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Abstract 

 

Multilevel models are used ubiquitously in the social and behavioural sciences and effect sizes 

are critical for contextualizing results. A general framework of R-squared effect size measures 

for multilevel models has only recently been developed. Rights and Sterba (2019) distinguished 

each source of explained variance for each possible kind of outcome variance. Though 

researchers have long desired a comprehensive and coherent approach to computing R-squared 

measures for multilevel models, the use of this framework has a steep learning curve. The 

purpose of this tutorial is to introduce and demonstrate using a new R package – r2mlm – that 

automates the intensive computations involved in implementing the framework and provides 

accompanying graphics to visualize all multilevel R-squared measures together. We use 

accessible illustrations with open data and code to demonstrate how to use and interpret the R 

package output.  
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Introduction 

 

 Multilevel models (MLMs) are widely used in the behavioural sciences (Hox, 2010; 

Raudenbush & Bryk, 2002; Snijders & Bosker, 2011). These models allow researchers to 

analyze clustered data structures that result from sampling and research designs across many 

areas of psychology. For example, students can be clustered within schools, people clustered 

within groups or dyads, and measurements clustered within person. Multilevel models can be 

used to avoid violations of the assumption of independence of observations for statistical tests 

and also allow researchers to explore dependencies and ask questions about the effects of 

individual- and cluster-level predictors on a given outcome. 

 Effect sizes are necessary for contextualizing the magnitude of the results from all kinds 

of statistical models and accurately conveying the properties of a sample. As such, journals and 

associations advise or require that effect sizes be reported (Cumming, 2014; Kelley & Preacher, 

2012; Pek & Flora, 2018; Psychonomic Society, 2012). Historically, MLMs lacked a 

comprehensive approach for creating R-squared effect size measures that represented each 

distinct source of explained variance for each possible kind of outcome variance. Rights and 

Sterba (2019) addressed this shortcoming by developing an integrative R-squared effect size 

framework that, for the first time, utilized a complete partitioning of variance for MLMs. This 

framework provides separate measures corresponding to each potential source of explained 

variance that could account for total, within-cluster, or between-cluster outcome variance. The 

framework subsumes and expands on pre-existing MLM R-squared measures (from Aguinis & 

Culpepper, 2015; Bryk & Raudenbush, 2002; Hox, 2002, 2010; Johnson, 2014; Kreft & de Leeuw, 

1998; Nakagawa & Schielzeth, 2013; Raudenbush & Bryk, 2002; Snijders & Bosker, 2011; Vonesh 

& Chinchilli, 1997; Xu, 2003).  Analytic relationships between previous measures were provided 

in derivations in appendices of Rights and Sterba (2019).  
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The aim of the current work is to develop accessible implementation options for applied 

researchers to incorporate this integrative framework of effect sizes from Rights & Sterba (2019) 

into their empirical work. Using this R-squared framework properly has a steep learning curve 

because it requires a thorough understanding of MLMs to conceptualize, interrelate, and 

visualize all of the R-squared measures in the framework together as a set. Additionally, it 

requires understanding how and why certain measures change when new terms are added to the 

multilevel model. For a researcher accustomed to a one-size-fits-all R-squared measure for 

single-level regression analyses, this MLM R-squared framework is substantially more involved. 

The fact that “popular software does not provide easy access” (Edwards et al., 2008, p. 6150) to 

MLM R-squared measures has been a longstanding impediment to their widespread and 

successful use in practice (Bickel, 2007; Demidenko et al., 2012; Jaeger et al., 2017; Kramer, 

2005). 

In this tutorial, we reduce the slope of this learning curve in two ways. First, we overview 

the basics of MLMs and the framework detailed in Rights and Sterba (2019, 2020). Second, we 

introduce and demonstrate a new R package, r2mlm (Shaw et al., 2020), that automates 

calculating all R-squared effect size measures described in the framework and provides 

accompanying graphics to visualize all of these R-squared measures together as an interrelated 

set. We demonstrate using this R package with openly available, simulated data examples 

accompanied by step-by-step code, and provide substantive interpretations of the resulting 

output. Given that R-squared measures are covered in virtually every MLM course, workshop, 

and textbook, this tutorial will benefit MLM users across the social and behavioural sciences. 

Learning Objectives and Prerequisite Knowledge 
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 The learning objectives for this tutorial are to (1) understand the integrative R-squared 

framework detailed in Rights and Sterba (2019), (2) learn how to interpret the R-squared values 

for all measures in the framework, and (3) understand how to use the r2mlm R package to 

automate R-squared effect size computation and visualization. While we will briefly review 

multilevel modelling theory prior to walking through the examples, this tutorial is intended for 

researchers who are already familiar with specifying and interpreting MLMs and who wish to 

calculate R-squared effect sizes for their models. A researcher is sufficiently familiar with 

MLMs if they know MLMs partition variance into level-1/within-cluster variance and level-

2/between-cluster variance, know the difference between fixed and random effects, and have 

specified MLMs and interpreted the resulting output in empirical research. Researchers 

unfamiliar with these aspects of MLMs are directed to McCoach (2010) and McCoach and 

Adelson (2010) for accessible yet brief introductions to MLMs. For those interested in 

comprehensive texts we suggest Raudenbush and Bryk (2002) or Snijders and Bosker (2011). 

