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Abstract 
The yield and ease of purification of biotechnological products are typically greatly enhanced 
if they can be secreted into the external medium. Although not universally appreciated, 
however, small molecule biotechnological products do not ‘float across’ the phospholipid 
bilayer portion of biological membranes, and thus they need transporters to assist their 
passage into the extramembrane and extracellular spaces. Some of these transporters may 
be reversible, equilibrative transporters that might more normally be used for uptake, while 
others may have an efflux directionality imposed on them via suitable energy coupling 
mechanisms. Despite the energetic costs of small molecule synthesis, natural evolution does 
in fact provide a number of mechanisms by which the secretion of such products can 
actually enhance fitness. Where available these provide useful starting points, and assaying 
for such activities is crucial. In particular, in a systems biology approach, we first need to 
identify such/suitable activities before we can seek to increase them. They may then be 
improved through promoter engineering, via manipulation of control elements, or by directed 
evolution of the transporter proteins themselves. Modern methods of synthetic biology 
provide enormous opportunities for all kinds of efflux transporter engineering; they are just 
beginning to be realised. 
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Introduction 
In a typical fermentation, substrates are provided externally to the cells catalysing the 
fermentation, and converted to products; initially (at least in most cases) product formation 
occurs within the cells. However, for a relative density (specific gravity) of 1, cells occupy 
1mL.g-1 wet weight so for a fermentation that achieves even 100 mg wet cell wt.mL-1 only 
approximately one tenth of the total volume is intracellular (Fig 1). Commonly, intracellular 
concentrations during the development of processes for industrial bioengineering can soon 
become toxic [1, 2]. Since thermodynamics dictates that it is standard free energies and 
concentrations that control the eventual outcome, we need to recognise (Fig 1) that outwith a 
solid substrate fermentation in which the biomass is the product (as in [3]) the overall titre of 
product will be much enhanced if its internal concentrations can be decreased by secretion 
into the larger extracellular space. In addition, it is much easier to purify products if cells are 

not present [4]. 
Hence the 
desirability for 
product efflux, that 
is the focus of this 
chapter. Although 
much the same 
can be said of 

protein 
production, we 
focus here solely 
on small 
molecules. An 
overview of the 
chapter is given 
as a mind map [5] 
in Fig 2. 

 

Figure 1. The ability to efflux an intracellular product is of great significance in biotechnology, 
as the extracellular space is normally much greater than the intracellular space in a typical 
fermentation. 

Membrane transporters 
Although this is textbook material, we first rehearse briefly the different types of membrane 
transporter. A first distinction is whether they are equilibrative (i.e. permitting or catalysing 
‘facilitated diffusion’) or whether their activities are coupled to an external free energy source 
such as ATP (hydrolysis) or electrochemical gradients; the latter kinds of transporter may 
then be concentrative in terms of changing the transmembrane ratio of their substrate 
concentrations (properly, activities) away from 1. Those lacking secondary coupling are 
referred to as uniporters, symporters cotransport co-substrates, while antiporters act to 
exchange substrates in opposite directions in a coupled manner. ‘Group transfer’ reactions  
involve the direct coupling of a chemical motif to the substrate, as in the PEP-dependent 
glucose transferases [6, 7] whose external substrate is glucose but whose internal product is 
glucose-6-phosphate. 
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We also note here the use and misuse of the term ‘passive’ to describe transport activities; 
this term has two common but orthogonal meanings. The first is thermodynamic, and means 
‘equilibrative’, while the second is mechanistic and is then taken to mean ‘transport through 
a bilayer’. When the mechanism involves a transporter it is properly known as ‘facilitated 
diffusion’. Since these two uses of ‘passive’ are often conflated, and consequently cause 
much unnecessary confusion, we recommend that the term ‘passive’ is simply dropped in 
the context of transporters [8]. 

Figure 2. A ‘mind map’ [5] of the layout of this paper 

 

In a similar vein, it is common to refer to ‘influx’ and ‘efflux’ transporters on the basis of the 
direction of substrate flux observed in their most typical operating conditions. Clearly, 
however, any reaction is in principle thermodynamically reversible (even if free energy 
changes are large and negative). We note in particular therefore that while a particular 
transporter might ‘normally’ be an ‘influx’ transporter if its substrate is provided externally, 
there is no reason of principle, especially if it is equilibrative, why it would not become an 
‘efflux’ transporter if large amounts of the same substrate are made intracellularly in a 
biotechnological process. Consequently, while the focus is on ‘efflux’ transporters, we shall 
have plenty to say about the more widely studied ‘influx’ transporters as well. 

In general, despite their prevalence (transporters account for one eighth of E. coli genes [9], 
and see later), transporters are comparatively little studied [10] and the substrates of many 
(and in some organisms most) of them are unidentified [11, 12]. Although our focus here is 
on microorganisms (and see [13]), the situation is also acute for mammalian transporters, as 
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these underpin the distributions of xenobiotic pharmaceutical drugs within and between cells 
[8, 14-20]. 

One possible reason for the comparative lack of study is the widespread (but erroneous) 
textbook belief that many substances can actually cross the phospholipid portion of 
biological membranes at non-negligible rates without the use of protein transporters. This 
belief is based in part on the fact that such ‘transport’ can indeed be observed in liposomes 
or across ‘black’ (bilayer) lipid membranes [21, 22] that are simply leaky to such molecules; 
however, this is not the case in real biomembranes, with a typical protein:phospholipid mass 
ratio of 3:1. Winter and colleagues [23] provide a particularly nice example, showing that at 
least 99.5% of the mammalian cell uptake of a drug known as sepantronium bromide occurs 
only via the SLC35F2 transporter, meaning that maximally 0.5% can be transported by any 
other means, including through the bilayer. 

