings of 
understanding 

Eureka report 

Table S1. Comprehensive list of all the tasks administered to the participants in the four phases of the 

experiment. The tasks highlighted in italics are not described in the associated paper. 

 

Inclusion phase 

Definition of straight lines. Participants were first asked to write a definition for the notion of straight line. 

Analyses of the definitions produced over the course of the experiment (three definitions for each 

participant) are not included in the associated paper. They will be reported in another paper analyzing 

people’s intuitive concept of straight lines. 
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Planar geometry test. This test was adapted from Izard et al. (2011; planar geometry condition, questions 

1-20)1. Participants were first introduced to a planar surface, extending indefinitely, on which points and 

straight lines could be drawn. Straight lines were described as lines that never turn, neither on the left nor 

on the right, and that continue straight ahead indefinitely. After this introduction, participants were asked a 

series of twenty illustrated questions about the properties of straight lines on this infinite plane. Questions 

were presented both in writing and orally through an audio recording, and participants ticked their answer 

(yes or no) on a response sheet. Participants were included if they made no more than 3 errors. 

Straight lines identification on the sphere. In each trial, participants were presented with a photograph of a 

sphere (a table tennis ball) with a line drawn on it, and were asked to indicate whether the line was 

“straight” or not. Three types of trials were presented: non-circles (non-straight; e.g. wavy line, line 

looping and crossing itself to form an 8 figure), great circles (straight), and small circles (non-straight, but 

typically judged to be straight by most adults). Each category counted 4 trials, for a total of 12 trials 

presented in a randomized order. Participants responded by pressing the ‘Y’ key for yes (‘oui’) or the ‘N’ 

key for no (‘non’). They were included if they made at least two mistakes on the small circle trials (i.e. 

they incorrectly judged small circles to be straight lines) or if they made at least two mistakes on the great 

circle trials (i.e. they incorrectly judged that great circles are not straight). 

Teaching phase  

Introduction to great circles. Participants were given a one-page document defining the “great circles” of a 

sphere as circles that have the same radius as the sphere on which they are drawn. This introduction also 

provided illustrations of great circles drawn at various orientations. A translated version of this document is 

accessible on the Github repository of the project (https://github.com/charlusb/Analyses_Eurekamaths). 

Lessons. Participants were given 1 to 7 lessons about straight lines in spherical geometry. The lessons used 

simple physical models to explain why great circles correspond to straight lines on the sphere, but smaller 

circles do not. These models were: rolling a toy car on a ball (the car can be rolled along a great circle, but 

 
1 Izard, V., Pica, P., Spelke, E. S., and Dehaene, S. (2011). Flexible intuitions of Euclidean geometry in an 
Amazonian indigene group. Proceedings of the National Academy of Sciences of the United States of 
America, 108(24), 9782–9787. https://doi.org/10.1073/pnas.1016686108 

https://github.com/charlusb/Analyses_Eurekamaths


6 

not along a small circle; 2 lessons), applying scotch tape on a ball (the tape wrinkles if applied along a 

small circle, but remains smooth if applied along a great circle; 2 lessons), pinning a rubber band on a ball 

(the rubber band naturally aligns with a great circle; 2 lessons), and flight routes (flight routes seem curved 

when mapped on a planisphere, but prove to be the shortest route and a portion of a great circle when 

mapped on a globe; 1 lesson). A translated version of the lessons can be found on the Github repository of 

the project: https://github.com/charlusb/Analyses_Eurekamaths). For each teaching condition, different 

orders of presentation were created to ensure that each lesson appeared in each position, and that a given 

lesson was not always followed or preceded by the same lesson. To encourage the participants to study the 

lessons in depth, we asked them to write a summary of each lesson just after reading it. We also asked 

them to rate whether they found the lesson convincing, on a scale graded from 0 to 10. These judgments of 

convincingness were collected twice: a first time after reading each lesson, and a second time for all 

lessons together (except for the group who received only one lesson to read, as this would have resulted in 

asking the exact same question twice in a row). 

