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Empirical Article

A fundamental characteristic of good research practice 
is testing hypotheses with adequate statistical power (in 
the null-hypothesis-significance-testing [NHST] frame-
work; Cohen, 1988). Running studies with high power 
increases the likelihood of documenting not only true 
effects but also replicable effects (Altmejd et al., 2019; 
Button et  al., 2013; Fraley & Vazire, 2014). Whereas 
power analysis for main effects is relatively straightfor-
ward (Kovacs et al., 2022), power analysis for first-order 
(i.e., two-way) interactions (referred to hereafter as 
“interactions”) poses two important challenges.

First, conducting appropriate power analysis for inter-
actions cannot be easily carried out with software such 
as G*Power (Faul et al., 2007) or packages such as pwr 
(Champely et al., 2017) because the expected effect size 
of an interaction depends on its shape (Maxwell &  
Delaney, 2004). This can lead scholars to base their 
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Abstract
Power analysis for first-order interactions poses two challenges: (a) Conducting an appropriate power analysis is difficult 
because the typical expected effect size of an interaction depends on its shape, and (b) achieving sufficient power is 
difficult because interactions are often modest in size. This article consists of three parts. In the first part, we address 
the first challenge. We first use a fictional study to explain the difference between power analyses for interactions and 
main effects. Then, we introduce an intuitive taxonomy of 12 types of interactions based on the shape of the interaction 
(reversed, fully attenuated, partially attenuated) and the size of the simple slopes (median, smaller, larger), and we offer 
mathematically derived sample-size recommendations to detect each interaction with a power of .80/.90/.95 (for two-tailed 
tests in between-participants designs). In the second part, we address the second challenge. We first describe a preregistered 
metastudy (159 studies from recent articles in influential psychology journals) showing that the median power to detect 
interactions of a typical size is .18. Then, we use simulations (≈900,000,000 data sets) to generate power curves for the 12 
types of interactions and test three approaches to increase power without increasing sample size: (a) preregistering one-
tailed tests (+21% gain), (b) using a mixed design (+75% gain), and (c) preregistering contrast analysis for a fully attenuated 
interaction (+62% gain). In the third part, we introduce INT×Power (www.intxpower.com), a web application that enables 
users to draw their interaction and determine the sample size needed to reach the power of their choice with the option of 
using/combining these approaches.
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power analyses on an incorrect effect size. Second, 
achieving sufficient power to detect interactions is not 
an easy task because either the effect size of interactions 
is often small and, by extension, the required sample size 
is often very large (Brysbaert, 2019). This can prevent 
scholars with limited resources (e.g., from low-income 
countries; Bredan, 2020) from achieving adequate power.

Although there has been much discussion about the 
issue of statistical power for interactions in popular 
blogs (Gelman, 2018; Giner-Sorolla, 2018; Simonsohn, 
2014) and scientific articles (for classic work, see Aiken 
et al., 1991; Cronbach, 1987; McClelland & Judd, 1993; 
for recent work, see Blake & Gangestad, 2020; Lakens 
& Caldwell, 2021; Perugini et al., 2018), there are still 
no practical and easy-to-implement solutions to the two 
challenges mentioned above. In this article, we aim to 
propose such solutions for dichotomous and continuous 
predictors. It is divided into three parts.

In the first part, we address the challenge of conduct-
ing appropriate power analysis for interactions. First, we 
offer a description of why decisions regarding power 
analyses differ between main and interaction effects, and 
then we introduce an intuitive taxonomy of 12 types of 
interactions along with the required Ns to detect each 
of them with power = .80/.90/.95.

In the second part, we address the challenge of 
achieving sufficient power to detect interactions. First, 
we report the findings from a metastudy showing that 
most studies testing interactions are underpowered, and 
then we describe the results from simulations testing 
three approaches to increase power for detecting inter-
actions without increasing sample size.

In the third part, we introduce INT×Power (www.intx 
power.com), a user-friendly web application that enables 
researchers to draw a figure of their expected interaction 
to obtain the required N to achieve their desired level of 
power (using the calculation described in the first part 
of the article) with the possibility of optimizing power 
without increasing sample size (using the approach 
described in the second part of the article).

How to Conduct an Appropriate Power 
Analysis for Interactions

Calculating effect size and required 
sample size for interactions

In the first part of this article, we present a simple illus-
tration of why expectations about effect-size and sample-
size requirements differ between main effects (in a 
two-group design) and interaction effects (in a 2 × 2 
design). This illustration uses a dichotomous predictor 
and moderator but applies to continuous predictors as 
well. Only basic statistical knowledge is required, and 
the formulas provided can be found in most textbooks 
on power analysis (e.g., Aberson, 2019; Cohen, 1988; 
Maxwell & Delaney, 2004).

Calculating the required sample size to detect a 
median-sized main effect. Imagine you are planning a 
study to estimate the effect of a new intervention aiming 
to improve people’s well-being. Specifically, you intend to 
use a two-group experimental design to test the following 
hypothesis: “Compared with participants in the control 
group, participants in the intervention group report higher 
levels of well-being.” To test your hypothesis, you will use 
a simple linear regression:

Well-being B B Condition e1i i i= + × +0 ,     (1)

with i = 1, 2, 3, . . . , N (number of participants), where 
Conditioni = −0.5 for the control group and Conditioni =  
+0.5 for the intervention group, and ei represents the 
error.1

To plan your study efficiently, you must first determine 
the expected effect size of Conditioni. Because your inter-
vention is new, you do not have a clear sense about the 
expected magnitude of its effect, and you decide to use 
the median effect size in psychology, that is, Cohen’s  
d = 0.35 (for the rationale on how we chose this value, 
see “A Taxonomy of 12 Types of Interactions”). Assuming 
equal sample sizes and SD = 1 for both groups, you 
expect the mean well-being score to be 0.35 points 
higher in the intervention than in the control group:
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where Mintervention and Mcontrol represent the standardized 
mean in the intervention group and control group, 
respectively.

You now wonder how many participants are needed 
to detect such a median-sized main effect with a sta-
tistical power of 1 – β = 0.80 (i.e., if the effect exists, 
there is an 80% chance of detecting a true positive) 
using a two-tailed test with an α of .05 (i.e., if the  
effect does not exist, there is a 5% risk of detecting a 
false positive). To calculate the required N, you enter 
the three key parameters (expected d, target power, α) 
in G*Power, which uses a formula very similar to the 
following:2
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where Z1-α/2=.025 = 1.96 and Z1-β=.80 = 0.84 are the critical 
Z values associated with a two-tailed test with α = .05 
and 1 – β = 0.80, respectively.

Simply put, assuming that your intervention works as 
expected, a sample size of 256 participants will give you 
an 80% probability to observe a median-sized (or larger) 
effect of Conditioni with p < .05.

Calculating the required sample size to detect an 
interaction effect of a typical size. Now imagine you 
believe that your intervention should benefit only women, 
not men.3 You are planning to use a 2 × 2 factorial design 
to test the following hypothesis: “Compared with women 
in the control group, women in the intervention group 
report higher levels of well-being; for men, there is no dif-
ference between the two conditions.” To test your hypoth-
esis, you will use the multiple linear regression below:

 
Well-being B B Condition B

Gender B Condition Gend
1 2

3

i i

i i

= + × +
× + × ×

0

eer ei i+ ,     (4)

where Genderi = −0.5 for men and +0.5 for women.
To plan your study efficiently, you must again begin 

by determining the expected effect size of Conditioni × 
Genderi interaction. In this situation, you may feel it is 
reasonable to use the same generic value of d = 0.35 
used above to describe an interaction effect of typical 
size. Then, because you now have a 2 × 2 instead of a 
two-group design, it may seem logical to double the 
sample size (for examples of recent articles following 
this reasoning, see Majer et  al., 2022; Tepe & Byrne, 
2022; Y. Wang & Xie, 2021). However, this would be a 
mistake.