Although most commentators recognise that charged substances require transporters 
(including for so-called lipophilic cations [24]), we now know that membrane transporters 
exist (and are required) even for all kinds of small uncharged molecules that were once 
widely believed to be capable of crossing biomembranes without transporters; Table 1 
provides a set of examples.  Notably, the discovery of water transporters (aquaporins) 
attracted a Nobel Prize (see [25] and [26]). 

 

Molecular class Selected reference(s) 
Alkanes [27, 28] 
Ammonia (NH3) [29] 
Carbon dioxide (CO2) [30, 31] 
Ethanolamine [32] 
Fatty acids [33, 34] 
Glycerol [35] 
Hydrogen peroxide (H2O2) [36] 
Hydroxyurea [37] 
Nitric oxide (NO) [38] 
(Di)oxygen (O2) [39] 
Urea [40, 41] 
Water [35, 42] 

Table 1. Some small, neutral molecules for which transporters are known. 

Since the role of biomembranes in general is to keep things inside and outside of the 
compartments that they surround, it is easy to imagine that transporters have an important 
role in the selective influx and efflux of molecules. Consequently they attract our focus within 
the context of metabolic network or systems biology. Indeed, having the metabolic network is 
a sine qua non for developing such studies, so we briefly rehearse the systems biology 
approach to metabolic biotechnology. 

Systems biology of metabolic networks 
To understand metabolic networks it is first necessary to reconstruct them [43]. This is done 
in four main steps [44, 45]. The first two are qualitative: they define the network in terms of 
the actors that are involved (enzymes, metabolites and effectors), and the means by which 
they are connected (mathematically as a ‘graph’). The result of this is the familiar 
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biochemical wallchart or the kinds of qualitative representation visible in an online resource 
such as KEGG [46]. The third step defines the kinetic rate equations governing each step, 
while the fourth step parametrises them. Because of the extreme stoichiometric constraints 
[43], i.e. the requirement that in the absence of alchemy all atoms are conserved, a 
surprisingly large amount can be done with the qualitative network alone, and we shall tend 
to focus on this in the present chapter. Obviously transporter steps are to be seen simply as 
‘extra’ enzymatic steps, as in Figure 1. Reconstructions have become quite advanced by 
now, with strategies including ‘jamborees’ [47-49], helped by the availability of digital tools 
(e.g. [50]), including for the reconstruction of non-natural pathways for the biosynthesis of 
‘novel’ products [51, 52]. In very few cases are all the kinetic rate equations known with any 
precision (see e.g. [53] for yeast glycolysis), but when they are one may resort to ODE-type 
modelling, using tools such as Copasi [54, 55]. Another strategy is to use surrogate kinetic 
rate equations for each step, lin-log being both common and effective [56]. ‘Convenience’ 
kinetics [57] are also widely used for this. 

A large percentage of orphans, even in well-studied organisms 
All of this said, however, in many cases we still lack the ‘parts list’ [58]; in other words, we do 
not know the substrates for substantial fractions of (‘uptake’ or ‘efflux’) membrane 
transporters, and even when we know some they may not be the most active or ‘natural’ or 
‘real’ substrates. The systematic genome sequencing of microbes finally allowed at least a 
start to be made on the parts list, and increased it considerably. Thus in E. coli sequencing 
caused the number of proposed genes to be increased from ~1700 to over 4000 [59]. This 
2006 survey of E. coli [59] listed some 4453 genes, of which 591 were transporters 
(13.3%)(see also [9, 12]). 337 were ‘known’ and 254 (43% of the total) were ‘predicted’ (i.e. 
orphan) transporters. In 2009, Hu and colleagues [60] found that about one third of E. coli 
genes were functionally orphans. Ecogene (http://www.ecogene.org/) (searched 3rd January 
2018) listed 326 transporters, of which 113 were ‘y-genes’ (unassigned)(see also [61]). A 
Table (https://ecocyc.org/group?id=biocyc17-4655-3682299327) at EcoCyc [62] gives 163 
“putative” transporters, including 124 y-genes.  

In 1998, Paulsen et al. [63] summarised this for S. cerevisiae, concluding that “among the 
258 yeast transporters… a total of 139 {35%} lack genetic or biochemical names and thus 
lack either a demonstrated transport function or a recognizable physiological function”. The 
latest version of transportDB [64] 
http://www.membranetransport.org/transportDB2/overview.html, the most comprehensive 
listing, gives 341 transporters for S. cerevisiae S288c, and shows that improvements in 
identification have been less than substantial. In general, the efflux transporters seem to 
have evolved to remove natural toxins from the yeast’s environment [65, 66], are highly 
promiscuous [67, 68], and many are known as pleiotropic drug transporters (PDRs) [69]. 

The general conclusion of this is that at least 30% of transporters (and in many cases a 
great deal more) are genuine orphans in terms of actual experimental assessment; 
deorphanisation is thus the key required first step for improving our understanding of them, 
even in supposedly well-characterised organisms [10, 70]. 