 Though this R-squared effect size framework can be utilized with any software, when 

presenting our R functions, we will assume models were fit in R using the lme4 or nlme 

packages, so it may be preferable (but is not necessary) to have some experience with R and 

lme4 or nlme. For those without experience with R, a plethora of teaching resources are 

available. We recommend the first section of Wickham and Grolemund (2016), which is 

available for free online at www.r4ds.had.co.nz. Many more resources are aggregated at 

bigbookofr.com (Baruffa, 2020). For those without experience with lme4 or nlme who want a 

formal introduction to the packages, we suggest Finch et al. (2014), or the documentation for 

each package (Bates et al., 2015; Pinheiro et al., 2020). Researchers wishing to run MLMs in 

http://www.r4ds.had.co.nz/
http://www.bigbookofr.com/
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other software can still use the effect size framework within R by manually entering parameter 

estimates, which we’ll demonstrate later. 

 Next, we review multilevel modelling theory and effect sizes, explain the R-squared 

framework developed by Rights and Sterba (2019), and subsequently demonstrate our new 

software tools to streamline and automate the application of this framework. 

Brief Overview: Multilevel Modelling 

Imagine you wish to examine the effect of student motivation on math test scores. You 

gather data from middle school students, and intend to run a linear regression with motivation as 

a predictor and math test score as the outcome. Many traditional statistical methods assume 

independence of observations. That is, controlling for motivation, students’ math test scores will 

not otherwise be “paired, dependent, correlated, or associated in any way” (Glass & Hopkins, 

1996, p. 295). When the assumption of independence is violated, the standard error is 

underestimated, which inflates Type I error rates. Given that students in the same classroom have 

the same teacher, it is reasonable to suspect that students in the same class may be more similar 

in their math test scores (because of their shared experiences with teaching style, teaching 

experience, etc.) than to students in different classes, beyond the similarity accounted for by 

motivation. That is, there may be some degree of interdependence between math test scores 

among students in the same class. 

 We refer to this kind of data structure as being nested or clustered. One option for 

modelling clustered data is a multilevel model. These models are also known as random effects 

models, mixed models, and hierarchical linear models, among other names. Throughout this 

tutorial, we will use the term multilevel model (MLM). Multilevel models allow distinguishing 

variance within a cluster (e.g., how math scores of students vary within the same class) from 
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variance between clusters (e.g., how average math scores vary between classes). Instead of just 

one (fixed) intercept and one (fixed) slope per level-1 predictor, multilevel models allow for 

cluster-specific (random) intercepts and (random) slopes that accommodate the similarity of 

observations within a cluster. Multilevel models allow the researcher to answer questions at both 

the individual level (e.g., how does a student’s motivation affect math test scores?) and the 

cluster level (e.g., how does teaching experience affect math test scores?) and to determine to 

what extent a model explains within-cluster (e.g., within-classroom) and between-cluster (e.g., 

between-classroom) outcome variation. 

 The following general equation for an MLM reflects the variance partitioning into within 

and between variance: 

 𝑦𝒊𝒋 = 𝒙𝒊𝒋
′ 𝜸𝒘 + 𝒛𝒋

′𝜸𝒃 + 𝒘𝒊𝒋
′ 𝒖𝑗 +  𝑟𝒊𝒋. (Eq. 1) 

In this equation, the bolded lowercase letters represent vectors, which stand in for all of the 

specific instances of each type of variable. For example, you could have five level-1 predictors in 

your model; in the above equation, all five are contained in the vector xij. The yij is the outcome 

for a given unit, i, nested within a given cluster, j. The γ values represent fixed effects, i.e., the 

across-cluster average regression coefficients: γw is a vector of the within (i.e., level-1) fixed 

effects; γb is a vector of the between (i.e., level-2) fixed effects. xij is a vector of the level-1 

predictors, and zj a vector of the level-2 predictors (including a 1, for the intercept).  wij is a 

vector consisting of 1 (again, for the intercept) and all level-1 predictors that have random 

slopes. uj is a vector of the level-2 residuals (i.e., the random intercept residual and each random 

slope residual for cluster j), reflecting cluster-specific deviations from the across-cluster average 

regression coefficients. The rij is the residual for a given unit, i; that is, rij is the deviation of the 
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outcome score from its cluster-specific expected outcome score conditional on the predictors and 

random effects.  

Applied to our example of student math test scores predicted by motivation and teaching 

experience, we can express the multilevel regression equation as: 

 𝑚𝑎𝑡ℎ𝒊𝒋 = 𝛾00 +  𝛾01𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝒊𝑗 + 𝛾𝟏𝟎𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑖𝑗 + 𝑈0𝑗 + 𝑈1𝑗𝐼𝑄𝑖𝑗  + 𝑟𝑖𝑗 (Eq. 2) 

Here, student math test scores (mathij) are predicted by the level-1 variable motivation (γ10 * 

motivationij) with a random slope (U1j * motivationij) and the level-2 variable teaching experience 

(γ01 * teachingij); the model also includes the fixed component of the intercept (γ00) as well as the 

random component (U0j), and the level-1 residual (rij). Thus, this model accounts for the 

variability in intercepts and slopes across classrooms and can address questions about how 

predictors at both the student and classroom level relate to the outcome. 

Brief Overview: Effect Sizes 

 Per Kelley and Preacher (2012), the term “effect size” encapsulates any quantitative 

reflection of the magnitude of some phenomenon, with reference to a specific research question. 

This includes a variety of statistics, describing various aspects of a model. For example, standard 

deviation can describe variability, Cohen’s d can describe differences between group means. 

Effect sizes can be standardized (e.g., Cohen’s d, expressed in standard deviation units) or 

unstandardized (e.g., an estimated mean difference, expressed in the units of the dependent 

variable) (Pek & Flora, 2018). Reporting effect size measures appropriate for a given research 

question is important for contextualizing the results by providing an indication of practical 

significance (i.e., “how meaningful is this effect?”) beyond just statistical significance.  