This and other tasks of the teaching phase (see Subjective efficiency of the teaching phase below) were 

included as an effort to develop a measure of the temporal dynamics of the learning process. Analyses of 

these tasks will be reported in a different paper, together with other experiments from that line of research.  

Test phase  

Confidence judgment. Participants were asked to rate how much they felt they understood the notion of 

straight line, on a scale graduated from 0 to 10 (first rating of confidence).  

Subjective efficiency of the teaching phase. Participants from the 3-, 5- and 7-lesson groups were given two 

questions to answer. First, they were asked whether they felt that the elements presented had helped them 

improve their understanding of straight lines (yes or no). Second, participants ranked the different lessons 

they had studied by mapping them on an oriented line, from the least convincing to the most convincing. 

This last task was not given to the 1-lesson group because they would have had only 1 lesson to rank. The 

first question about the subjective impact of the lessons on participants’ understanding was missing for this 

group by mistake. 

https://github.com/charlusb/Analyses_Eurekamaths
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At this point, the first experimenter left and was replaced by a second experimenter who was blind to the 

teaching condition assigned to the participants.  

Straight lines identification on spheres. This task was identical to the spherical geometry inclusion task. 

Definition of straight lines. Participants were asked to write a definition for the notion of straight line 

(second definition). 

Straight lines identification on various surfaces. Participants were presented with lines drawn on four 

different surfaces: cone (8 trials), cylinder (6 trials), cube (8 trials) and torus (4 trials). Each trial displayed 

two photographs showing a front and a back view of a surface on which a line had been drawn. Participants 

were asked to judge whether the line presented was straight or not and indicated their answer by keypress. 

The task crossed the two variables of straightness (straight, not straight) and planarity (planar, non-planar): 

4 trials presented non-planar non-straight lines (corresponding to non-circle lines on the sphere), 3 trials 

presented planar straight lines (corresponding to great circles on the sphere), 10 trials presented planar non-

straight lines (corresponding to small circles on the sphere), and 9 trials presented non-planar straight lines 

(there are no corresponding examples on the sphere, but such lines can exist on other surfaces). Trials were 

presented in a random order.  

Confidence judgment. Participants were asked to indicate how much they felt they understood the notion of 

straight line on a 0-10 graduated scale (second rating of confidence). 

Reasoning about straight lines on the sphere and on other surfaces. This task consisted in a list of 

mathematical assertions, which participants judged to be true or false: eight assertions about the straight 

lines of the sphere, followed by eight assertions about straight lines on arbitrary surfaces. The assertions 

were presented in a fixed order, on paper. Participants were given written definitions for the terms 

‘parallel’ and ‘perpendicular’, which appeared in some of the assertions. They answered by ticking one of 

four response options for each assertion: ‘yes - certain’, ‘yes - uncertain’, ‘no - uncertain’, and ‘no - 

certain’. 
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Confidence judgment. Participants indicated how much they felt they understood the notion of straight line 

on a 0-10 graduated scale (third rating of confidence). One participant from the 1-lesson group 

inadvertently failed to answer this third confidence question. 

Definition of straight lines. Participants were asked to write a definition for the notion of straight line (third 

definition). 

Retrospective judgement of confidence. Participants were asked to evaluate retrospectively their 

understanding of straight lines at three time points: before the teaching phase, at the end of the teaching 

phase and at the end of the test phase.  

This task was originally included as another measure of participants’ reflective introspection about their 

own learning: we intended to measure how much people thought that they had progressed in their 

understanding of straight lines during the course of the experiment. However, inspection of the data of the 

first two groups (1 and 7 lessons, see ‘general testing plan’) revealed that participants often misunderstood 

this task. Indeed, if they had responded as intended, i.e. by indicating how much they thought they 

understood the notion of generalized straight line at several stages of the experiment in the light of the 

understanding they had gained at the end of the experiment, their ratings should progressively increase, or 

perhaps remain stable – but they cannot decrease. Quite the contrary, we found that the ratings produced by 

19 out of 28 participants expressed a decrease in understanding at some point during the experiment. This 

suggests that many participants misinterpreted our question as referring to their feeling of understanding as 

they experienced it at different stages of the experiment – perhaps they thought that we wanted to study 

whether they could faithfully remember these feelings retrospectively. We thus chose to discard this 

measure from our analyses, yet the task was included for all the participants, for the sake of consistency 

between groups.  