Flux control and metabolic control analysis 
El-Mansi and colleagues give an excellent description in this volume of the metabolic control 
analysis (/theory/formalism) of Kacser, Burns, Heinrich and Rapoport [71, 72]. Other reviews 

http://www.ecogene.org/
https://ecocyc.org/group?id=biocyc17-4655-3682299327
http://www.membranetransport.org/transportDB2/overview.html
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can be found in [73-76] and an online tutorial at http://dbkgroup.org/metabolic-control-
analysis/. Although not at all new, it still provides an excellent formalism for describing the 
extent (their flux-control coefficients, FCC) to which individual reactions, including transporter 
reactions, control metabolic fluxes in biochemical networks. We note that those that do have 
reasonably high FCCs catalyse reactions that in the steady state are held far from their 
thermodynamic equilibrium, meaning (by definition) that these steps exert regulatory control. 
Increasing the rate of such steps will by definition increase fluxes. Both influx and efflux 
transporters tend to have this property (for an early example, see [77]). 

Role of efflux transporters in metabolic flux control 
Since we reviewed the role of transporters in biotechnology not too long ago [13], with many 
historical examples, we start with just one main generic example here, followed by a couple 
not previously discussed by us in any detail.  

Amino acids. The classic example of the role of efflux transporters in improving the yield of 
an important fermentation product (more than 2M tonnes p.a. [78]) is represented by the 
glutamate fermentation carried out in particular by Corynebacterium glutamicum [78-80].  
Following the initial discovery of the microbial/fermentative production of glutamate [81], 
various empirical findings in the 1960s and 1970s [82, 83] showed that a variety of 
treatments, involving biotin limitation, or the addition of weak surfactants such as ‘acetylated 
corn oil’ or Tween, or the use of certain auxotrophs, would enhance the efflux of glutamate in 
producer strains. Soon enough, however, it was recognised that this was not due to a 
general membrane-leakiness, because it was very selective for glutamate (and was even 
against a glutamate concentration gradient!), but that it was due to a change in membrane 
tension that activated a mechanosensitive glutamate efflux pump encoded by a gene called 
NCgl1221 (a homologue of the E. coli yggB gene, now known as mscS, the 
mechanosensitive channel of small conductance) [84-89]. Similar efflux pumps are now 
known to be involved in the export of product during a variety of other amino acid 
fermentations [79, 90], such as those for lysine [91-95], isoleucine [96, 97], serine [98], 
threonine [99-102], cysteine [103], methionine [104], alanine [105] and others  [103, 106, 
107]. Thus, the general role of product exporters in enhancing fermentation yields (as per 
Figure 1) is clear [2, 103, 108]. We return to this later. 

Fatty acids. In contrast to amino acids, it used to be widely believed that both short- and 
long-chain fatty acids could simply diffuse through (the bilayer portion) of cellular 
membranes. Since that is not the case (see above) we devote a short section to longer-
chain fatty acid uptake and efflux. 

In mammalian systems, fatty acids are taken up by members of the SLC27 family [109], also 
known as fatty acid transport proteins (FATPs), of which there are 6 types with different 
expression profiles). All FATP members have a highly conserved, 311-amino acid signature 
sequence known as the FATP sequence.  

Many microbes will use fatty acids as sole source of carbon, and thus microbes also contain 
fatty acid transporters (e.g. [110]), the main one in Gram-negative organisms being known 
as FadL [33, 34, 111, 112]. Yeasts also contain fatty acid transporters; these are mainly 
homologues of mammalian FAT1 [113-115]. It is of particular interest that the Fat1p 
homologue in the oleaginous yeast Yarrowia lipolytica is involved in the export of fatty acids 
[116-119]. 

http://dbkgroup.org/metabolic-control-analysis/
http://dbkgroup.org/metabolic-control-analysis/
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Riboflavin. Riboflavin is a vitamin and nutritional supplement that is nowadays produced 
biosynthetically [120, 121]. It is of interest to us here because a main producer, Ashbyi 
gossypii, contains a very active (influx and) efflux transporter for it [122]. It is also of interest, 
and a general point worth nothing for fungi, that disruption of its vacuolar uptake system (by 
disrupting the vacuolar ATPase) ensures that all of the biosynthesised riboflavin is indeed 
excreted [123]. The other major industrial producer is B. subtilis [120], where an efflux 
transporter from Streptomyces davawensis has been used to improve productivity [124]. Of 
course, since a vitamin is by definition not synthesised therein, all human cells require [125] 
and express [126] the relevant uptake transporters, in this case of the SLC52 family [127]. 

Why would microbes excrete expensively produced biochemicals? 
In many cases, possibly the majority, efflux transporters are involved in the removal of 
potentially cytotoxic drugs or xenobiotics that happened to have been taken up by influx 
transporters, especially in mammalian cells where they represent a major problem e.g. for 
cancer chemotherapy (e.g. [128-130]). In microbes, where they have also presumably 
evolved to remove environmental toxins that had been taken up [131], they can play a 
leading role in microbial resistance to anti-infectives [132-139]. In each of these cases, it is 
easy to understand why natural evolution would select for such activities. 

By contrast, for substances that are actively biosynthesised by the host, it is rather less 
obvious why they might evolve an efflux transporter for them instead of simply lowering the 
rate of synthesis to a level that is adequate to satisfy the requirements of the host. Needless 
to say, evolution has in fact selected for this active efflux, and it is of interest to seek to 
understand its basis (if only to replicate it in the selection schemes of the biotechnologist). A 
number of examples can be given. 