The reason why this is a mistake is simple: Contrary 
to the Cohen’s d of a main effect in a two-group design, 
the Cohen’s d of an interaction in a 2 × 2 design should 
not be seen as a difference between means but as a dif-
ference between subdifferences. Assuming equal sample 
sizes and a SD = 1 for each of your subgroups, the cal-
culation corresponds to the difference between (a) the 
subdifference between Mintervention♀ and Mcontrol♀ for 
women [the simple slope d

i( )Condition ♀] and (b) the subdif-
ference between Mintervention♂ and Mcontrol♂ for men [the 
simple slope d

i( )Condition ♂]:
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Because the effect size of an interaction is derived 
from the effect sizes of its simple slopes, it is not 

reasonable to expect the effect size of the Conditioni × 
Genderi interaction to be as high as d = 0.35. Indeed, 
given that the simple slope for men is null, such an 
interaction would involve an unusually large simple 
slope for women of d i( )Condition ♀ = 0.70:
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In this case, it would be more reasonable to expect 
the effect size of the Conditioni × Genderi interaction to 
be d = 0.175 because such an interaction would this time 
involve a median simple slope for women of d i( )Condition  = 
0.35.
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From there, you can use Equation 3 to calculate the 
required N to detect an interaction effect of d = 0.175 
with a statistical power of .80 using a two-tailed test with 
α = .05. You will realize that you do not need a sample 
twice as large but 4 times as large as the sample used 
in the first case, that is, N = 1,024 participants.
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Although this example is only one of many possible 
interactions, it illustrates the danger of relying on a 
generic value to define the expected effect size of an 
interaction (e.g., believing that an interaction of a typical 
size will always be d = 0.35). A less error-prone approach 
is to define the expected effect sizes of the simple slopes 
(e.g., a median simple slope of d = 0.35 combined with 
a null simple slope of d = 0.00) and work from there to 
determine the expected effect size of the interaction and 
the required sample size. In the next section, we propose 
a taxonomy of interactions that will allow us to provide 
comprehensive sample-size recommendations.

♀ ♂

♀ ♂

♀ ♂

♀ ♂

♂♀
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A taxonomy of 12 types of interactions

Now, we introduce an intuitive taxonomy of 12 types of 
interactions based on two criteria: (a) the expected 
shape of the interaction (based on the signs of the sim-
ple slopes) and (b) the expected sizes of the simple 
slopes (based on the values of the simple slopes). We 
give the required sample size to detect each interaction 
with adequate power.

Criterion 1. What is the expected shape of my inter-
action? The literature typically defines three basic shapes 
of interaction: (a) a reversed interaction, (b) a fully attenu-
ated interaction, and (c) a partially attenuated interaction 
(for related distinctions, see Baranger et al., 2022; Blake & 
Gangestad, 2020; Brysbaert, 2019; Giner-Sorolla, 2018;  
Lakens & Caldwell, 2021; Ledgerwood, 2019; Perugini 
et al., 2018).

First, a reversed interaction (also known as a “cross-
over interaction” or “reversal of the effect”) involves 
simple slopes that go in opposite directions (see Fig. 1, 
left). For instance, joining (vs. leaving) a group that one 
holds in high esteem increases life satisfaction, whereas 
joining (vs. leaving) a group that one holds in low 
esteem decreases life satisfaction (DeMarco & Newheiser, 
2019).

Second, a fully attenuated interaction (also known as 
a “knockout interaction” or “elimination of the effect”) 
involves a simple slope that goes in one direction and 
a simple slope that is null (see Fig. 1, middle). For 

instance, students from lower socioeconomic back-
grounds benefit from having a growth mindset, whereas 
students from higher socioeconomic backgrounds do 
not (Sisk et al., 2018).

Third, a partially attenuated interaction (also known 
as a “spreading interaction” or “attenuation of the effect”) 
involves simple slopes that go in the same direction but 
for which one slope is steeper than the other (see Fig. 1, 
right). For instance, middle-aged individuals who are 
less educated are more likely to be depressed, whereas 
in older individuals, the link between education and 
depression persists but is weaker (a trend known as the 
“age-as-leveler pattern”; Abrams & Mehta, 2019).

Criterion 2. What are the expected effect sizes of my 
simple slopes? In an ideal world, researchers would 
always base their expectations for effect size on prior, 
high-powered, preregistered studies. However, research-
ers often test new hypotheses for which no such studies 
are available, leaving them with only a vague idea of the 
effect size in the population. Consequently, researchers 
often resort to using Cohen’s (1965) benchmarks (e.g., 
when using G*Power), which equate small, medium, and 
large effects to standardized mean differences of d = 0.20, 
0.50, and 0.80, respectively (see Equation 2). Although 
these benchmarks are widely used today, Cohen (1988) 
himself recognized that they offer “no more reliable a 
source than intuition” and argued that “with the accumula-
tion of experience, [these benchmarks] may well require 
revision (I suspect downward)” (p. 478).

Group 1 Group 2Group 1 Group 2Group 1 Group 2

Predictor

Ou
tc

om
e

Moderator:
Group A
Group B

Fully attenuated interaction
(one simple slope is null)

Partially attenuated interaction
(simple slopes in the same direction)

Reversed interaction
(simple slopes in opposing directions)

Fig. 1. Example of a reversed interaction (left), a fully attenuated interaction (middle), and a partially attenuated interaction (right) 
in the context of a 2 (Predictor: Group 1 vs. Group 2) × 2 (Moderator: Group A vs. Group B) design. These are just three examples of 
reversed, fully attenuated, and partially attenuated interactions; other configurations are possible. For the reversed interaction, the main 
effects are set to zero, resulting in a symmetrical pattern; if one of the main effects was nonzero, the pattern would be asymmetrical. 
As another example, for the fully attenuated interaction, the two main effects are equal in size and positive, resulting in an ordinal 
interaction (the crossover of predicted values is at the boundary); if one of the main effects was negative, the interaction would become 
dis-ordinal (Widaman et al., 2012).
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Many scholars have discussed substituting Cohen’s 
classic benchmarks for empirically derived benchmarks 
(Brysbaert, 2019; Funder & Ozer, 2019; Hemphill, 2003). 
To this end, Gignac and Szodorai (2016) gathered cor-
relation coefficients from 87 meta-analyses in social/ 
personality psychology and established that the 25th, 50th, 
and 75th percentiles roughly corresponded to Cohen’s ds 
of 0.20, 0.40, and 0.60, respectively (see also Fraley & 
Marks, 2007; Lovakov & Agadullina, 2021; Richard et al., 
2003). However, effect sizes from nonpreregistered studies 
are inflated by 2 to 5 times because of publication bias 
(Camerer et al., 2018; Ebersole et al., 2020; Klein et al., 
2018), and these meta-analytically derived benchmarks are 
likely overestimations (Correll et al., 2020).

More recently, Schäfer and Schwarz (2019) gathered 
effect sizes from 93 randomly selected preregistered 
studies in psychology and found a slightly lower median 
effect size of about d = 0.35. Importantly, the authors 
documented significant variation in effect sizes among 
subdisciplines and study designs, indicating that there 
are no universally applicable benchmarks (see also  
Adachi & Willoughby, 2015; Flora, 2020; Lakens, 2013). 
Despite this limitation, we suggest that the following 
empirically derived benchmarks may be useful heuristic 
descriptions of relatively small, median, and relatively 
large effects: d = 0.20, d = 0.35, and d = 0.50, respectively 
(for correspondences with other types of estimates, see 
Table 1). These benchmarks can be used to quantify 
archetypal effect sizes or to define the smallest effect 
size of interest (Anvari & Lakens, 2021). For instance, d = 
0.20 might sometimes be considered as the minimum 
effect size of theoretical or practical significance.