 One popular effect size in traditional statistical frameworks is R-squared, a standardized 

effect size computed as the proportion of variance explained by a model (Wright, 1921). 
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Generically, it can be represented as the ratio of the outcome variance explained by the model to 

the total outcome variance: 

 𝑅2 =  
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 (Eq. 3) 

This yields an intuitive variance explained measure ranging from 0 to 1, with 0 indicating 0% 

explained and 1 indicating 100% explained. 

 As detailed by Rights and Sterba (2019), for MLMs, calculating the proportion of 

variance explained is complicated by the fact that there are multiple types of outcome variance 

(total vs. within-cluster vs. between-cluster), in contrast to single-level regression models which 

have only one type of outcome variance. Moreover, in MLMs there are multiple sources that 

could contribute to explained variance (e.g., predictors at different levels via their fixed and 

random components) in contrast to single-level regression models which have only one source of 

explained variance (predictors at that single-level via their fixed components). Some researchers 

developing MLM R-squared measures had provided a single measure (e.g., Snijders & Bosker 

1999, 2012) and sought an omnibus “one-size-fits-all” measure, analogous to that in single-level 

regression (e.g., Orelien & Edward, 2008). Others have suggested pairs of measures (e.g., 

Raudenbush & Bryk, 2002; Kreft & de Leeuw, 1998; Hox, 2010), but they collapse across 

sources of explained variance, or examine only one kind of outcome variance, and can yield 

misleading or uninterpretable results (see Rights & Sterba, 2019, 2020 for a thorough review). 

For example, Johnson (2014), Nakagawa and Schielzeth (2013), and Snijders and Bosker (1994, 

2011) all presented measures based on partitioning of model-implied variance in MLMs but did 

not use a full partitioning of outcome variance. These measures did not consider (1) partitioning 

variance into each of within, between, and total variance, (2) partitioning explained total variance 

into contributions by level-1 predictors versus level-2 predictors via fixed effects, nor (3) 
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partitioning explained variance into contributions via random slope versus via random intercept 

variation. Ultimately, no single or small set of MLM R-squared measures can thoroughly 

distinguish the contribution of each distinct source of variance for each applicable kind of 

outcome variance.  

Rights and Sterba (2019) overcame these limitations by developing a framework that 

provides a comprehensive suite of R-squared measures that yields a complete picture of the 

model’s explanatory power and provides new measures while subsuming pre-existing measures 

(Aguinis & Culpepper, 2015; Bryk & Raudenbush, 2002; Hox, 2002, 2010; Johnson, 2014; Kreft 

& de Leeuw, 1998; Nakagawa & Schielzeth, 2013; Raudenbush & Bryk, 2002; Snijders & 

Bosker, 2011; Vonesh & Chinchilli, 1997; Xu, 2003). To increase the accessibility of this 

framework, we released an R package called r2mlm that takes an MLM as input and calculates 

the R-squared values according to Rights and Sterba’s (2019) framework (Shaw, Rights, Sterba, 

& Flake, 2020). To help develop users’ intuitions about the framework and their comfort using 

the R package, the remainder of this paper will overview Rights and Sterba’s (2019) framework, 

then walk through calculating and interpreting R-squared values using open data and code. 

An R-Squared Framework for Multilevel Models 

 As mentioned, calculating variance explained for an MLM is complicated by total 

variance being partitioned into within and between variances. The Rights and Sterba (2019) 

framework intuitively maps variance explained for MLMs by considering variance explained at 

each of these levels – within variance explained and between variance explained – as well as the 

total variance (i.e., sum of within and between variance) explained. Here, we introduce the 

framework in plain language to provide an accessible guide, which supplements the published 

technical work. 
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At the within level of the model, there are three possible sources of variance: the level-1 

predictors via the fixed effects (shorthand: “f1”), the level-1 predictors via the random effects 

(shorthand: “v”), and the level-1 residuals (shorthand: resid). Hence, a within-cluster R-squared 

measure has the following form: 

 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2 =

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
  (Eq. 4) 

Where varf1 denotes variance explained by f1, varv denotes variance explained by v, and varresid 

denotes residual variance. You can then calculate two distinct effect sizes from this: within 

variance explained by level 1 predictors via fixed effects (termed 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1)

 ) and within variance 

explained by level 1 predictors via random effects (termed 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑣)

). Note that a given R-squared 

is described by two elements: a subscript and a superscript. The subscripts indicate at what level 

variance is being explained: “within” for within-cluster, “between” for between-cluster, and 

“total” for total. The superscripts indicate what potential sources of variance are contributing to 

variance explained: “f1” for level 1 predictors via fixed effects, “f2” for level-2 predictors via 

fixed effects, and so on. For example, at the within level, the R-squared measure for the level-1 

predictors via fixed effects is represented as 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1)

. 

 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1)

=
𝑣𝑎𝑟𝑓1

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 5) 

 

 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑣)

=
𝑣𝑎𝑟𝑣

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 6) 

One can consider each of these effect sizes alone or add the two to consider variance explained 

by level 1 predictors via fixed and random effects combined, yielding 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1𝑣)

= 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1)

+

𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑣)

.   
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  Between variance is composed of the contribution of level 2 predictors via fixed effects 

(shorthand: “f2”) and cluster-specific means via intercept variation (shorthand: “m”), yielding the 

following expression for a between-cluster R-squared measure: 

 𝑅𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑚
 (Eq. 7) 

One can then calculate two possible R-squared effect sizes, quantifying the between variance 

explained by each of the two between-cluster sources, respectively:  

 𝑅𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2(𝑓2)

=
𝑣𝑎𝑟𝑓2

𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑚
 (Eq. 8) 

 

 𝑅𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2(𝑚)

=
𝑣𝑎𝑟𝑚

𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑚
 (Eq. 9) 

Here, there is no utility in combining these measures, as by definition they will account for the 

entirety of the between variance and hence will sum to 1 every time.  