Eureka phase 

The final phase was administered by the experimenter who had been in charge of administering the 

teaching phase. 
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Eureka report. This final phase aimed at measuring whether people had experienced Eureka’s during the 

course of the experimental session. Participants were first given a description of the sensations associated 

with Eureka experiences (adapted from Jung-Beeman et al, 20042): episodes where a new understanding 

arises suddenly and unexpectedly, and is associated with a feeling of certainty. Participants indicated 

whether they experienced such episodes at some point during the experiment (yes or no) – this answer was 

used as our measure of Eureka report. Next, participants were presented with vignettes illustrating the 

different phases of the experiment (one vignette for each lesson, pre- and post-teaching task, confidence 

question, and definition of straight lines), so that they could indicate when exactly in the experiment they 

had experienced Eureka’s. A few participants from the 3- and 5-lesson groups were also asked to describe 

the insights that occurred to them in these occasions. 

While testing the first two groups (1 and 7 lessons), we realized that the timing reported for Eureka 

episodes was sometimes quite unclear. For instance, some participants could select a particular lesson 

because they remembered having a sudden insight about this lesson, while they did not remember when 

exactly in the course of the study they had this insight. We thus decided against including the Eureka report 

by time point in our main analyses, but we nonetheless chose to include this task for subsequent testing 

batches, as it had proven very useful to obtain informal information about participants’ first-person 

experience in the study. 

 

III. Supplementary analyses 

1. Detailed results of the main analyses 

a. Effect of the number of lessons on test phase performance 

 
2 Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, 

P. J., & Kounios, J. (2004). Neural Activity When People Solve Verbal Problems with Insight. 
PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097 
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The logistic mixed model reported in the associated paper identified a significant interaction between 

number of lessons and test condition on participants’ test phase accuracy (χ² = 36.2, p <. 001). Table S2 

explores this significant interaction by examining the linear effect of number of lessons in each test 

condition. 

 

Linear effect of number of lessons on accuracy in each test condition 

Test Condition 
Estimated 

Trend 
Standard 

Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-
ratio 

Holm 
corrected 
p-value 

Non-circle lines on spheres 0.11 0.13 -0.25 0.48 0.87 1.00 

Great circles on spheres 0.15 0.19 -0.37 0.67 0.79 1.00 

Small circles on spheres 0.51 0.09 0.27 0.75 5.93 < .001 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

0.29 0.15 -0.12 0.70 1.99 .28 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

0.03 0.12 -0.31 0.37 0.24 1.00 

Non-straight planar lines 
on various surfaces (eq. 
small circles on spheres) 

0.16 0.05 0.01 0.31 3.03 .017 

Straight non-planar lines on 
various surfaces (no eq. on 
spheres) 

0.03 0.06 -0.13 0.18 0.45 1.00 

Reasoning on the sphere  0.18 0.06 0.02 0.35 3.14 .014 

Reasoning on various 
surfaces 

0.11 0.06 -0.05 0.28 1.91 .28 

Table S2. Estimated linear trend for the effect of number of lessons on accuracy in each test condition. 