12 types of interactions.
Description of the taxonomy. As is shown in Table 2, 

our taxonomy covers interactions involving any combina-
tion of median (d = 0.35), smaller (d = 0.20), and larger 
(d = 0.50) simple slopes. This encompasses the following:

•• Six reversed interactions: The typical reversed 
interaction is the “+0.35|−0.35 reversed interac-
tion,” which involves a median simple slope that 
goes in one direction (e.g., d = +0.35) and a 

median simple slope that goes in another direction 
(e.g., d = −0.35). Note that the order of the signs 
is arbitrary, given that a +0.35|−0.35 and a −0.35 
|+0.35 interaction have the same overall effect size 
of|d|= 0.35, which is equivalent to a median-sized 
main effect.

•• Three fully attenuated interactions: The typical 
fully attenuated interaction is the “+0.35|0.00 fully 
attenuated interaction,” which involves a median 
simple slope that goes in either direction (e.g.,  
d = +0.35) and a null simple slope (d = 0.00). Note 
that the sign of the nonnull simple slope is arbi-
trary, given that a +0.35|0.00 and a −0.35|0.00 
interaction have the same overall effect size of  
|d|= 0.175, which is half the size of a median-
sized main effect.

•• Three partially attenuated interactions: The typical 
partially attenuated interactions are the “+0.20| 
+0.35” or the “+0.35|+0.50 partially attenuated 
interaction,” which involve a simple slope that goes 
in one direction (e.g., d = +0.20) and a larger sim-
ple slope that goes in the same direction (e.g.,  
d = +0.35). Note that the common sign of the sim-
ple slopes is arbitrary, given that a −0.20|−0.35 and 
a −0.35|−0.50 interaction have the same overall 
effect size of|d|= 0.075, which is nearly 5 times 
smaller than a median-sized main effect.

Sample-size recommendations in between-participants 
designs and assumptions. In Table 2, we provide the 
required sample sizes to achieve power of .80, 90, or .95 
when using a two-tailed test with α = .05 to detect each of 
the 12 interactions in 2 × 2 designs. The values of .80 and 
.90 are commonly used as lower limits for acceptable sta-
tistical power (Cohen, 1988), whereas .95 is a more strin-
gent standard that may be useful in certain circumstances, 
such as when planning an exact replication (Hedges & 
Schauer, 2019).

These required sample sizes can be used as case-
sensitive recommendations provided that the usual 
assumptions of linear regression are met: approximate 
multivariate normality (O’Connor, 2006), homogeneity 
of variance across subgroups (Overton, 2001), indepen-
dence of residual error (Arend & Schäfer, 2019), and lack 
of severe multicollinearity (Shieh, 2010). However, in the 
context of interaction, two additional assumptions 
deserve particular attention (for relevant research, see 
Aguinis, 1995; Aguinis & Gottfredson, 2010; Jaccard 
et al., 2003; McClelland & Judd, 1993).

First, equal sample sizes are expected across sub-
groups. In our introductory example, this means having 
the same number of women and men in each condition. 
When this assumption is violated, the power to detect 
the interaction decreases, albeit only slightly. For instance, 

Table 1. Empirically Derived Benchmarks Used in the 
Present Article

Cohen’s d Cohen’s f Pearson’s r η2
p

Smaller 0.20 0.10 .10 .01
Median 0.35 0.175 .17 .03
Larger 0.50 0.25 .24 .06

Note: These values are based on former work (in particular, Gignac 
& Szodorai [2016] and Schäfer & Schwarz [2019]). For conversion 
formulas, see Appendix, Equations A1 through A3 at osf.io/xhe3u.
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when the ratio is 2:1 instead of 1:1 (e.g., twice the num-
ber of women compared with men), power is reduced 
by approximately 5%. However, when the ratio is 9:1, 
power is reduced by 33% (Stone-Romero et al., 1994).

Second, measurement error should be zero. In our 
introductory example, regarding the moderator, this 
means that 100% of the participants are expected to report 
their gender without error (e.g., selecting the wrong 
response option). When this assumption is violated, the 
power to detect the interaction decreases in proportion 
to the degree of error: For instance, if 95% of the partici-
pants correctly reported their gender, the expected effect 
size used in the power analysis should be adjusted with 
dadjusted = d × .95 (Blake & Gangestad, 2020). Note that 
our benchmarks, which are empirically derived from 
actual studies with measurement error, already take this 
into account (meaning if you manage to enhance reli-
ability, you can use a larger expected effect size).

Anticipating two criticisms. Two potential arguments 
can be made against our taxonomy. First, one could argue 
that interactions with different shapes may have the same 
overall effect size, calling into question the relevance 
of the concept of “shape.” For example, reversed, fully 
attenuated, and partially attenuated interactions could all 
theoretically have an effect size of d = 0.35 and require 
the same N to reach power = .80. However, we find this 

argument misleading because reversed interactions with  
d = 0.35 involve median-sized simple slopes and are there-
fore relatively common, while attenuated interactions with 
d = 0.35 involve huge simple slopes and are almost never 
encountered.

Second, one can argue that the 12 interactions cor-
respond to specific combinations of interactive and main 
effects, calling into question the importance of simple 
slopes. For instance, a fully attenuated interaction +0.35 
|0.00 corresponds to a combination of interactive and 
main effects of ds = 0.175. However, we also find this 
argument irrelevant because researchers testing interac-
tions do not typically think in terms of specific combina-
tions of interactive and main effects. Rather, they 
hypothesize interaction patterns, making it practical to 
think about the relative sizes and signs of their expected 
simple slopes.

In the first part of this article, we showed that the 
required sample size to detect interactions is often 
larger than one would intuitively estimate, especially 
for attenuated interactions (for related research, see 
Bakker et al., 2016). In the second part, we report the 
findings of a preregistered metastudy showing that most 
studies testing interactions are indeed underpowered, 
and then we describe the results from simulations test-
ing three approaches to increase power without increas-
ing sample size.

Table 2. Taxonomy of 12 Possible Types of Interactions as a Function of Shape (Criterion 1) and Expected Effect Sizes of 
Simple Slopes (Criterion 2)

Criterion 1
Shape

Criterion 2
Expected effect sizes (Cohen’s d)

Overall 
interaction 
effect size

Total required sample size

Simple Slope 1 Simple Slope 2
Power = 

.80
Power = 

.90
Power = 

.95

Reversed +0.20 (smaller) –0.20 (smaller) 0.20 N = 784 N = 1,051 N = 1,300
Reversed +0.20 (smaller) −0.35 (median) 0.28 N = 415 N = 556 N = 687
Reversed +0.20 (smaller) −0.50 (larger) 0.35 N = 256 N = 343 N = 424
Reversed +0.35 (median) −0.35 (median) 0.35 N = 256 N = 343 N = 424
Reversed +0.35 (median) −0.50 (larger) 0.43 N = 174 N = 233 N = 288
Reversed +0.50 (larger) −0.50 (larger) 0.50 N = 125 N = 168 N = 208
Fully attenuated +0.20 (smaller) 0.00 (null) 0.10 N = 3,136 N = 4,204 N = 5,198
Fully attenuated +0.35 (median) 0.00 (null) 0.18 N = 1,024 N = 1,373 N = 1,697
Fully attenuated +0.50 (larger) 0.00 (null) 0.25 N = 502 N = 673 N = 832
Partially attenuated +0.20 (smaller) +0.35 (median) −0.08 N = 5,575 N = 7,474 N = 9,241
Partially attenuated +0.20 (smaller) +0.50 (larger) −0.15 N = 1,394 N = 1,869 N = 2,310
Partially attenuated +0.35 (median) +0.50 (larger) −0.08 N = 5,575 N = 7,474 N = 9,241