 Total variance then is the combination of within and between variance explained, and 

thus total R-squared measures take the following form: 

 𝑅𝑡𝑜𝑡𝑎𝑙
2 =

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2+𝑣𝑎𝑟𝑣 + +𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 10) 

 

There are four component effect sizes, each quantifying total variance explained by the following 

sources, respectively: level 1 predictors via fixed effects (“f1”), level 2 predictors via fixed 

effects (“f2”), level 1 predictors via random slope variation (“v”), and cluster-specific outcome 

means via intercept variation (“m”): 

 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓1)

=
𝑣𝑎𝑟𝑓1

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 11) 
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 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓2)

=
𝑣𝑎𝑟𝑓2

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 12) 

 

 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑣)

=
𝑣𝑎𝑟𝑉

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 12) 

 

 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑚)

=
𝑣𝑎𝑟𝑚

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 (Eq. 13) 

Rights & Sterba (2019) recommend considering how much variance is explained by each 

individual component for the most complete information, but researchers can additionally add 

proportions together to consider more general questions like “how much variance is explained by 

all predictors via fixed effects?” (𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓)

= 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓1)

+ 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓2)

 ).  One can also consider other 

combinations of these component effect sizes, for instance, total variance explained by predictors 

at both levels via fixed effects and random slopes (𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓𝑣)

= 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓1)

+ 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓2)

+ 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑣)

), and total 

variance explained by all sources (𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓𝑣𝑚)

= 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓1)

+ 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓2)

+ 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑣)

+ 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑚)

). The level 1 

residuals are the remaining unexplained variance, so there is no component effect size “variance 

explained by unexplained variance.” 

Researchers may not be accustomed to considering random effect variation as “explained 

variance,” which is the case with all aforementioned measures containing a v or m in the 

superscript (e.g., 𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑣)

, 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑚)

). Previous MLM literature has offered two perspectives on how 

to treat variance attributable to random intercepts and slopes, called the “marginal” and 

“conditional” approaches (e.g., Edwards et al., 2008; Orelien & Edwards, 2008; Vonesh & 

Chinchilli, 1997; Wang & Schaalje, 2009; Xu, 2003). In the marginal approach, all variance 

attributable to predictors via random slope variation and attributable to cluster means via random 

intercept variation (i.e., sources “v” and “m”) is treated as unexplained. In the conditional 
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approach, variance attributable to predictors via random slope variation (“v”) and/or attributable 

to cluster means via random intercept variation (“m”) is treated as explained. Substantive 

justification for why one might want to consider a conditional R-squared measure was provided 

in Vonesh & Chinchilli (1997) and Rights and Sterba (2019).  

The Rights & Sterba (2019) framework offers researchers access to both the marginal and 

conditional approaches, because it separately quantifies variance attributable to each source that 

would be entered into the numerator of either a marginal or conditional measure. The marginal 

approach is more common in psychology, whereas the conditional approach has received more 

attention in biostatistics (e.g., Vonesh & Chinchilli, 1997). Nonetheless, the conditional approach 

has actually been used for years in the social sciences without much recognition. For example, 

one of Raudenbush & Bryk’s (1992, 2002) measures is actually a conditional measure. More 

broadly, the conditional approach may be useful for social science researchers to consider for 

descriptive purposes to quantify the degree of each kind of between-cluster heterogeneity. 

Otherwise the extent of such heterogeneity is often not discussed or is interpreted only 

qualitatively. For example, once a researcher realizes they have a large portion of variation 

attributable to predictors via random slope variation (𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑣)

), this could, in turn, motivate 

researchers to consider possible cross-level interaction terms in future modelling (Aguinis & 

Culpepper, 2015; Rights & Sterba, 2019, 2020). Relatedly, quantifying the extent of between-

cluster outcome variance attributable to intercept variation (𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑚)

) can easily indicate to the 

researcher whether there are substantial differences between clusters beyond that explained by 

predictors. In psychology, random effect variation is often thought of as residual variance, so the 

idea of “residual variance” as “explained variance” can be unintuitive. A researcher wishing to 

quantify variation in intercepts and/or slopes (i.e., source “m” and/or “v”) without thinking of it 
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as “variance explained” can instead interpret it with the more neutral language of variance 

“attributable to” or “modeled by” the source(s).   

Overall, the single-source R-squared measures defined in Equations 4-14, as well as the 

combinations described above, yield 12 different R-squared measures for a given model, as 

summarized in Table 1.  

Framework Assumptions 

 A few assumptions underlie this framework as originally delineated by Rights and Sterba 

(2019). This framework is implementable for the most common multilevel specification: two-

level multilevel models with normally distributed outcomes and homoscedastic residual 

variances. Initially in Rights and Sterba (2019), the framework assumed level-1 predictors were 

cluster-mean-centered, which avoids the pitfall of estimating conflated effects that are 

uninterpretable blends of level-specific effects (Enders & Tofighi, 2007; LaHuis et al., 2014; 

Raudenbush & Bryk, 2002). Subsequently, the full decomposition of variance was derived 

without assuming cluster-mean-centering of level-1 predictors (Rights & Sterba, 2021). Hence 

all total, within-cluster, and between-cluster R-squared measures in the framework are available 

for non-cluster-mean-centered models as well (Rights & Sterba, 2021), as we demonstrate later 

in this tutorial. In the Discussion, we also mention recent generalizations of this framework to 

accommodate additional modelling complexities, including heteroscedastic residual variance and 

alternative centering options, but here focus pedagogically on the original framework and 

assumptions from Rights & Sterba (2019) due to its greater simplicity and widespread 

applicability.  