Simple reversibility of facilitated diffusion transporters. Although there can be an 
apparent kinetic irreversibility that follows from the Haldane relation [140], any equilibrative 
transporter might serve as a selective efflux transporter when the intracellular concentration 
of its substrates begin to exceed those of the extracellular ones. This appears to be the 
case, for instance, in at least one of the riboflavin examples given above [122]. It probably 
becomes true for any substance that cells can both take up and biosynthesise if the uptake 
transporter is not completely turned off in the latter case. Possibly this counts as neutral 
evolution [141], but by definition if such activities remain then natural selection was involved. 
To this end, it provides a rationale for adding the relevant equilibrative “influx” transporters to 
the cells of interest, even when it is efflux that is desired. 

Osmotic regulation. Osmotic stress can modulate the activity of membrane transporters 
(e.g. [77]), and this is the basis for the mechanosensitive efflux pumps e.g. for glutamate 
(see above). Thus, as in plants [142], the sudden advent of a raindrop or other source of 
water [143] under previously dry or drier conditions to which the cells had acclimatised can 
create a huge osmotic stress for a cell [144]; only cells that can respond with an almost 
instantaneous secretion of internal osmolytes can easily survive this, and one can imagine 
(as is the case, see above) that these kinds of channels work precisely because they are 
‘mechanically’ sensitive to the osmotic stress generated across the membrane.. 

Efflux of substances that assist the uptake of other desirable substances. Fermentative 
production of citric acid by the fungus Aspergillus niger is a long-standing and very large-
scale process [145]. It too involves active export of the product from the producer strain 
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using a proton-symporting transporter [146]. Here it would appear that in nature both plants 
and fungi have evolved citrate efflux to serve as a chelator for metal ions that are necessary 
for the growth of the host [147-149]. Depending on the pH, an equilibrative transporter may 
be sufficient [150]. Siderophores are of course another well-known class of compounds 
excreted by plants and microbes to assist their uptake of iron [151-154].  Dicarboxylate efflux 
transporters are also known [155], potentially (and experimentally) serving similar purposes 
[148, 156]. 

Overcoming externally generated sources of toxicity. Microbes are necessarily exposed to 
many cytotoxic stresses, including both physical stresses (such as UV radiation) and 
chemicals. This can account for excretion of substances that compete with uptake 
transporters for uptake of the toxins (just as anti-metabolites can be used to select high 
producers, see [157]). It is likely that redox-active coloured compounds such as riboflavin are 
indeed produced for these purposes; the same is true for astazanthin production by Phaffia 
rhodozyma [158, 159]. 

Intercellular signalling: pheromones and quorum sensing. “A pheromone is a chemical 
excreted by an organism into the environment that acts to elicit a specific response from 
other organisms of the same species. The importance of pheromones in the life cycle of 
various species of mammals, insects and fungi is well known. In the past decade, it has 
become apparent that pheromones influence the behavior and development of prokaryotes.” 
[160]. Pheromones are thus well recognised as molecules that are secreted by organisms in 
order to elicit physiological responses from their genetic relatives. It is probable that secreted 
‘secondary’ metabolites (so named because their distribution between clades is rather 
restricted [161]) are made by microbes precisely for these purposes [162-165]. This said, 
some are clearly intended to send signals (including cytotoxic molecules) to other 
organisms, and many examples (e.g. [166]) are known in which the presence of organism 1 
indices organism 2 to synthesise molecules that are normally cryptic. In enclosed 
environments, a molecule that is secreted and promotes both its own synthesis and 
secretion in another cell of the same species can achieve a steady-state concentration of the 
pheromone that depends on the concentration of cells. Consequently, and for historical 
reasons, such (pheromonal) behaviour has become known, in prokaryote biology, as 
‘quorum sensing’ (see e.g. [167-169]). It provides another general example of secretory 
processes involving small molecules that have selective advantage for the host, and has 
applications in biotechnology [170, 171].  

Symbiosis and syntrophy. As well as signalling molecules, many natural microbial and other 
ecosystems involve the exchange of nutrients between organisms, often of different types, 
necessarily involving secretion or metabolite efflux. Thus, lichens are symbioses between 
algae and fungi [172, 173], and stable consortia can develop even in novel ecosystems by 
learning to assist each other [174]. Since this is not a review of microbial ecology, our 
purpose is only to recognise the role of effluxers in complex ecosystems [175]; in some 
cases the dependence of at least one organism is absolute, for thermodynamic reasons 
involving the removal by a second organism of a product secreted by the first; this is referred 
to as syntrophy [176-178]. 

In microbes that reproduce by binary fission, selection is usually for growth rate [179], and if 
circumstances can be arranged to select for it, improved efflux may lead to improved growth 
rate that can be selected for in a turbidostat (e.g. [180, 181]). In conclusion, as ever in 
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biology, evolutionary considerations can give useful insights into circumstances in which the 
secretion of a biosynthesised metabolite is, perhaps surprisingly, beneficial for the host. 