Note: We provide the total required sample sizes to achieve a power of .80, .90, or .95 using a two-sided test with dichotomous/continuous 
predictors in a between-participants design (α = .05). Typical interactions (i.e., involving at least one median simple slope) are in bold. The Ns were 
calculated using Equation. 3. For the reversed interactions, the signs of simple slopes can be switched (e.g., a +0.20 | −0.35 and a −0.20 | +0.35 
reversed interaction require the same N); for the fully attenuated interactions, the signs of Simple Slope 1 can be either positive or negative (e.g., 
a +0.20 | 0.00 and a −0.20 | 0.00 fully attenuated interaction require the same N); for the partially attenuated interactions, the signs of the simple 
slopes can be either both positive or both negative (e.g., a +0.20 | +0.35 and a −0.20 | −0.35 partially attenuated interaction require the same N).
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How to Achieve Sufficient Power to 
Detect Interactions

A preregistered metastudy on  
power-analysis practices

In the second part of this article, we begin by describing 
the findings from a preregistered metastudy that exam-
ined the power analysis and research practices used in 
testing interaction hypotheses. We aimed to build a 
sample of relevant studies from approximately 100 arti-
cles4 published in 10 influential psychology journals. We 
sought to answer three research questions:

Research Question 1: What is the proportion of studies 
testing attenuated interactions (the most difficult to 
detect)?

Research Question 2: What is the proportion of studies 
using an adequate power analysis?

Research Question 3: What is the median statistical 
power of the studies?

Method. The study was preregistered (any deviation from 
the preregistered protocol is noted). The eligibility criteria, 
the preregistration, the coding sheets, the raw data set, and 
the Stata scripts to reproduce the findings can be found at 
https://osf.io/xh5tc/. We report how we determined our 
sample size, all data exclusions, all manipulations, and all 
measures in the metastudy.

Eligibility criteria and rationales. We focused on 
articles that met five eligibility criteria (for the detailed list, 
see Table S1 in the Supplemental Material). First, we 
focused on articles in which an interaction hypothesis was 
formulated a priori (Criterion 1) because NHST is mainly 
appropriate for confirmatory and not exploratory analysis 
(Wagenmakers et al., 2012; but see Rubin, 2017). Moreover, 
we focused on articles testing first-order interactions (Crite-
rion 2) because second-order interactions correspond to a 
difference between differences of subdifferences and are 
notoriously harder to detect (Dawson & Richter, 2006). 
Finally, we focused on articles using a between-participants 
design (Criterion 3) and a regular regression framework 
(including analysis of variance [ANOVA]; Criterion 4) with 
a one-degree-of-freedom test (Criterion 5). The reason 
for these foci was that within-participants designs, nonlin-
ear functions, multilevel modeling, polytomous variables, 
and so on all involve different formulas for statistical 
power calculations (see Brysbaert, 2019; Demidenko, 
2008; Domingue et al., 2022; Mathieu et al., 2012). How-
ever, we will later show how mixed designs and planned-
contrast analysis can be used to increase power.

Article selection and data extraction. Our study proce-
dure consisted of three steps (for a flowchart detailing these 
steps and the number of articles and studies, see Fig. 2).

Step 1: search strategy. In June 2021, we sampled 
articles from 10 top-tier empirical journals in general, 
social, and/or personality psychology (for the list of these 

Articles Identified as Relevant
Based on the Title/Abstract

K2a = 202 

Articles 
Left Out
k = 798

Articles Identified as Relevant
Based on the Full Text

K2b= 82 

Total Number of Studies
Included in the Dataset N = 159 

(n ≈ 2.0 studies per article)
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Fig. 2. Flowchart depicting the three steps of the article-selection and data-extraction procedure.

https://osf.io/xh5tc/
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 journals and their characteristics, see Table 3). The median 
Journal Impact Factor Percentile was 85th, meaning that 
the typical journal in our data set was in the top 15% of 
its category (Clarivate Analytics, 2021). For each journal, 
we used PsycINFO to identify the 100 most recent arti-
cles containing the words “moderat*” or “interact*” (in any 
field). At the end of Step 1, our sample comprised K1 = 10 
(journals) × 100 (articles) = 1,000 articles.

Step 2a: screening titles/abstracts. In July 2021, we 
gave two coders the titles and abstracts of the 1,000 arti-
cles. The coders were unaware of the specific purposes 
of the study. For each journal, they were asked to identify 
the 20 most recent articles that likely satisfied our five 
eligibility criteria. After training with articles from Social 
Psychological and Personality Science (SPPS), they coded 
the remaining articles independently using the following 
coding scheme: 0 = nonrelevant article, 1 = potentially 
relevant article. The interrater agreement, measured 
using Cohen’s kappa, was .70 (above our preregistered 
threshold of κ = .60), with a substantial percentage of 
agreement of 88.2% (Belur et al., 2021). Then, the two 
coders independently reviewed their disagreements and 
could change their responses (the remaining disagree-
ments were resolved by discussion). At the end of Step 
2a, our sample comprised 202 articles.5

Step 2b: screening full texts. In August 2021, we gave 
the two coders the full texts of the 202 articles. For each 
journal, the coders were asked to first identify the 10 most 
recent articles that satisfied Criteria 2 through 5 and then 

Criterion 1. After training with the articles from SPPS, they 
independently coded the remaining articles using the fol-
lowing coding scheme: 0 = nonrelevant article, 1 = rel-
evant article. The interrater agreement was κ = .79, with 
a percentage of agreement of 90.7%. Disagreements were 
resolved by discussion. At the end of Step 2b, our sample 
comprised 82 articles.

Step 3: data extraction. In September 2021, we gave 
the two coders a data extraction spreadsheet (Table S2). 
For each of the 82 articles, the coders were asked to 
(a) identify the interaction hypothesis/es and specify 
its/their types (reversed, fully attenuated, or partially 
attenuated [Research Question 1]), (b) identify the power 
analysis/es and specify its/their characteristics (e.g., 
type, focus, whether the shape of the interaction was 
taken into account [Research Question 2]), and (c) col-
lect the analytical sample size (for us to calculate power 
[Research Question 3]). After training with three articles 
from Psychological Science, they completed the spread-
sheet independently. The mean interrater agreement for 
the categorical/numeric responses was .87, with an over-
all percentage of agreement for all questions of 82.0%. 
At the end of Step 3, our sample comprised 159 studies 
from 82 articles (≈ 2 studies per article). The sample size 
was somewhat below our target number of 100 articles. 
However, the articles were deemed representative of the 
current literature in that they covered a large proportion, 
if not most, of the target population of studies testing 
interactions published in the 10 chosen journals between 
2017 and 2021.