Significant trends are highlighted in bold. Results are given in logit scale. 
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b. Relation between Eureka experiences and test phase performance 

In the associated paper, we reported a significant interaction between a variable indicating whether 

participants had reported a Eureka experience and the variable for test condition on participants’ test phase 

accuracy (simple model without covariates χ² = 27.1, p < .001, model with covariates for number of lessons 

and education in mathematics, χ² = 34.4, p < .001). Table S3 explores these significant interactions by 

examining the estimated contrast in accuracy between participants who did vs. did not report Eureka 

experiences in each test condition. 
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Effect of Eureka report on accuracy in each test condition 

Test Condition 
Estimated 
Contrast 

Standard 
Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-ratio 
Holm 

corrected 
p-value 

Non-circle lines on spheres 
0.20 
0.07 

0.60 
0.64 

-1.45 
-1.69 

1.84 
1.84 

0.33 
0.12 

1.00 
1.00 

Great circles on spheres 
-1.18 
-1.75 

1.12 
1.20 

-4.29 
-5.09 

1.94 
1.58 

-1.05 
-1.46 

1.00 
1.00 

Small circles on spheres 
0.96 
0.39 

0.35 
0.38 

0.00 
-0.67 

1.92 
1.45 

2.78 
1.01 

.043 
1.00 

Non-straight non-planar 
lines on various surfaces (eq. 
non-circle lines on spheres) 

-0.90 
-1.31 

0.70 
0.74 

-2.84 
-3.38 

1.03 
0.75 

-1.29 
-1.77 

1.00 
.62 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

-0.81 
-0.95 

0.63 
0.67 

-2.56 
-2.81 

0.94 
0.90 

-1.28 
-1.43 

1.00 
1.00 

Non-straight planar lines on 
various surfaces (eq. small 
circles on spheres) 

0.25 
-0.04 

0.26 
0.26 

-0.47 
-0.77 

0.97 
0.69 

0.97 
-0.15 

1.00 
1.00 

Straight non-planar lines 
on various surfaces (no eq. 
on spheres) 

1.06 
1.22 

0.29 
0.30 

0.27 
0.39 

1.86 
2.05 

3.72 
4.09 

.002 
< .001 

Reasoning on the sphere  
0.36 
0.13 

0.27 
0.28 

-0.40 
-0.65 

1.12 
0.92 

1.32 
0.47 

1.00 
1.00 

Reasoning on various 
surfaces 

0.12 
-0.03 

0.28 
0.29 

-0.66 
-0.83 

0.91 
0.78 

0.44 
-0.10 

1.00 
1.00 

Table S3. Estimated contrast in accuracy between participants who did vs. did not report a Eureka 

experience in each test condition. Plain: Simple model without covariates. Italics: Model with covariates 

for number of lessons and education in mathematics. Significant contrasts are highlighted in bold. Results 

are given in logit scale. 
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c. Relation between Eureka experiences, confidence and test phase performance 

The main analyses identified a significant interaction between Eureka report and test condition (simple 

model without covariates χ² = 26.1, p = .001, model with covariates for number of lessons and education in 

mathematics χ² = 34.2, p < .001), and between confidence and test condition (simple model χ² = 33.0, p < 

.001, model with covariates χ² = 25.9, p = .001) on participants’ test phase accuracy. Tables S4 and S5 

explore these interactions.  
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Effect of Eureka report on accuracy in each test condition (controlling for confidence) 

Test Condition 
Estimated 
Contrast 

Standard 
Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-ratio 
Holm 

corrected 
p-value 

Non-circle lines on spheres 
0.08 
0.06 

0.60 
0.64 

-1.60 
-1.71 

1.75 
1.83 

0.13 
0.10 

1.00 
1.00 

Great circles on spheres 
-1.13 
-2.53 

1.26 
1.68 

-4.62 
-7.19 

2.37 
2.13 

-0.89 
-1.50 

1.00 
.93 

Small circles on spheres 
0.79 
0.32 

0.36 
0.38 

-0.20 
-0.75 

1.78 
1.38 

2.22 
0.83 

.21 
1.00 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

-0.97 
-1.29 

0.70 
0.75 

-2.92 
-3.37 

0.98 
0.79 

-1.38 
-1.72 

1.00 
.68 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

-0.77 
-0.92 

0.64 
0.68 

-2.54 
-2.80 

1.00 
0.96 

-1.20 
-1.36 

1.00 
1.00 

Non-straight planar lines on 
various surfaces (eq. small 
circles on spheres) 