A note on permeability units and terminology 
Biochemists (and modellers) are used to expressing fluxes in terms of units such as 
nmol.(min.mg protein)-1. If the volume of the compartment of interest is known this is 
sometimes rendered as nM.min-1 or its dimensional equivalent. However, the convention in 
transporter studies, especially those in epithelial cells such as Caco-2 cells, is to express 
such rates in terms of so-called permeability coefficients (Papp), with the dimensionality 
(c)m.s-1. (Many pharmaceutical drugs have values in Caco-2 cells in the range 1-10 cm.s-1 
when expressed in these units [182].) Transport efficiency is defined [183, 184] as the initial 
rate of uptake (µmol.min-1) (or µmol.(min.mg-1)) divided by substrate concentration (nmol.cm-

3). The former thus has the dimensionality of the usual measure of enzyme kinetic power 
(kcat/Km) [185] and the SI dimensions of m3.t-1, and when this is divided by an estimate of the 
membrane area in (c)m2 we obtain the (apparent) permeability Papp with the dimensions 
length.time-1 (see also [186]).  

Finding transporters for a given substrate or product 
In line with our ‘four-stage’ systems biology strategy, the first step is to establish qualitatively 
which transporters might be responsible for the transport of particular substrates (in 
shorthand: ‘have substrate, seek transporter(s)’). A different but related question. albeit 
with a similar endpoint, (‘have transporter, seek substrate(s)’), enquires as to which 
substrates are used by a given transporter. We shall consider both. One strategy (see e.g. 
[103]) for the former is purely in silico, and uses sequence similarity to suggest transporter 
substrates. However, this is not particularly reliable as most transporters have undergone 
divergent evolution [187] such that moderately similar sequences or motifs can have 
considerably different substrates. (Note that efflux systems do seem to be more strongly 
conserved than are influx systems [188], and are often highly promiscuous [68, 134].) 

A more reliable method for both questions seeks to assess a co-variation of uptake with the 
loss or gain of a transporter activity. This is particularly convenient if there can be a (growth) 
selection step, since if the transporter is not essential for cell growth, and sufficient substrate 
can be added that it is toxic, cells that survive the presence of normally cytotoxic 
concentrations of the substrate may do so because they lack the relevant uptake transporter 
(e.g. [23, 157]) or have increased activity of an efflux transporter (e.g. [132, 133, 135, 136, 
189-192]) or a factor controlling its expression (see below). This then allows their 
identification, nowadays typically by sequencing survivors directly. 

In the former (uptake) case, we [157] exploited the availability [193] of a knockout collection 
of bar-coded, haploid cell lines in baker’s yeast, and assessed those exhibiting resistance to 
substrates at concentration capable of decreasing the wild-type growth rate by 90%. These 
could easily be observed in 18/26 cases, the others being considered to have multiple 
uptake transporters such that deleting them individually was without major effect (or any 
such effects were subsumed by pleiotropy [194, 195]). The parallel analyses of the barcoded 
mutants were mirrored by a robotic analysis of individual mutant strains. 

Superti-Furga and colleagues [23] used a similar but more elegant strategy, exploiting the 
availability of a (nearly entirely) haploid mammalian cell line KBM7 [196] into whose genome 
a retrovirus could insert randomly, thereby knocking out a particular gene. They challenged 
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the cells with a cytotoxic concentration of the candidate anticancer drug sepantronium 
bromide (YM155), noting that on 122/122 occasions the gene that was knocked out to 
enable cell survival was an uptake transporter known as SLC35F2. These knockouts were 
some 500 times more resistant than was the wild type, and the sensitivity of different 
(diploid) cell lines correlated strongly and negatively (P=0.0007) with SLC35F2 expression 
levels (R = −0.77) as judged by transcriptome analysis. 

Figure 3. An untargeted metabolomics strategy for determining the substrates of ‘orphan’ 
transporters whose ‘true’ substrates are considered not to be known. Based on [184] 

These strategies work well when there is a screening (or better selection) step available for 
cells that survive a specific treatment, or can at least be differentiated from the rest, e.g. by 
flow cytometry (see e.g. [159, 197] and below). A more general strategy (Fig 3) is to expose 
different cell lines, in which the transporter of interest is differentially expressed (including 
naturally [126]), to a large cocktail of substrates, and see which substrates are differentially 
taken up. These may then be tested individually. A classic example is that of Gründemann 
and colleagues [184, 198, 199], who were interested in the function of a transporter 
previously named OCTN1 (organic cation transporter N1), now referred to as SLC22A4 
[200]. It was at the time alleged to be a transporter of the cations carnitine and (the unnatural 
substrate) tetraethyl ammonium. However, Gründemann and colleagues [184] recognised 
that the rates of uptake of these substrates were in fact rather miserable (see also [182]). 
They used what would now (see e.g. [201-205]) be referred to as ‘untargeted metabolomics’ 
to determine the differential uptake of substances from pooled serum when it was incubated 
with HEK293 cells either lacking measurable amounts, or containing cloned-up levels, of 
SLC22A4. A specific mass of m/z 144.84 was detected as being particularly taken up in the 
transporter-containing cells, and this was identified as the dipeptide proline betaine (aka 
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stachydrine), a characteristic constituent of citrus fruits and their juices [206-208]. 
Gründemann and colleagues [184] then performed some elementary cheminformatics (as in 
[209]) to look for other molecules that were chemically (structurally) similar to stachydrine, 
recognising that among them was ergothioneine (also known as 2-mercaptohistidine 
trimethylbetaine; IUPAC name (2S)-3-(2-Thioxo-2,3-dihydro-1H-imidazol-4-yl)-2-
(trimethylammonio)propanoate) (Fig 4). When tested individually, ergothioneine turned out to 
be by far the best substrate, being taken up ~100x more efficiently than was carnitine, and 
being accumulated ca 180-fold (its uptake was Na+-coupled, presumably with a 
stoichiometry of at least 2Na+ per ergothioneine). Although not our subject here, the biology 
of ergothioneine (an antioxidant) is very interesting (see e.g. [126, 199, 210-212]), with 
SLC22A4-/- cells being very sensitive to oxidative stress, but the key point is that this 
analysis shows the likelihood that many transporters were actually selected on the basis of 
their ability to take up dietary, bioactive compounds that are effectively xenobiotics [213]. 