Table 3. List of the 10 Journals With Their Journal Impact Factor Percentile, the Number 
of Articles k at Each Intermediary Step, and the Number of Articles k and Studies n at the 
End of the Final Step

Years JIF perc. Step 1 k Step 2a k Step 2b k Step 3 n

JPSP 2021–2022 94th 100 20  9 21
PS 2019–2021 93rd 100 20  6 18
SPPS 2019–2021 92nd 100 20  9 12
EJP 2017–2019 91st 100 11  3  8
JP 2018–2020 85th 100 21 10 14
JESP 2020–2021 85th 100 23  9 20
JEP:G 2020–2021 82nd 100 26  6  8
PSPB 2021 84th 100 21 11 21
BJSP 2020–2021 80th 100 20  9 15
EJSP 2019–2021 73rd 100 20 10 22
Total 2017–2022 Median = 85 K = 1,000 K = 202 K = 82 N = 159

Note: Step 1 = search strategy; Step 2a = screening abstract and title; Step 2b = data extraction; Step 3 = 
data extraction; JIF perc. = Journal Impact Factor Percentile (JIF perc. transforms the rank in category by 
JIF into a percentile value, thereby allowing us to take the category of the journal into account); JPSP = 
Journal of Personality and Social Psychology; PS = Psychological Science; SPPS = Social Psychological and 
Personality Science; EJP = European Journal of Personality; JP = Journal of Personality; JESP = Journal of 
Experimental Social Psychology; JEP:G = Journal of Experimental Psychology: General; PSPB = Personality 
and Social Psychology Bulletin; BJSP = British Journal of Social Psychology; EJSP = European Journal of 
Social Psychology.
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Results.
Research Question 1: What is the proportion of studies 

testing attenuated interactions?
About 85% of the studies tested attenuated-interaction 

hypotheses.
A total of 159 studies tested 194 interaction hypoth-

eses. Seven studies were excluded from the analysis 
because the coders could not determine the shape of the 
hypothesized interactions. Among the 152 remaining 
studies, only 15% tested at least one reversed-interaction 
hypothesis, whereas 36% tested at least one fully attenu-
ated interaction, and 52% tested at least one partially 
attenuated interaction (Fig. 3, left). Note that the percent-
ages do not add up to 100% because one study could 
test multiple types of interaction hypotheses.

Research Question 2: What is the proportion of studies 
using an adequate power analysis?

Less than 5% of the studies used an adequate power 
analysis. 

Out of the 159 studies, 45% did not report a power/
sensitivity analysis—specifically, 65 did not report any 
analysis, three did not specify the type of analysis,  
and three reported an incorrect “post hoc” power  
analysis (see Hoenig & Heisey, 2001). Another 20% 
reported a power/sensitivity analysis not focused on the 
interaction—specifically, 23 did not specify the focal 
effect, and nine focused on a main effect or another type 

of effect. Finally, another 32% reported a power or sen-
sitivity analysis focused on the interaction but did not 
take the shape of the interaction into account. In sum, 
only 4% of the studies reported an adequate power 
analysis (Fig. 3, right).

Research Question 3: What is the median statistical 
power of the studies? 

The overall median power to detect interactions of a 
typical size is .18. 

For each hypothesis of each study, we used Equations 
5 and A4 (available at osf.io/xhe3u) to calculate the 
power afforded by the analytical sample size to detect 
the typical version of the interaction expected by the 
authors.6 For the studies testing a reversed interaction 
(n = 23),7 the power to detect a +0.35 |−0.35 reversed 
interaction was at or above .80 in 65% of the cases, and 
the median power was = .87. For the studies testing a 
fully attenuated interaction (n = 54), the power to detect 
a +0.35|0.00 fully attenuated interaction was at or above 
.80 in 19% of the cases, and the median power was .36. 
For the studies testing a partially attenuated interaction 
(n = 74), the power to detect a +0.35|+0.20 (or, equiva-
lently, a +0.35|+0.50) partially attenuated interaction was 
at or above .80 in none of the cases, and the median 
power was .11. Overall, only 17% of the studies had a 
power at or above .80, and the median power was .18 
(Fig.4, lower panel). If we repeat the analysis while 
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Fig. 3. Proportion of studies as a function of the shape of the hypothesized interaction (pie chart, left) and number of studies as a func-
tion of the appropriateness of the power analysis (stacked bar chart, right). In the pie chart, the overlapping slices pertain to studies that 
include interaction hypotheses of different shapes.
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focusing on larger versions of the hypothesized interac-
tions (i.e., +0.50|−0.50, +0.50|0.00, and +0.50|+0.20), 
27% of the studies had a power at or above .80, and the 
median power was .25.

Discussion. Our metastudy shows that the majority of 
recently published studies testing interactions focus on atten-
uated interactions. Only a minority reported an adequate 
power analysis, and less than one in five studies has a sample 
size sufficient to detect an interaction of a typical size with a 
power of .80. This illustrates the fact that studies testing inter-
actions are often underpowered, and in the next section, we 
present simulations aiming to test three approaches to 
increase power without increasing sample size.

Simulations testing ways to improve 
power for interactions

Now, we report the results from 877,500,000 simulations 
that served two aims: (a) producing the power curve for 
each of the 12 types of interactions (offering an empiri-
cal replication of the mathematically derived required 
sample size displayed in Table 2) and (b) testing three 
approaches to increase power without increasing sample 
size: one-tailed testing, mixed designs, and planned-
contrast analysis.

Existing simulations. Several studies have used simu-
lations to investigate the question of power when testing 

interactions (for pioneering work, see Champoux & Peters, 
1987). In existing simulations, however, the size of the 
interaction in the population is often fixed across condi-
tions (for exceptions, see Durand, 2013; Shieh, 2009), and 
the emphasis is put on important but very specific issues, 
such as the use of median split in multicollinearity con-
texts (Iacobucci et  al., 2015; see also McClelland et  al., 
2015), the calculation of the product term in latent vari-
able modeling (Chin et al., 2003; see also Goodhue et al., 
2007), or the violation of the homoscedasticity assumption 
when sample sizes differ among subgroups (Alexander & 
DeShon, 1994; see also Aguinis & Stone-Romero, 1997). In 
our own simulations, we aimed to produce the power 
curve of the 12 interactions identified earlier and deter-
mine the extent to which these power curves could be 
flattened by the use of one-tailed testing, mixed designs, 
and planned contrast analysis.

Approach 1: preregistering the use of one-tailed testing.  
Most scientists using NHST use two-tailed tests (also 
called “two-sided” or “nondirectional” tests) with a canon-
ical α of .05. This means that they place one half of their 
α (α/2 = .025) in the lower tail of the t distribution (test-
ing whether an effect is less than zero) and the other half 
(α/2 = .025) in the upper tail (testing whether an effect is 
greater than zero; Wiley & Pace, 2015). To put it simply, if 
scientists are looking for an effect that does not exist in the 
population, they have a 2.5% chance of observing a nega-
tive effect with p < .05 and a 2.5% chance of observing  
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a positive effect with p < .05 (the overall Type I error 
[false positive] rate is therefore 5%).

However, scientists using NHST often have an a priori 
hypothesis and could run a more powerful one-tailed 
test (also called “one-sided” or “directional” tests) with 
the same alpha of .05 (Knottnerus & Bouter, 2001). This 
involves placing all of the alpha (α = .05) in the tail of 
the t distribution corresponding to their hypothesis (the 
lower or upper tail, depending on whether they hypoth-
esized a negative or positive effect) and refraining from 
interpreting any effect in the opposite direction (even if 
p < .05). In simpler terms, if a hypothesis is incorrect, 
there is a 5% chance of observing the hypothesized 
effect with p < .05 (maintaining an overall Type I error 
rate of 5%).

Statisticians have long recommended using one-tailed 
testing when a directional hypothesis is formulated and 
when an effect in the opposite direction would be psy-
chologically meaningless and theoretically uninformative 
(Kimmel, 1957). Despite these conditions often being 
met, journal editors and reviewers tend to frown upon 
one-tailed testing. This reluctance may be due to the 
high prevalence of HARKing in the field (Motyl et al., 
2017), which involves formulating a hypothesis after 
results are known (Kerr, 1998) and is likely influenced 
by hindsight bias (i.e., the “I-knew-it-all-along” effect; 
Nosek et al., 2018; see also Giner-Sorolla, 2012; Rubin, 
2022). In such a context, one-tailed testing may be seen 
as overly liberal and a threat to cumulative science.