R package 
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 Broadly, this R-squared framework for multilevel models disaggregates each potential 

source of variance explained into distinct effect sizes at within, between, and total levels of the 

model. This allows comprehensive consideration of how each individual and/or composite term 

in the model contributes to the proportion of variance explained. The newly developed package 

r2mlm introduced in this tutorial paper facilitates calculating effect sizes with this underlying 

framework. To help develop readers’ intuitions about the framework and illustrate using the R 

package, we will now demonstrate calculating and interpreting effect sizes for a variety of 

multilevel models using r2mlm in the context of accessible empirical examples. 

Data Demonstrations 

Example Data 

For this tutorial, we will use simulated data included with the r2mlm package. To access 

the dataset and perform all analyses, the first step is to install and load the package. 

install.packages(“r2mlm”) 
library(r2mlm) 

The simulated dataset included with the package is called teachsat, and contains information 

related to teacher job satisfaction. Teachers are clustered within schools, 30 teachers per school 

for 300 schools, for a total of 9000 observations. The dataset contains the following variables: 

• schoolID: the school identification number, range from 1-300. This is our clustering 

variable. 

• teacherID: a teacher’s ID number within a school, range from 1-30. 

• satisfaction: teacher job satisfaction on a 1-10 scale (1 = low satisfaction) 

• control_c: school-mean-centered teacher self-reported control over the curriculum (lower = 

less control) 

• control_m: school mean rating of teacher’s self-reported control over the curriculum 

• salary_c: school-mean-centered teacher salary (thousands of dollars) 

• salary_m: school mean teacher salary (thousands of dollars) 

• s_t_ratio: student-teacher ratio (number of students per teacher) 
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For our examples, we will specify a variety of models predicting teacher job satisfaction. 

Throughout the examples we will evaluate the meaning of various effects through two lenses: 

standardized R-squared effect sizes, and unstandardized regression coefficients. 

Null Model 

The null model contains only terms for the fixed and random components of the intercept 

of teacher job satisfaction. As such, the null model is also called the random-intercept-only 

model. It is usually the first model estimated because researchers can easily calculate the 

intraclass correlation coefficient (ICC) from it. 

Level 1: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛽0𝑗 + 𝑅𝑖𝑗 

Level 2: 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗 

Combined: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛾00 + 𝑈0𝑗 + 𝑅𝑖𝑗 

null_model <- lmer(satisfaction ~ 1 + (1 | schoolID), 
                   data = teachsat, 
                   REML = TRUE) 
 
summary(null_model) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: satisfaction ~ 1 + (1 | schoolID) 
##    Data: teachsat 
##  
## REML criterion at convergence: 30098.4 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.8269 -0.6385  0.0012  0.6435  3.2874  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  schoolID (Intercept) 0.699    0.836    
##  Residual             1.516    1.231    
## Number of obs: 9000, groups:  schoolID, 300 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept)  5.99677    0.04998     120 

This model produces one fixed effect estimate for the intercept. The predicted value of 

teacher satisfaction across all teachers in all schools, i.e., the predicted grand mean of 
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satisfaction, is 6.00. To calculate effect sizes for a given model, we call r2mlm(model_name). 

Note that r2mlm can handle models run using both lme4 and nlme. For brevity, we demonstrate 

coding models using lme4, but the r2mlm(model_name) function call for calculating effect sizes 

for models is identical for those created using nlme. 

r2mlm(null_model) 

 

## $Decompositions 
##                 total             within between 
## fixed, within   0                 0      NA      
## fixed, between  0                 NA     0       
## slope variation 0                 0      NA      
## mean variation  0.315546785367943 NA     1       
## sigma2          0.684453214632058 1      NA      
##  
## $R2s 
##     total             within between 
## f1  0                 0      NA      
## f2  0                 NA     0       
## v   0                 0      NA      
## m   0.315546785367943 NA     1       
## f   0                 NA     NA      
## fv  0                 0      NA      
## fvm 0.315546785367943 NA     NA 
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There are three components to the function output. First, there is a bar chart that depicts 

the R-squared values. Second, there are variance decompositions. Third, there are the R-squared 

values specified in Rights and Sterba’s (2019) framework and summarized in Table 1. Note that 

you can suppress the bar chart output with the bargraph argument: r2mlm(model_name, 

bargraph = FALSE). 

   For the null model, intercept variation across schools (i.e., clusters) is the only thing 

accounting for variance in teacher job satisfaction. The function output aligns with our 

expectations: in this model, the total variance can only be explained with information we have 

about how school means vary on the outcome. Per the output, 31.6% of the total variance is 

accounted for by cluster membership, shown as “mean variation” in the decomposition output, as 

“m” in the R-squared output, and as “intercept variation (between)” in the total bar graph. Note 

that “fvm” in the R-squared output (i.e., 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓𝑣𝑚)

) is a combination of variance attributable to 

predictors at both levels via fixed effects (“f”), to level-1 predictors via random slopes (“v”), and 

to cluster-specific means via intercept variance (“m”). Given that no variation is explained by “f” 

or “v” in this null model, in this specific situation “fvm” is equal to “m” in the R-squared output. 

The remaining 68.4% of variance is residual variance, shown as “sigma2” in the decomposition 

output and “residual (within)” in the total bar graph. 