Figure 4. The structures of L-carnitine, ergothioneine, and some related molecules. 

Cloning large libraries of chromosome fragments [94, 214], and seeing their effects on 
export or productivity, or assessing genes with increased transcription in response to 
increased external metabolite concentrations [108, 215] provide for other methods (see e.g. 
[103]). 

Competition assays provide yet another means of assessing which transporters take up 
which drugs if an uptake assay is available for at least one, known substrate. Traditionally, 
radio-isotopically labelled drugs would be used, but nowadays fluorescent assays (e.g. [216-
220]) or mass spectrometric assays [221] are more common.  
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Finally, a major trend for the detection of the production or uptake of a substance, especially  
In microbes, is the development of screening or selection based on various types of 
biosensors (e.g. [12, 197, 222-236]). These powerful techniques, that give optical readouts 
amenable to cell sorting techniques [159], are now becoming much more common.  

 

The importance of QSARs (Quantitative Structure-Activity Relationships) 
for drug transporters 
Ultimately, we would like some kind of a mathematical model that could predict the rate of 
uptake of any small molecule by a particular transporter molecule (i.e. its turnover number 
kcat), with the total maximum uptake rate per cell or organelle at saturating external 
concentration (Vmax) being given by the product of its expression level and the kcat. We note, 
of course, that transporter kinetics are particularly complex, with strong interactions between 
internal and external concentrations of the various substrates and inhibitors. However, the 
usual practice is to perform experiments under initial rate conditions, and to assume (or 
determine the) Michaelis-Menten kinetics. Given at least one molecule that is a substrate, it 
is possible (as with the example of Gründemann and colleagues [184] mentioned above) to 
assess structurally related molecules, on the basis (the ‘molecular similarity’ principle, e.g. 
[237]) that structurally similar molecular will tend to have similar effects.  

This is not a review of cheminformatics (see e.g. [238, 239]), but, in brief, a similarity 
comparison is typically done as follows. The structure of the interrogating molecule, provided 
in the form of a SMILES [240] or InChI [241-243] string, is encoded therefrom as a string of 
1s and 0s. Modern software suites such as RDKit [244] (www.rdkit.org/), CDK [245] or 
KNIME (which includes them both) [246-248] allow one to do this automatically. The same is 
done for the molecule(s) with which the interrogating molecule is to be compared. Although 
more complex comparisons are occasionally used (e.g. [249-251]), strings are typically 
compared on the basis of the number of bits they have in common relative to the total, a true 
metric (between 0 and 1) known as the Jaccard or Tanimoto similarity. Although this is a 
continuous function, Tanimoto similarities above 0.8 are commonly found (i) to be resistant 
to the precise encoding used, and (ii) indeed to have broadly similar effects in most cases 
(review at [213]). An alternative encoding uses calculated molecular ‘descriptors’ or 
parametrised properties [252] such as polarity, number of hydrogen bond donors, and so on 
(CDK includes 22, for instance [253]). Of course fingerprints can also be combined with 
descriptors. Note, however, that ‘pure’ structural similarity analyses do not take any 
pharmacological activities into account, and such methods are referred to as ‘unsupervised’ 
learning methods (Figure 5), an important subset of which includes clustering methods (see 
e.g. [253-256]).  

QSAR analysis counts as a ‘supervised’ method (Figure 5), in which a set of candidate 
drugs, that may be chosen ‘actively’ on the basis of previous knowledge, are assessed for 
their potency in an assay of interest, e.g. the determination of the kcat of a transporter for 
which they may be a substrate or the Ki if they are inhibitors. This ‘potency’ (or whatever it is 
that we are trying to predict) is known as the output or objective function. The result of a 
series of such measurements using various drugs is a set of paired values of structure 
(encoded as a bitstring of 1s and 0s as described above) and the value of the objective 
function. Any number of the modern methods of machine learning may then be used to 

http://www.rdkit.org/
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construct a nonlinear mapping of these inputs onto the output; in  [248] we compared three, 
viz a multivariate linear statistical method known as partial least squares [257], a potent 
general method known as random forests [258], and an evolutionary algorithm known as 
genetic programming (see e.g. [259-262]). Overtraining is avoided by testing the model on a 
subset of molecules not used in the training; if successful, the model is said to generalise, 
and can with reasonable confidence (but see [263-265]) be used to make predictions in silico 
on any unseen molecules (that can, of course, themselves be tested experimentally). 
Possibly the most extensive uptake transporter studies (e.g. [266, 267]) have been carried 
out on SLC15 [268] members (previously known as PEPT1 and PEPT2), and responsible 
e.g. for the intestinal uptake of penicillins [269] and cepaholsporins [270, 271].  