However, with the advent of preregistration (Van’t 
Veer & Giner-Sorolla, 2016; Wagenmakers et al., 2012) 
and registered reports (Chambers, 2013), it has become 
possible for researchers to record their hypothesis before 
running a study, thus effectively preventing HARKing 
(Lakens, 2019). We believe that whenever possible, 
researchers should create a preregistration in which they 
(a) clearly formulate their interaction hypothesis, (b) 
vow to not interpret an interaction in the opposite direc-
tion, and (c) plan to use one-tailed testing. We emphati-
cally encourage this practice, believing it is both 
conceptually and pragmatically the best approach. A 
researcher registering an interaction hypothesis and the 
use of one-tailed rather than two-tailed testing (with  
α = .05) would need 21% fewer participants to reach a 
power of .80 (for the mathematical demonstration, see 
Appendix, Equations A5a-c, at osf.io/xhe3u).

Approach 2: using mixed-participants designs. Despite 
the difficulty in comparing and calculating effect sizes across 
different designs (Lakens, 2013; Morris, 2008; Olejnik & 
Algina, 2003), combining between-participants and within-
participants measures is usually considered an efficient way 
to increase statistical power (Lakens, 2022). This is because 
each participant from a study using two repeated measures 

does not provide one data point but two data points, 
reducing the error term by controlling for consistent indi-
vidual differences (for related research, see Baker et al., 
2021; Goulet & Cousineau, 2019). As a result, fewer partic-
ipants are needed to detect the same type of effect while 
maintaining the same level of power, especially when the 
correlation between the within-participants measures is 
positive and large (Maxwell & Delaney, 2004).

Mixed-participants designs may have potential draw-
backs. Participants may be more likely to discern the 
hypothesis, experience fatigue because of the increased 
length of the study, or be influenced by the order of 
presentation of the scales/conditions (Myers & Hansen, 
2011). However, these drawbacks are arguably often 
outweighed by the benefits of increased statistical power. 
To illustrate, imagine a mixed-design study in which (a) 
the correlation between the measurements is ρ = .50 (a 
conservative estimate and less than the average correla-
tion from existing [replication] studies; Brysbaert, 2019) 
and (b) the simple slope sizes of the within-participants 
variable is similar to what it would be in a between-
participants design (despite the tendency for within-
participants effects to be stronger; e.g., see Murphy 
et al., 2009). Given these assumptions, researchers test-
ing an interaction and using a mixed design rather than 
a 2 × 2 between-participants design (with α = .05) would 
need 75% fewer participants to reach a power of .80 (for 
the mathematical demonstration, see Appendix, Equa-
tions A6a-f, at osf.io/xhe3u). If they combined a mixed 
design with preregistered one-tailed testing, the research-
ers would need 80% fewer participants (1 − (1 − .75) × 
(1 − .21)).

Approach 3: preregistering the use of planned contrast 
analysis. The factorial approach is the default approach 
to testing interaction hypotheses. It involves regressing the 
outcome on the predictor, the moderator, and the product 
term, whose weights are as follows for the example used 
in the first part of the article:

As one can see, the weights of the product term form 
a cross (+1-1⤮+1

-1), which makes it optimal for testing 
reversed interactions involving a negative simple slope 

Control  
group

Intervention 
group

 Men Women Men Women

Predictor (–1 = control, 
+1 = intervention)

−1 −1 +1 +1

Moderator (−1 = men,  
+1 = women)

−1 +1 −1 +1

Predictor × Moderator +1 −1 −1 +1
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for men (+1 -1) and a positive simple slope for women 
(-1

+1). However, these weights are suboptimal for test-
ing other shapes of interaction, in particular, fully attenu-
ated interactions.

An alternative approach is the planned-contrast 
approach (Rosenthal & Rosnow, 1985). In the case of a 
fully attenuated interaction, this approach involves con-
catenating (i.e., combining) the predictor and moderator 
variables and creating one planned and two orthogonal 
contrasts using Helmert coding (Rosnow & Rosenthal, 
1991). The contrast weights could be as follows for the 
example used in the first part of the article:8

As one can see, the weights of the planned contrast 
form a left-angled triangle (-1

+
-
3
1), corresponding to the 

hypothesized pattern and comparing women in the 
intervention group (+3) with participants in the three 
other subgroups (−1). The two orthogonal contrasts 
ensure that there is no residual difference between 
women in the control group and men (Orthogonal Con-
trast 1) or between men in the control group and men 
in the intervention group (Orthogonal Contrast 2).

To reject H0, a significant planned contrast and non-
significant orthogonal contrasts are needed (a likelihood 
ratio χ2 could test for the joint significance of the orthog-
onal contrasts; Abelson & Prentice, 1997; Brauer & 
McClelland, 2005; Guggenmos et  al., 2018). However, 
absence of evidence is not evidence of absence, and 
cautious analysts might want to use equivalence testing 
to ensure that the overall effect of the orthogonal contrasts 
is smaller than the smallest effect of interest (Lakens 
et al., 2018; Richter, 2016).

Importantly, some statisticians have argued that 
planned-contrast analysis offers excessive flexibility in 
data analysis (Ravenscroft & Buckless, 2017) and may 
not be suitable to test specific interaction patterns (see 
the debate between Abelson [1996] and Rosnow & 
Rosenthal [1996]). Thus, we recommend that authors 
preregister the use of contrast analysis and use it for 
testing only fully attenuated interactions in which three 
of the 2 × 2 means are expected to be the same. In such 
a case, researchers using planned-contrast analysis with 
Helmert coding rather than the orthodox factorial 
approach (with α = .05) would need 62% fewer partici-
pants to reach a power of .80 (for relevant work, see 

Perugini et al., 2018; for the mathematical demonstration, 
see Appendix, Equations A7a-d, at osf.io/xhe3u). If they 
combined planned-contrast analysis with one-tailed test-
ing, the researchers would need 70% fewer participants 
(1 − (1 − .62) × (1 − .21)).

Simulations testing the three approaches to increase 
power without increasing the N.

Method. We used functions from the tidyverse, stats, 
and car packages in R-4.3.1 (Fox & Weisberg, 2018; R Core 
Team, 2013; Wickham et al., 2019) to simulate a total of 
877,500,000 data sets with one continuous outcome vari-
able, one categorical predictor, and one categorical modera-
tor and generated power curves for the 12 interactions of 
our taxonomy while using (a) default conditions (between-
participants design and a factorial approach) with two-tailed 
and one-tailed testing, (b) a mixed-participants design with 
two-tailed and one-tailed testing, and (c) planned-contrast 
analysis with two-tailed and one-tailed testing. The R scripts 
to reproduce the results are available at https://osf.io/xh5tc/.

For each interaction, we simulated 100,000 data sets 
with a sample size of n per condition, and we used an 
increment of n + 1 to identify the tipping points at which 
80% and 90% of data sets returned significant tests with 
p < .05 (i.e., simulating 100,000 data sets with n = 100, 
another 100,000 with n = 101, another 100,000 with n = 
102, etc.). In each case, this enabled us to identify the 
required Ns to achieve a power of .80 and .90, respec-
tively (i.e., the most commonly used lower limits for 
acceptable power).