We can double-check the results by manually calculating the ICC, which describes the 

proportion of variability in the outcome accounted for by cluster membership, and is equivalent 

conceptually and mathematically to 𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑚)

 in the special case of the random-intercept-only 

model. The ICC is calculated as 𝐼𝐶𝐶 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑤𝑖𝑡ℎ𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
. Given the model output 

generated above with the call summary(null_model), we calculate the ICC as follows: 
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0.699 / (0.699 + 1.516) 

## [1] 0.3155756 

With an ICC of 0.316, 31.6% of the variation in teacher job satisfaction can be attributed to 

school membership, matching the output of r2mlm. 

Level-1 Fixed Effects 

As we just saw, including a random intercept can account for total and between variance, 

but no within variance. To explain within variance, we need to include level-1 predictors. To 

demonstrate, we’ll now include fixed effects for the level-1 predictors of school-mean-centered 

teacher salary (salary_c) and school-mean-centered perceived control over the curriculum 

(control_c). This model assesses whether teacher salary and control over curriculum are related 

to job satisfaction within school. We’ll consider the fixed effects now, then add random slopes in 

the next model. 

Level 1: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦_𝑐𝑖𝑗 + 𝛽2𝑗 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑅𝑖𝑗 

Level 2: 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗 

 𝛽1𝑗 = 𝛾10 

 𝛽2𝑗 = 𝛾20 

Combined: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛾00 + 𝛾10 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦_𝑐𝑖𝑗 + 𝛾20 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑈0𝑗 + 𝑅𝑖𝑗 

l1_model_fixed <- lmer(satisfaction ~ 1 + salary_c + control_c + (1 | schoolID), 
                 data = teachsat, 
                 REML = TRUE) 
summary(l1_model_fixed) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: satisfaction ~ 1 + salary_c + control_c + (1 | schoolID) 
##    Data: teachsat 
##  
## REML criterion at convergence: 24962.4 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -4.6362 -0.6375  0.0057  0.6464  3.6596  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
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##  schoolID (Intercept) 0.7215   0.8494   
##  Residual             0.8384   0.9156   
## Number of obs: 9000, groups:  schoolID, 300 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept) 5.996774   0.049983  119.98 
## salary_c    0.074007   0.001115   66.40 
## control_c   0.310644   0.006104   50.89 
##  
## Correlation of Fixed Effects: 
##           (Intr) slry_c 
## salary_c   0.000        
## control_c  0.000 -0.005 

Per the model summary of fixed effects, the estimated intercept for job satisfaction is 

6.00 on a 1 to 10 scale; because both predictors have a mean of 0, we can interpret this intercept 

as the estimated grand mean of satisfaction, as well as the predicted value of satisfaction at the 

mean of the predictors. For a one-unit (i.e., thousand-dollar) increase in salary relative to the 

school mean, predicted satisfaction increases by 0.07 units, holding curriculum control constant. 

For a one-unit increase in curriculum control relative to the school mean, predicted satisfaction 

increases by 0.31 units, holding salary constant. Per the model summary of random effects, the 

predicted between-school intercept variance is 0.72. The estimated within-school residual 

variation resulting from individual variation of teachers around their school’s predicted mean job 

satisfaction is 0.84. 

To calculate effect sizes for this model, we run: 

r2mlm(l1_model_fixed) 
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## $Decompositions 
##                 total             within            between 
## fixed, within   0.295843451292118 0.438746423745784 NA      
## fixed, between  0                 NA                0       
## slope variation 0                 0                 NA      
## mean variation  0.325707435364683 NA                1       
## sigma2          0.378449113343199 0.561253576254216 NA      
##  
## $R2s 
##     total             within            between 
## f1  0.295843451292118 0.438746423745784 NA      
## f2  0                 NA                0       
## v   0                 0                 NA      
## m   0.325707435364683 NA                1       
## f   0.295843451292118 NA                NA      
## fv  0.295843451292118 0.438746423745784 NA      
## fvm 0.621550886656801 NA                NA 

For the null model, the only component accounting for variance in job satisfaction was 

intercept variation. With the addition of level-1 predictors, we can consider total and/or within-

cluster variance explained by level-1 predictors via their fixed effects. This is denoted “fixed, 

within” in the decomposition output, “f1” in the R-squared output, and “fixed slopes (within)” in 

the graphical output. The level-1 predictors explain an estimated 29.6% of the total variance (the 

total column of decompositions and R-squareds) and 43.9% of within variance (the within 
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column) via their fixed slopes. We can also see that the level-1 predictor via fixed slopes (“f”) 

and the cluster means via intercept variance (“m”) in combination account for 62.2% of total 

variance with the “fvm” term. Recall that we haven’t yet added random slope variation (“v”). In 

the “fvm” term, no variance is presently explained by “v” because no level-1 predictor yet has 

contributed to explained variance via random slope variation. Between variance is unaffected by 

the addition of the level-1 predictors, because they vary exclusively within-cluster and hence 

cannot explain between-cluster variation.  

The r2mlm() output describes variance explained by all level-1 predictors via the fixed 

effects. If we wanted to examine the unique contributions of each individual fixed effect, we 

would compare models using the r2mlm_comp() function. We demonstrate this functionality 

later. 

Level-1 Fixed and Random Effects 

Suppose our theory suggests that the effect of curriculum control on job satisfaction 

varies across schools. To allow for such variation, we can add a random slope for curriculum 

control to the model, represented by U2j in the equation for 𝛽2𝑗. 