0.25 
-0.02 

0.27 
0.27 

-0.49 
-0.76 

0.98 
0.72 

0.93 
-0.07 

1.00 
1.00 

Straight non-planar lines 
on various surfaces (no 
eq. on spheres) 

1.15 
1.26 

0.30 
0.30 

0.32 
0.43 

1.97 
2.10 

3.87 
4.18 

.001 
< .001 

Reasoning on the sphere  
0.27 
0.10 

0.28 
0.29 

-0.51 
-0.69 

1.06 
0.89 

0.97 
0.35 

1.00 
1.00 

Reasoning on various 
surfaces 

0.13 
-0.01 

0.29 
0.28 

-0.68 
-0.82 

0.93 
0.80 

0.43 
-0.03 

1.00 
1.00 

Table S4. Estimated contrast in accuracy between participants who did vs. did not report a Eureka 

experience, in each test condition, controlling for confidence. Plain: Simple model without covariates. 

Italics: Model with covariates for number of lessons and education in mathematics. Significant contrasts 

are highlighted in bold. Results are given in logit scale. 
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Linear effect of confidence on accuracy in each test condition (controlling for Eureka report) 

Test Condition 
Estimated 

Trend 
Standard 

Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-
ratio 

Holm 
corrected 
p-value 

Non-circle lines on spheres 
0.35 
0.32 

0.22 
0.22 

-0.24 
-0.28 

0.95 
0.92 

1.64 
1.47 

.71 
1.00 

Great circles on spheres 
-2.19 
-2.51 

0.89 
1.17 

-4.67 
-5.76 

0.28 
0.74 

-2.46 
-2.14 

.11 

.29 

Small circles on spheres 
0.34 
0.20 

0.13 
0.14 

-0.03 
-0.18 

0.70 
0.58 

2.54 
1.44 

.099 
1.00 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

0.18 
-0.01 

0.21 
0.22 

-0.42 
-0.62 

0.77 
0.60 

0.82 
-0.05 

1.00 
1.00 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

-0.15 
-0.20 

0.21 
0.22 

-0.74 
-0.80 

0.44 
0.40 

-0.71 
-0.93 

1.00 
1.00 

Non-straight planar lines on 
various surfaces (eq. small 
circles on spheres) 

0.00 
-0.06 

0.10 
0.09 

-0.27 
-0.32 

0.28 
0.21 

0.04 
-0.60 

1.00 
1.00 

Straight non-planar lines on 
various surfaces (no eq. on 
spheres) 

-0.11 
-0.10 

0.11 
0.10 

-0.40 
-0.39 

0.18 
0.19 

-1.06 
-0.92 

1.00 
1.00 

Reasoning on the sphere  
0.16 
0.09 

0.10 
0.10 

-0.13 
-0.19 

0.44 
0.37 

1.51 
0.88 

.79 
1.00 

Reasoning on various 
surfaces 

-0.01 
-0.06 

0.11 
0.10 

-0.30 
-0.35 

0.29 
0.23 

-0.07 
-0.59 

1.00 
1.00 

Table S5. Estimated linear trend for the effect of confidence on accuracy in each test condition, controlling 

for Eureka report. Plain: Simple model without covariates. Italics: Model with covariates for number of 

lessons and education in mathematics. Significant trends are highlighted in bold. Results are given in logit 

scale. 
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2. Analyses including the participants who were not treated with a teaching phase  

a. Effect of the number of lessons on test phase performance 

 

Logistic mixed model analysis of the effect of number of lessons on test phase accuracy  

 df χ² p 
Test condition 8 1003.2 < .001 

Number of lessons 1 23.7 < .001 

Education in Mathematics 1 2.04 .15 

Test condition*Number of lessons 8 51.9 < .001 

Test condition*Education in mathematics 8 19.0 .015 

Table S6. LogLik = -2395.5, Random effect (participant): variance = 0.27. Significant effects are 

highlighted in bold. 
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Linear effect of number of lessons on accuracy in each test condition  