The population simple-slope sizes for the 12 interac-
tions were d1|d2 = +0.20|−0.20, +0.20|−0.35, +0.20| 
−0.50, +0.35|−0.35, +0.35|−0.50, +0.50|−0.50, +0.20| 
0.00, +0.35|0.00, +0.50|0.00, +0.20|+0.35, +0.20| +0.50, 
and +0.35|+0.50. To enable direct comparison across 
the four approaches, each data set was first sampled 
from a standard multivariate normal distribution and 
then adjusted using the mean vector µ = [ ]0 0 1 2d d ′ and 
the covariance matrices Σ  relevant to each condition:
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where within-subjects correlations in the mixed design 
were set to ρ = .50, a conservative estimate that was well 
below the median value of ρ = .75 from replication stud-
ies (Brysbaert, 2019).9

Control group
Intervention 

group

 Men Women Men Women

Planned contrast −1 −1 −1 +3
Orthogonal Contrast 1 −1 +2 −1  0
Orthogonal Contrast 2 −1  0 +1  0

https://osf.io/xh5tc/
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In the default approach, for each d1|d2 combination 
and each n, we calculated the proportion of the 
100,000 data sets for which a regression analysis using 
a factorial approach returned a significant interaction 
between the between-participants predictor and mod-
erator. We repeated this for both two-tailed and one-
tailed tests.

In the mixed-designs approach, for each d1|d2 com-
bination and each N, we calculated the proportion of 
the 100,000 data sets for which a mixed analysis of vari-
ance returned a significant interaction between the 
between-participants predictor and the within-partici-
pants moderator. We repeated this for both two-tailed 
and one-tailed tests.

In the planned-contrast-analysis approach, we focused 
only on fully attenuated interactions, and we created a 
planned contrast (assigning weights of -1/4|

-1/4|
+3/4|

-1/4 
to the 2 × 2 cells of the interaction) and two orthogonal 
contrasts (using weights of -1/3|

-1/3|0|+2/3| and -1/2|
+1/2| 

0|0). For each of the three d1 | d2 combinations and 
each N, we calculated the proportion of the 100,000  
data sets for which a regression analysis returned a sig-
nificant planned contrast and a nonsignificant joint 

test of the orthogonal contrasts (using an omnibus pos-
testimation two-tailed Wald test). We repeated this for 
both two-tailed and one-tailed tests.

Results. The simulation revealed two sets of findings. 
First, the mathematically derived required sample sizes for 
each of the 12 interactions calculated in the first part of 
the article were replicated using simulations: The required 
Ns to detect the interactions with a power of .80 ranged 
from 128 (to detect a +0.50|−0.50 reversed interaction) to 
5,632 (to detect a +0.35|+0.50 partially attenuated inter-
action). Second, compared with the power curves of the 
default approach with two-tailed testing, (a) preregister-
ing one-tailed tests require 21.3% and 18.5% fewer par-
ticipants to reach a power of .80 and .90, respectively; 
(b) using a mixed design with ρ = .50 requires 74.6% and 
74.7% fewer participants when using two-tailed testing 
and 80.1% and 79.4% when using one-tailed testing; and 
(c) preregistering planned-contrast analysis requires 62.6% 
and 59.4% fewer participants when using two-tailed test-
ing and 70.1% and 66.3% when using one-tailed testing 
(for the required Ns, see Table 4; for the simulation-based 
power curves, see Fig. 5).

Table 4. Overall Required Sample Sizes for the 12 Types of Interactions as a Function of Approach

Simple 
Slope 1

Simple 
Slope 2

Default Mixed design Planned contrast

 Two-tailed One-tailed Two-tailed One-tailed Two-tailed One-tailed

Power = .80 +0.20 −0.20 788 620 198 154  
+0.20 −0.35 416 328 106 84  
+0.20 −0.50 260 204 66 52  
+0.35 −0.35 260 204 66 52  
+0.35 −0.50 176 140 46 36  
+0.50 −0.50 128 100 34 26  
+0.20  0.00 3,124 2,476 786 624 1,172 940
+0.35  0.00 1,028 812 258 202 384 304
+0.50  0.00 504 396 128 100 188 152
+0.20 +0.35 5,588 4,384 1,390 1,096  
+0.20 +0.50 1,396 1,100 352 276  
+0.35 +0.50 5,632 4,412 1,392 1,096  

Power = .90 +0.20 −0.20 1,056 860 266 216  
+0.20 –0.35 556 456 142 114  
+0.20 −0.50 344 280 88 72  
+0.35 –0.35 344 280 88 72  
+0.35 −0.50 236 192 60 48  
+0.50 −0.50 172 140 44 36  
+0.20  0.00 4,224 3,436 1,060 854 1,716 1,424
+0.35  0.00 1,376 1,120 344 284 556 464
+0.50  0.00 676 548 170 138 276 228
+0.20 +0.35 7,448 6,088 1,868 1,524  
+0.20 +0.50 1,856 1,524 468 382  
+0.35 +0.50 7,516 6,108 1,866 1,518  
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Other ways to maximize power. In our simulation, we 
chose to focus on one-tailed testing, mixed designs, and 
planned-contrast analysis because they present minimal 
potential drawbacks. Although there are other approaches 

to increase power without increasing sample size, they 
often carry greater drawbacks. For instance, increasing sam-
ple homogeneity (Heidel, 2016), using instructional manip-
ulation checks (Oppenheimer et al., 2009), or controlling 
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Fig. 5. Simulation-based power curves for the 12 types of interactions as a function of approach. Power curves for the second 
half of the mixed-design approach were extrapolated.
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for relevant covariates (Hernández et al., 2004) can enhance 
power but may also pose a threat to  generalizability, alien-
ate participants, or create spurious suppression effects, 
respectively.

However, as briefly mentioned in the first part of the 
article, an approach to maximizing power with little or 
no drawbacks is to increase the reliability of the out-
come. Basically, when reliability increases, the effect size 
increases, resulting in increased power (implying that if 
your outcome is measured with higher than average 
reliability, the benchmarks used in this article may be 
underestimations). Heo et al. (2015) demonstrated that 
by increasing Cronbach’s α from the minimum accept-
able level of .70 to a high value of .90, the power to 
detect an interaction in a mixed design can increase from 
approximately .40 to almost .90. Consequently, improv-
ing reliability by using validated scales instead of made-
up scales, using multiple-item measures instead of 
single-item measures, or using multiple trials rather than 
just one can each be an extremely efficient way to 
increase power for detecting interactions.

A User-Friendly Web App to Conduct 
Power Analyses for Interactions

There are countless existing software and applications 
to run power analyses. Some are general and focus on 
the most common statistical tests (e.g., G*Power, Faul 
et al., 2007; PANGEA, Bartlett & Charles, 2021; the jpower 
module in Jamovi, Bartlett & Charles, 2021). Others are 
specific to certain statistical tests, such as multilevel 
regression (summary-statistics-based power for mixed-
effects modeling, Murayama et  al., 2022), structural 
equation modeling (pwrSEM, Y. A. Wang & Rhemtulla, 
2021), and functional MRI study analyses (NeuroPower, 
Durnez et al., 2016).

Some applications enable one to run power analyses 
for interactions, such as InteractionPower (Baranger 
et al., 2022), Superpower (Lakens & Caldwell, 2021), or 
Power Analysis for 2 × 2 Factorial Interaction (White, 
2018). Although these applications are useful, they may 
not always be intuitive. For instance, InteractionPower 
requires users to input the effect size of the interaction 
term as a correlation coefficient. Although some research-
ers will manage to calculate the expected size of their 
interaction correctly (e.g., using Equations 5 and A2, 
available at osf.io/xhe3u), others may use generic bench-
marks and enter an inappropriate value. Superpower 
may be more intuitive because it asks users to input the 
most common standard deviation and the raw means for 
each cell in the ANOVA. However, an even simpler 
approach would be to allow users to draw their interac-
tion. Therefore, we have developed an application to 
run power analyses for interactions that requires only 

basic statistical knowledge and relies on a user-friendly 
graphical interface.