𝐿𝑒𝑣𝑒𝑙 1: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦_𝑐𝑖𝑗 + 𝛽2𝑗 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑅𝑖𝑗 

𝐿𝑒𝑣𝑒𝑙 2: 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗 

𝛽1𝑗 = 𝛾10 

𝛽2𝑗 = 𝛾20 + 𝑈2𝑗 

Combined: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛾00 + 𝛾10 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦_𝑐𝑖𝑗 + 𝛾20 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑈0𝑗 + 𝑈2𝑗 ∗

𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑅𝑖𝑗 

l1_model_random <- lmer(satisfaction ~ 1 + salary_c + control_c + (1 + control_c | schoolID), 
                        data = teachsat, 
                        REML = TRUE) 
summary(l1_model_random) 
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## Linear mixed model fit by REML ['lmerMod'] 
## Formula: satisfaction ~ 1 + salary_c + control_c + (1 + control_c | schoolID) 
##    Data: teachsat 
##  
## REML criterion at convergence: 24565.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -4.5976 -0.6300  0.0074  0.6395  3.7882  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. Corr 
##  schoolID (Intercept) 0.72400  0.8509        
##           control_c   0.02826  0.1681   0.07 
##  Residual             0.76561  0.8750        
## Number of obs: 9000, groups:  schoolID, 300 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept) 5.996774   0.049984  119.97 
## salary_c    0.074135   0.001078   68.75 
## control_c   0.311281   0.011361   27.40 
##  
## Correlation of Fixed Effects: 
##           (Intr) slry_c 
## salary_c   0.000        
## control_c  0.058 -0.004 

The fixed effects have the same interpretation as in the last model, with the exception that 

the slope of control_c now represents the across-cluster average slope. In this model, we newly 

introduced a random effect for control_c: the estimated across-school variance in the slope of 

curriculum control is 0.03. The estimated across-school intercept variance is 0.72 and the 

estimated within-school residual variance is 0.77. 

With r2mlm we can consider the impact of adding a random effect of curriculum control 

on variance explained. 

r2mlm(l1_model_random) 
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## $Decompositions 
##                 total             within             between 
## fixed, within   0.296567159372403 0.440275210302958  NA      
## fixed, between  0                 NA                 0       
## slope variation 0.031859752893799 0.0472980873377948 NA      
## mean variation  0.326405047496696 NA                 1       
## sigma2          0.345168040237102 0.512426702359247  NA      
##  
## $R2s 
##     total             within             between 
## f1  0.296567159372403 0.440275210302958  NA      
## f2  0                 NA                 0       
## v   0.031859752893799 0.0472980873377948 NA      
## m   0.326405047496696 NA                 1       
## f   0.296567159372403 NA                 NA      
## fv  0.328426912266202 0.487573297640753  NA      
## fvm 0.654831959762898 NA                 NA 

The impact of the level-1 predictor via its random slope is denoted “slope variation” in 

the decompositions output, “v” in the R-squared output, and “slope variation (within)” in the 

graphical output. This added random slope accounts for 3.2% of total variance and 4.7% of 

within variance. The between variance explained is unaffected by the addition of the random 

slope, as the level-1 variable curriculum control varies exclusively within cluster and hence 

cannot explain between-cluster variance. 
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Level-2 Fixed Effects 

By adding level-1 effects to our model, we have been considering factors that relate to 

job satisfaction within schools. For example, “Within a school, how are salary and curriculum 

control related to job satisfaction?” and “To what extent does curriculum control relate to job 

satisfaction differently across schools?” Now, by adding level-2 predictors to the model, we can 

assess how school-level factors may affect job satisfaction. For our example, we’ll add student-

teacher ratio, with higher values indicating more students per teacher. This variable does not vary 

within schools, only between schools, and hence will only explain between-school variance. That 

is, each school has only one value for student-teacher ratio. 

Level 1: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦_𝑐𝑖𝑗 + 𝛽2𝑗 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑅𝑖𝑗 

Level 2: 𝛽0𝑗 = 𝛾00 + 𝛾01 ∗ 𝑠_𝑡_𝑟𝑎𝑡𝑖𝑜𝑗 + 𝑈0𝑗 

𝛽1𝑗 = 𝛾10 

𝛽2𝑗 = 𝛾20 + 𝑈2𝑗 

Combined: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛾00 + 𝛾01 ∗ 𝑠_𝑡_𝑟𝑎𝑡𝑖𝑜𝑗 + 𝛾10 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦_𝑐𝑖𝑗 + 𝛾20 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 +

𝑈0𝑗 + 𝑈2𝑗 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑖𝑗 + 𝑅𝑖𝑗 

l2_model <- lmer(satisfaction ~ 1 + control_c + salary_c + s_t_ratio + (1 + control_c | school
ID),  
                 data = teachsat, 
                 REML = TRUE) 
summary(l2_model) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula:  
## satisfaction ~ 1 + control_c + salary_c + s_t_ratio + (1 + control_c |   
##     schoolID) 
##    Data: teachsat 
##  
## REML criterion at convergence: 24507.4 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -4.6115 -0.6275  0.0108  0.6414  3.7958  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. Corr 
##  schoolID (Intercept) 0.57478  0.7581        
##           control_c   0.02826  0.1681   0.07 
##  Residual             0.76561  0.8750        
## Number of obs: 9000, groups:  schoolID, 300 
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##  
## Fixed effects: 
##              Estimate Std. Error t value 
## (Intercept)  7.186462   0.144236  49.824 
## control_c    0.311279   0.011361  27.398 
## salary_c     0.074132   0.001078  68.752 
## s_t_ratio   -0.037178   0.004285  -8.676 
##  
## Correlation of Fixed Effects: 
##           (Intr) cntrl_ slry_c 
## control_c  0.017               
## salary_c   0.000 -0.004        
## s_t_ratio -0.951  0.000  0.000 