Figure 5. Unsupervised and supervised learning methods in cheminformatics 

As mentioned, vitamin transporters, by definition, are required by essentially all mammalian 
cells (and are expressed therein; see e.g. data in [126]). Another example here is provided 
by Ray and colleagues [272, 273], who noted that a variety of molecules, including Janus 
kinase (JAK) inhibitors such as fedratinib, were transported by and/or were inhibitors of two 
of the three main thiamine transporters (SLC19 family [274]), thereby inducing Wernicke’s 
encephalopathy (due to thiamine deficiency). A kind of QSAR model (in this case a 
pharmacophore model) suggested that 2,4-diaminopyrimidine–containing compounds can in 
fact adopt a conformation matching several key features of thiamine. This led to the 
discovery that the antibiotic trimethoprim also potently inhibits thiamine uptake [272]. 
Metformin is also both a substrate and an inhibitor of one of the transporters [275]. 
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In general, provided we know the QSAR of relevant transporters and their expression 
profiles, we can expect to be able to predict their utility in the cellular uptake or efflux of any 
substrates of interest whose structure is known and can thus be encoded in a similar way to 
that used in the construction of the model. 

Transporter bioengineering 
Armed with knowledge of an (uptake or) efflux transporter we wish to incorporate or improve 
in our host organism, three main non-empirical strategies for transporter engineering can be 
identified: 

• Varied (usually increased) expression by promoter engineering 
• Varied (usually increased) expression by other control factor (e.g. transcription factor) 

engineering 
• Varied (usually increased) activity per molecule via directed evolution or synthetic 

biology, this also potentially including varying substrate specificities 

We consider each in turn. 

Promoter engineering 
This is nowadays very well known, and does not demand much space. Well-established 
inducible promoter systems include various forms of tet [276, 277], while in E. coli IPTG is 
still widely used at small scales. Varying the promoter sequence can allow an almost 
continuous tuning of expression levels [278-282], even in difficult high-G+C-containing 
actinobacteria [283, 284]. 

Control factor expression engineering 
As well as promoter sequences, a very great many other features can determine the steady-
state expression level of a target protein of interest (e.g. [285-288]). These include mRNA 
stability [289, 290], codon usage [291-294], riboswitches [12, 295], ribosome binding site 
potency [296, 297] and even the RNA polymerase itself [298] (including photoswitchable 
variants [299]).  

By definition, transcription factors can have major effects on the expression of multiple 
genes and hence pathway fluxes, a particularly clear example being the role of the myb 
transcription factor driving phenylpropanoid and anthocyanin biosynthesis in plants [300, 
301]. Transcription factor engineering rather lags behind in prokaryotes (see e.g. [197, 302, 
303]), but an example of present interest is the use of marA to improve solvent tolerance 
(geraniol) in E. coli [304], as this acts, at least in part, by increasing the expression level of 
the enormous (770kDa) [305] and otherwise somewhat intractable (but see [306]) tolC/acrAB 
efflux transporter. Mutations in marR [307] and σ70 (rpoD) [308] can have similar effects. Of 
course one cannot also fail to mention the variants of CRISPR/Cas9 gene editing technology 
that allow almost unlimited tinkering (e.g. in yeast [309, 310]).  

While microbes even of the same genotype are purposely highly heterogeneous 
physiologically [311, 312], even in the same media, the biotechnologist might wish to turn on 
and off pathways in ‘all’ cells at once; ‘quorum sensing’ methods are one means to seek to 
do this [169, 313]. 

Finally, we would also recognise the potential benefits of engineering the production or 
uptake (e.g. [314-318]) of compatible solutes [319-322]. 
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Directed evolution: changing the sequence of the target transporter protein(s) 
Ever since the recognition of mutation itself, it has been obvious that changes in the primary 
sequence of a protein are more or less tightly coupled to changes in its properties [323, 324], 
whether they be kcat [325], thermotolerance [326], substrate specificity [327], solvent 
tolerance [328], or any other properties. 

Examples involving transporter engineering are legion [13]. A very striking one includes the 
cloning and engineering of an NTP transporter to allow E coli to take up non-natural 
nucleotide triphosphates, to encode “a form of life that can stably store genetic information 
using a six-letter, three-base-pair alphabet” [329]. As to efflux transporters, the engineering 
towards influx of substances normally pumped out, for instance via uncoupled variants of the 
LmrP ‘efflux’ transporter in lactobacilli [330-333] is notable. Other examples have changed 
the specificity [334] and promiscuity [335] of transporters. 

With regard to efflux transporters more generally, one sixth of the transporters of E. coli are 
efflux transporters [336]), including as many as 37 ‘multidrug resistant’ (MDR) transporters 
[337], most commonly from the Major Facilitator Superfamily [338, 339]. Any of these are 
candidates for manipulation to cause the efflux of biotechnological products. Known ones 
include those for dipeptides [340], antibiotics [132, 133, 135, 136], and solvents [133, 341, 
342]. Broadly similar statements are true in S. cerevisiae, where a variety of efflux pumps 
help remove intracellular toxicants of all kinds [343-348]. Given the importance of horizontal 
gene transfer in natural evolution (e.g. [74, 349-351]), it is not surprising that even 
interkingdom transfer of efflux genes can be effective, e.g. the use of yeast genes in causing 
xenobiotic tolerance in plants [352]. 

Table 2 gives some examples in which efflux has been selected by exposing cells to 
potentially inhibitory concentrations of the substances to be effluxed. 