Introducing Int×Power

Int×Power is a user-friendly web app that enables 
researchers to easily draw their expected two-way inter-
action and produce the required overall sample size to 
achieve the target power of your choice. In addition, 
Int×Power enables researchers to employ approaches to 
maximize power (one-tailed testing, mixed designs, and 
planned-contrast analysis).

Int×Power is a JavaScript web app created using the 
React framework with Material UI. All libraries used are 
open source. The application is hosted at www.intx 
power.com. The source code of the application is avail-
able on GitHub at https://github.com/ncheutin/INTx 
Power. A document presenting the underlying equation 
can be found on the OSF.

Quick tour of the web app

Figure 6 presents an annotated screenshot of Int×Power, 
showing the key components of the app. For a quick 
1-min and 30-sec video tutorial, go to https://youtu.be/_ 
ENvQF2aNmE.

The main equation used to calculate the required 
overall sample size is Equation 8, but this equation can 
be changed to apply to (a) one-tailed rather than two-
tailed testing; (b) mixed-participants design rather than 
between-participants design, using two-tailed or one-
tailed testing; and (c) planned-contrast approach with 
Helmert coding rather than factorial-design approach, 
using two-tailed or one-tailed testing (only for fully 
attenuated interactions).

Assumptions and future version(s)

Int×Power focuses on two-way interactions and relies 
on the same assumptions described in the first part of  
the article as well as sphericity and a common between-
measurements correlation of ρ = .50 for mixed-participants 
designs. Although the interface uses dichotomous predic-
tors, Int×Power can be applied to continuous predictors 
provided that measurement error does not differ between 
the two cases.

The version of the application is 1.0. We invite users 
to report bugs and request new features by sending an 
email to N. Sommet (updates to the source code will be 
documented on GitHub). Future version(s) of the app 
may allow users to calculate power for higher-order 
interactions, predictor/moderator with three categories 
or more, nonlinear regression such as logistic or Poisson 
regression, and so on. These changes will be the subject 
of further publications.

www.intxpower.com
www.intxpower.com
https://github.com/ncheutin/INTxPower
https://github.com/ncheutin/INTxPower
https://youtu.be/_ENvQF2aNmE
https://youtu.be/_ENvQF2aNmE


16 

F
ig

. 
6
. 

A
n
n
o
ta

te
d
 s

cr
ee

n
sh

o
t 
o
f 
In

t
×P

o
w

er
 s

h
o
w

in
g 

th
e 

k
ey

 c
o
m

p
o
n
en

ts
 o

f 
th

e 
W

eb
 a

p
p
. 

➀
 U

se
rs

 m
an

ip
u
la

te
 t
h
e 

2 
× 

2 
b
ar

s 
o
f 
th

ei
r 

ex
p
ec

te
d
 i
n
te

ra
ct

io
n
. 

➁
 U

se
rs

 s
ee

 t
h
e 

ef
fe

ct
 s

iz
es

 o
f 

th
e 

si
m

p
le

 s
lo

p
es

 v
ar

y 
in

 r
ea

l 
ti
m

e.
 ➂

 U
se

rs
 a

ls
o
 s

ee
 t

h
e 

re
q
u
ir

ed
 o

ve
ra

ll
 N

 t
o
 r

ea
ch

 a
 p

o
w

er
 o

f 
.8

0 
va

ry
 i
n
 r

ea
l 
ti
m

e.
 ➃

 U
se

rs
 c

an
 c

h
an

ge
 t

h
e 

d
ef

au
lt
 t

ar
ge

t 
p
o
w

er
 o

f 
.8

0 
fo

r 
an

y 
va

lu
e.

 
➄

 U
se

rs
 w

h
o
 a

re
 u

n
su

re
 w

h
er

e 
to

 s
ta

rt
 c

an
 a

u
to

m
at

ic
al

ly
 p

ro
d
u
ce

 a
 b

ar
 c

h
ar

t 
re

p
re

se
n
ti
n
g 

an
 i
n
te

ra
ct

io
n
 o

f 
th

e 
ex

p
ec

te
d
 s

h
ap

e 
an

d
 u

si
n
g 

th
e 

ty
p
ic

al
 s

iz
e.



Advances in Methods and Practices in Psychological Science 6(3) 17

Transparency

Action Editor: Yasemin Kisbu-Sakarya
Editor: David A. Sbarra
Author Contribution(s)

Nicolas Sommet: Conceptualization; Data curation; Formal 
analysis; Investigation; Methodology; Writing – original 
draft; Writing – review & editing.
David L. Weissman: Conceptualization; Data curation; 
Formal analysis; Methodology; Writing – original draft; Writ-
ing – review & editing.
Nicolas Cheutin: Software.
Andrew J. Elliot: Conceptualization; Methodology; Writing – 
review & editing.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this 
article. 

Funding
This work was funded by a Swiss National Science Foudating 
Ambizione fellowship granted to N. Sommet (#PZ00P1_185979).

Open Practices
This article has received the badges for Open Data, Open 
Materials, and Preregistration. More information about the 
Open Practices badges can be found at http://www.psy 
chologicalscience.org/publications/badges.

ORCID iD

Nicolas Sommet  https://orcid.org/0000-0001-8585-1274

Acknowledgments

We thank Adrien Anex and Umberto Cauzo for their help with 
data collection and David Baranger, Marcello Gallucci, and 
Dominique Muller for their feedback on the article.

Supplemental Material

Additional supporting information can be found at http://jour 
nals.sagepub.com/doi/suppl/10.1177/25152459231178728

Notes

1. In this and the subsequent equations, we use sample notation 
for simplicity.
2. We approximate the t distribution using the Z distribution, 
which simplifies calculation because the distribution does not 
vary based on degrees of freedom. Because G*Power uses criti-
cal values of the t distribution, there might be slight discrep-
ancies between the values generated by the software and the 
values produced by Equation 3. These discrepancies will disap-
pear as degrees of freedom increase.
3. In this example, we treat gender as if it were a binary variable 
for simplicity.
4. The target number of articles was primarily based on the funds 
available for paying coders. However, the analytical sample (N = 
154 studies) was deemed representative of the contemporary 
psychological literature testing interaction hypotheses. Because 
our metastudy is merely descriptive, power/sensitivity analysis 
does not apply to this case.

5. The total number of studies was different from 10 (journals) × 
20 (articles) = 200 articles and varied from one journal to another 
(see Table 3) because the coders were sometimes unable to iden-
tify 20 articles or—following the resolution of disagreements—
ended up identifying more. The same applied to the number of 
studies identified in Step 2b.
6. In the preregistration, we stated that we would use the power 
estimates derived from our simulations (rather than from math-
ematical formulas). Both approaches led to the exact same 
conclusions.
7. When a study tested interaction hypotheses having different 
shapes (e.g., a reversed interaction and a partially attenuated 
interaction), we focused on the largest power estimate.
8. Other weights are possible provided that (a) the sum of the 
weights for each contrast is zero and (b) the sum of the products 
of the weights for each pair of contrasts is zero. Note that we 
used integers for clarity. However, as in our simulation, it is bet-
ter to use a –0.5|+0.5 coding scheme (for the factorial approach) 
and -1/4|

-1/4|
+3/4|

-1/4, 
-1/3|

-1/3|0|+2/3 and −1/2|
+1/2|0|0 contrasts 

(for the planned-contrast approach) to estimate meaningful 
1-unit differences.
9. For example, when d1|d2 = +0.50|0.00 and n = 125, we (a) 
simulated 10,000 data sets of size 125 × 4 from a standard mul-
tivariate normal distribution, (b) adjusted each data set by the 
mean vector µ and the covariance matrices Σ described above, 
(c) conducted the relevant significance test for each approach 
using the adjusted data sets, and (d) calculated the proportion 
of significant interactions from the 100,000 data sets for each 
approach.
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