Test Condition 
Estimated 

Trend 
Standard 

Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-
ratio 

Holm 
corrected p-

value 

Non-circle lines on 
spheres 

0.08 0.09 -0.18 0.34 0.88 1.00 

Great circles on spheres 0.40 0.14 0.01 0.78 2.82 .031 

Small circles on spheres 0.40 0.06 0.24 0.56 6.97 < .001 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

0.01 0.11 -0.29 0.31 0.08 1.00 

Straight planar lines on 
various surfaces (eq. 
great circles on spheres) 

0.23 0.08 0.01 0.45 2.85 .031 

Non-straight planar 
lines on various surfaces 
(eq. small circles on 
spheres) 

0.09 0.04 -0.00 0.19 2.66 .039 

Straight non-planar lines 
on various surfaces (no 
eq. on spheres) 

0.03 0.04 -0.07 0.13 0.77 1.00 

Reasoning on the sphere  0.12 0.04 0.01 0.22 3.03 .020 

Reasoning on various 
surfaces 

0.09 0.04 -0.02 0.20 2.22 .10 

Table S7. Estimated linear trend for the effect of number of lessons on accuracy in each test condition. 

Significant trends are highlighted in bold. Results are given in logit scale. 
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b.  Effect of the number of lessons on Eureka experiences 

 

Logistic regression analysis of the effect of number of lessons on Eureka report 

 χ² df p 

Number of lessons 7.7 1 .005 

Education in mathematics 0.2 1 .63 

Table S8. Significant effects are highlighted in bold. 

 

c. Relation between Eureka experiences and test phase performance 

 

Logistic mixed model analysis of the relation between Eureka report and test phase accuracy 

 No covariate model Covariates model 

 df χ² p df χ² p 

Test condition 8 1017.5 < .001 8 1010.6 < .001 

Eureka report 1 4.0 .46 1 0.9 .35 

Number of lessons    1 20.0 < .001 

Education in mathematics    1 2.16 .14 

Test condition*Eureka report 8 16.5 .036 8 16.1 .041 

Test condition*Number of 
lessons 

   8 51.9 < .001 

Test condition*Education in 
mathematics 

   8 18.8 .017 

Table S9. Results of the two mixed models analyzing the relation between Eureka report and test phase 

accuracy. Left: simple model without covariates, right: model accounting for years of education in 

mathematics and number of lessons. Simple model: Loglik = -2430.6, random effect (participant): variance 

= 0.33. Model with covariates: LogLik = -2386.6, Random effect (participant): variance = 0.26. Significant 

effects are highlighted in bold. 
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Effect of Eureka report on accuracy in each test condition 

Test Condition 
Estimated 
contrast 

Standard 
Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-ratio 
Holm 

corrected 
p-value 

Non-circle lines on spheres 
0.32 
0.22 

0.46 
0.48 

-0.96 
-1.10 

1.61 
1.55 

0.70 
0.461 

1.00 
1.00 

Great circles on spheres 
1.57 
1.18 

0.54 
0.55 

0.07 
-0.35 

3.08 
2.72 

2.89 
2.14 

.032 
.26 

Small circles on spheres 
0.56 
0.10 

0.26 
0.29 

-0.17 
-0.69 

1.29 
0.89 

2.14 
0.35 

.22 
1.00 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

-0.77 
-0.76 

0.61 
0.63 

-2.46 
-2.51 

0.93 
0.99 

-1.25 
-1.21 

1.00 
1.00 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

0.22 
-0.14 

0.37 
0.38 

-0.80 
-1.20 

1.24 
0.93 

0.60 
-0.36 

1.00 
1.00 

Non-straight planar lines on 
various surfaces (eq. small 
circles on spheres) 

0.16 
0.02 

0.19 
0.19 

-0.37 
-0.51 

0.69 
0.55 

0.83 
0.10 

1.00 
1.00 

Straight non-planar lines 
on various surfaces (no 
eq. on spheres) 