Class of substance Selected reference(s) 
Reviews [353] 
alkanes [189, 354-358] (see also [28]) 
arenes [359-361] 
short-chain alcohols [190, 306] 
short-chain fatty acids [362, 363] 
long-chain fatty acids [110, 364] 
terpenoids [189, 365, 366] 
Table 2. Some substances for which efflux pumps have been selected via tolerance to the 
substances in question 

Consequently, when the product of interest is not close in structure to a known substrate 
(product) of any native transporter, it may be worth starting with a transporter for which it is; 
various resources allow one to seek these (e.g. [367-373]). In particular, modern methods of 
synthetic biology are far more powerful than are the classical methods of directed evolution, 
and clearly represent the future. 

Synthetic biology for efflux transporter engineering 
Whichever of the above general strategies are chosen (promoters, other control elements, 
the target protein itself), improving them always involves changing the host’s DNA sequence. 
In the past, and partly because of the enormous number of possible sequences [374-376] 
this was done rather empirically, using methods such as error-prone PCR (ePCR) [377-379] 
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to introduce mutations. Although showing the utility of the general directed evolution 
strategy, this had three highly undesirable consequences: (i) there was no control over which 
mutations were made, (ii) the search could only be local, as high mutation rates necessarily 
introduced stop codons [379, 380], and (iii) the reliance on selection of local ‘winners’ as 
starting points for the next generation inevitably meant that search was soon trapped in local 
minima from which it was impossible to escape (as was evident from many published studies 
showing a lack of further improvement after 3 or so generations, despite quite poor kcat 
values) [324].  

Figure 6. A generic scheme for modern synthetic biology. Parts in red are computational, in 
blue experimental. Based on a figure in [324] via a CC-BY licence. 

The conceptual solution, well known to those studying evolutionary and related algorithms 
for purposes of optimisation (e.g. [324, 376, 381-385]), is that one has to combine 
exploitation (local search) with exploration (wider forays), and that consequently it can be 
helpful to know where one is in the search space (i.e. the genotype [262, 386]). 

The experimental solution to this is to make the DNA in a statistically deterministic manner, 
which means synthetically [387], as part of a synthetic biology (synbio) pipeline (Figure 6) 
[324, 388]. Thus we have described methods for the controlled generation and assembly of 
DNA/protein sequences [288, 294, 389-391] designed to navigate these very large search 
spaces ‘intelligently’ [324]. While specificity is largely (but not at all completely) based on 
residues at or near the active site, we note in particular that raising kcat requires contributions 
from residues that may be very distant from the active site (e.g. [324, 325, 392, 393]). The 
opportunities afforded by ‘deep mutational scanning’ [394-399], the coupled deep 
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sequencing, and the ‘deep’ learning [400, 401] of structure(sequence)-activity relationships 
[324, 402] are enormous. 

A particularly nice example of the application of synbio to transporter engineering comes 
from Sommer and colleagues [12], who deployed and evolved riboswitches that could detect 
either thiamine or xanthine, thereby enabling a selection for microbes presented with 
metagenomes that had acquired transporters for those substrates therefrom. Presumably a 
related strategy based on transcriptional events that were turned off rather than on by a 
riboswitch [403] could equally be applied to efflux transporters. Related strategies serve to 
highlight other important genes in the network of interest [404]. 

Concluding and summarising remarks 
In this comparatively short review (albeit we have tried to give many citations), the aim has 
been to rehearse the value of efflux transporter engineering to biotechnology. The key points 
are as follows: 

• Essentially nothing ‘floats freely’ through any phospholipid bilayer that may be 
present in the plasma or other membrane of producer cells 

• Consequently, there is typically a kinetic restriction or barrier to effluxing product by 
producers of high intracellular concentrations thereof, unless a suitable transporter is, 
or can be arranged, to be present 

• The first step in a systems biology strategy is to make a model of the organism of 
interest, and discover which transporters might have the desired activity, and whether 
native activities can be increased or if it is necessary to add exogenous genes. 

• Even equilibrative transporters (often labelled as ‘influx’ transporters) can be useful 
for these purposes if their kinetics are sufficiently great. 

• There can be sound evolutionary (natural selection) reasons why a cell might 
naturally choose to efflux expensively synthesised product; the biotechnologist is 
wise to make use of these where they exist 

• In favourable cases it may be possible to pump out the product of interest using an 
efflux transporter that is coupled to cellular sources of free energy. 

• The methods of synthetic biology offer almost unlimited opportunities for efflux 
transporter engineering, and thereby for learning the sequence-structure-activity 
relationships of transporters and their substrates of interest  
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Legends to figures 
 

Figure 1. The ability to efflux an intracellular product is of great significance in biotechnology, 
as the extracellular space is normally much greater than the intracellular space in a typical 
fermentation. 

Figure 2. A ‘mind map’ [5] of the layout of this paper. 

Figure 3. An untargeted metabolomics strategy for determining the substrates of ‘orphan’ 
transporters whose ‘true’ substrates are considered not to be known. Based on [184].  

Figure 4. The structures of L-carnitine, ergothioneine, and some related molecules. 

Figure 5. Unsupervised and supervised learning methods in cheminformatics 

Figure 6. A generic scheme for modern synthetic biology. Parts in red are computational, in 
blue experimental. Based on a figure in [324] via a CC-BY licence. 
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