0.61 
0.64 

0.21 
0.21 

0.03 
0.06 

1.19 
1.23 

2.92 
3.05 

.032 

.021 

Reasoning on the sphere  
0.26 
0.13 

0.21 
0.21 

-0.31 
-0.44 

0.83 
0.70 

1.27 
0.63 

1.00 
1.00 

Reasoning on various 
surfaces 

0.18 
0.06 

0.21 
0.21 

-0.41 
-0.53 

0.76 
0.64 

0.83 
0.26 

1.00 
1.00 

Table S10. Estimated contrast in accuracy between participants who did vs. did not report a Eureka 

experience, in each test condition. Plain: Simple model without covariates. Italics: Model with covariates 

for number of lessons and education in mathematics. Significant contrasts are highlighted in bold. Results 

are given in logit scale. 
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d. Relation between Eureka experiences and confidence  

i. Correlation tests 

 

Correlation table for confidence ratings and Eureka reports 

 Confidence 1 Confidence 2 Confidence 3 Eureka 

Confidence 1 X ρ(84) = .67 
p < .001 

ρ(83) = .64 
p < .001 

ρ(84) = .20 
p = .17 

Confidence 2 ρ(82) = .64 
p < .001 

X 
ρ(83) = .86 

p < .001 
ρ(84) = .19 

p = .17 

Confidence 3 ρ(81) = .65 
p < .001 

ρ(81) = .87 
p < .001 

X 
ρ(83) = .21 

p = .17 

Eureka ρ(82) = .12 
p = .39 

ρ(82) = .15 
p = .39 

ρ(81) = .21 
p = .19 

X 

Table S11. Spearman’s ρ coefficients and p-values for pairwise correlation tests. Above diagonal: without 

covariates, below: with number of lessons and years of education in mathematics as covariates. Significant 

correlations are highlighted in bold. All p-values were corrected for multiple comparisons using Holm’s 

method (applied separately for the analyses with and without covariates). Note that the third rating of 

confidence was missing for one participant in the 1-lesson group, hence the difference in degrees of 

freedom. Confidence 1: measured just after participants completed the teaching phase; Confidence 2: 

measured after the various surfaces straight lines identification task; Confidence 3: measured after the 

reasoning task. 
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ii. Relation between Eureka experiences, confidence and test phase performance  

 

Logistic mixed model analysis of the relation between Eureka report, confidence and test phase 

accuracy 

 No covariate model Covariates model 

 df χ² p df χ² p 

Test condition 8 1025.6 < .001 8 1020.0 < .001 

Eureka report 1 4.4 .036 1 1.6 .21 

Confidence  1 0.6 .44 1 3.1 .078 

Number of lessons    1 21.3 < .001 

Education in mathematics    1 2.2 .14 

Test condition*Eureka report 8 19.2 .014 8 18.6 .017 

Test condition*Confidence 8 17.6 .024 8 14.1 .080 

Test condition*Number of lessons    8 48.1 < .001 

Test condition*Education in 
mathematics 

   8 18.9 .015 

Table S12. Results of the two mixed models analyzing the relations of Eureka report and confidence to test 

phase accuracy. Left: simple model without covariates, right: model with covariates for years of education 

in mathematics and number of lessons. Simple model: LogLik = -2421.7, Random effect (participant): 

variance = 0.33, Covariates model: LogLik = -2378.6, Random effect (participant): variance = 0.25. 

Significant effects are highlighted in bold. 
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Effect of Eureka report on accuracy in each test condition (controlling for confidence) 

Test Condition 
Estimated 
Contrast 

Standard 
Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-ratio 
Holm 

corrected 
p-value 

Non-circle lines on spheres 
0.26 
0.20 

0.47 
0.48 

-1.03 
-1.13 

1.55 
1.53 

0.56 
0.42 

1.00 
1.00 

Great circles on spheres 
1.83 
1.51 

0.56 
0.59 

0.27 
-0.11 

3.39 
3.13 

3.25 
2.58 

.010 

.080 

Small circles on spheres 
0.48 
0.09 

0.27 
0.29 

-0.26 
-0.70 

1.22 
0.89 

1.79 
0.70 

.51 

.89 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

-0.77 
-0.74 

0.62 
0.63 

-2.47 
-2.49 

0.94 
1.01 

-1.25 
-1.18 

1.00 
1.00 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

0.26 
-0.08 

0.37 
0.39 

-0.78 
-1.16 

1.29 
0.99 

0.69 
-0.21 

1.00 
1.00 

Non-straight planar lines on 
various surfaces (eq. small 
circles on spheres) 

0.15 
0.03 

0.20 
0.19 

-0.39 
-0.51 

0.70 
0.56 

0.79 
0.13 

1.00 
1.00 

Straight non-planar lines 
on various surfaces (no 
eq. on spheres) 

0.67 
0.68 

0.21 
0.21 

0.08 
0.09 

1.27 
1.27 

3.13 
3.21 

.014 

.012 

Reasoning on the sphere  
0.27 
0.16 

0.21 
0.21 

-0.31 
-0.42 

0.86 
0.73 

1.31 
0.75 

1.00 
1.00 

Reasoning on various 
surfaces 

0.20 
0.08 

0.21 
0.21 

-0.40 
-0.50 

0.79 
0.67 

0.92 
0.40 

1.00 
1.00 

Table S13. Estimated contrast in accuracy between participants who did vs. did not report a Eureka 

experience, in each test condition, controlling for confidence. Plain: Simple model without covariates. 

Italics: Model with covariates for number of lessons and education in mathematics. Significant contrasts 

are highlighted in bold. Results are given in logit scale. 
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Linear effect of confidence on accuracy in each test condition (controlling for Eureka report) 

Test Condition 
Estimated 

Trend 
Standard 

Error 

95% 
Confidence 

Interval, 
Lower 

95% 
Confidence 

Interval, 
Upper 

Z-
ratio 

Holm 
corrected 
p-value 

Non-circle lines on spheres 
0.16 
0.14 

0.13 
0.13 

-0.20 
-0.23 

0.52 
0.51 

1.25 
1.05 

1.00 
1.00 

Great circles on spheres 
-0.51 
-0.57 

0.19 
0.18 

-1.04 
-1.08 

0.03 
-0.06 

-2.64 
-3.07 

.074 

.019 

Small circles on spheres 
0.13 
0.01 

0.08 
0.08 

-0.08 
-0.22 

0.35 
0.23 

1.70 
0.09 

.71 
1.00 

Non-straight non-planar 
lines on various surfaces 
(eq. non-circle lines on 
spheres) 

0.04 
-0.00 

0.16 
0.17 

-0.42 
-0.48 

0.49 
0.48 

0.24 
-0.00 

1.00 
1.00 

Straight planar lines on 
various surfaces (eq. great 
circles on spheres) 

-0.07 
-0.12 

0.12 
0.12 

-0.39 
-0.44 

0.26 
0.20 

-0.57 
-1.05 

1.00 
1.00 

Non-straight planar lines on 
various surfaces (eq. small 
circles on spheres) 

0.01 
-0.02 

0.06 
0.06 

-0.15 
-0.17 

0.17 
0.13 

0.23 
-0.36 

1.00 
1.00 

Straight non-planar lines on 
various surfaces (no eq. on 
spheres) 

-0.08 
-0.09 

0.06 
0.06 

-0.25 
-0.25 

0.09 
0.08 

-1.30 
-1.42 

1.00 
1.00 

Reasoning on the sphere  
-0.02 
-0.07 

0.06 
0.06 

-0.19 
-0.23 

0.15 
0.10 

-0.26 
-1.05 

1.00 
1.00 

Reasoning on various 
surfaces 

-0.04 
-0.07 

0.06 
0.06 

-0.21 
-0.24 

0.14 
0.10 

-0.57 
-1.14 

1.00 
1.00 

Table S14. Estimated linear trend for the effect of confidence on accuracy, in each test condition, 

controlling for Eureka report. Plain: Simple model without covariates. Italics: Model with covariates for 

number of lessons and education in mathematics. Significant trends are highlighted in bold. Results are 

given in logit scale. 
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