For an increase of one student per teacher, there is a 0.04-unit decrease in predicted 

teacher job satisfaction, controlling for the other effects in the model. With r2mlm, we can 

consider the impact of adding this level-2 predictor on variance explained.  

r2mlm(l2_model) 

 

## $Decompositions 
##                 total              within             between           
## fixed, within   0.296431806719555  0.440263091958242  NA                
## fixed, between  0.0676695868874132 NA                 0.207134501406624 
## slope variation 0.0318477856338068 0.0473006076180897 NA                
## mean variation  0.259024355588986  NA                 0.792865498593376 
## sigma2          0.34502646517024   0.512436300423669  NA                
##  
## $R2s 
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##     total              within             between           
## f1  0.296431806719555  0.440263091958242  NA                
## f2  0.0676695868874132 NA                 0.207134501406624 
## v   0.0318477856338068 0.0473006076180897 NA                
## m   0.259024355588986  NA                 0.792865498593376 
## f   0.364101393606968  NA                 NA                
## fv  0.395949179240775  0.487563699576332  NA                
## fvm 0.65497353482976   NA                 NA 

The impact of the level-2 predictor via its fixed effect is denoted “fixed, between” in the 

decompositions output, “f2” in the R-squared output, and “fixed slopes (between)” in the 

graphical output. Student-teacher ratio explains 6.8% of total variance and 20.7% of between-

school variance in teacher job satisfaction via its fixed effect. The level-1 and level-2 predictors 

together now explain 36.4% of total variance via fixed effects, captured by the “f” term of the R-

squared output. 

Model Comparisons 

Earlier, we added fixed effects for two level-1 predictors —salary and curriculum control 

— to our model at the same time. We noted that doing so does not tell us how much variance 

each effect explains uniquely. One way we can assess unique contributions of individual 

predictors to variance explained is by comparing two models: one model without the predictor of 

interest and one model with the predictor of interest. The first step to getting the associated effect 

sizes is to run these models using lmer. 

# Single-effect model, just salary_c 
model_salary <- lmer(satisfaction ~ 1 + salary_c + (1 | schoolID), 
                     data = teachsat, 
                     REML = TRUE) 
 
# Model with both effects (the same as l1_model_fixed from earlier) 
model_both <- lmer(satisfaction ~ 1 + salary_c + control_c + (1 | schoolID), 
                     data = teachsat, 
                     REML = TRUE) 

The single-effect model model_salary will yield variance explained by salary alone, the 

model with both effects model_both will yield variance explained by both effects (which we 

calculated earlier), and the difference between the two models in 𝑅𝑡𝑜𝑡𝑎𝑙  
2(𝑓1)

 and  𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1)

 will yield, 
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respectively, the total and the within variance uniquely explained by curriculum control over and 

above salary. We can compare the models using the r2mlm_comp() function, which takes two 

models as arguments. Because we are interested in assessing the contributions of the predictors 

via their fixed effects, we will focus on the difference in R-squared measures that have “f1” as 

their source of explained variance (see Rights & Sterba, 2020). The graphical output for this 

function includes five plots: (1) decomposition of between-cluster variance for both Model A 

and Model B; (2) decomposition of within-cluster variance for both Model A and Model B; (3) 

decomposition of total variance for both Model A and Model B; (4) full decomposition for 

Model A; and (5) full decomposition for Model B. Note that for brevity we only explain (4) and 

(5), the overall decomposition plots. 

r2mlm_comp(model_salary, model_both) 
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## $`Model A R2s` 
##     total             within            between 
## f1  0.186927533490092 0.275690579940632 NA      
## f2  0                 NA                0       
## v   0                 0                 NA      
## m   0.321966192931418 NA                1       
## f   0.186927533490092 NA                NA      
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## fv  0.186927533490092 0.275690579940632 NA      
## fvm 0.50889372642151  NA                NA      
##  
## $`Model B R2s` 
##     total             within            between 
## f1  0.295843451292118 0.438746423745784 NA      
## f2  0                 NA                0       
## v   0                 0                 NA      
## m   0.325707435364683 NA                1       
## f   0.295843451292118 NA                NA      
## fv  0.295843451292118 0.438746423745784 NA      
## fvm 0.621550886656801 NA                NA      
##  
## $`R2 differences, Model B - Model A` 
##           total    within between 
## f1  0.108915918 0.1630558      NA 
## f2  0.000000000        NA       0 
## v   0.000000000 0.0000000      NA 
## m   0.003741242        NA       0 
## f   0.108915918        NA      NA 
## fv  0.108915918 0.1630558      NA 
## fvm 0.112657160        NA      NA 

In our case, Model A is model_salary, so the “Model A R2s” output describes the 

variance explained by salary by itself. Roughly 3.1% of total variance and 5.0% of within-school 

variance in teacher job satisfaction is explained by teacher salary via its fixed effect. Model B is 

model_both, so the “Model B R2s” output describes variance explained by both salary and 

curriculum control; this matches the earlier l1_model_fixed output: both level-1 predictors 

explain 16.9% of total variance and 27.5% of within-school variance in job satisfaction via the 

fixed effects. The variance uniquely explained by curriculum control accounts for the difference 

between the one-effect model and the both-effects model, and is described in the “R2 

differences, Model B - Model A” output. Curriculum control uniquely explains 13.8% of total 

variance and 22.6% of the within-school variance in job satisfaction via its fixed effect.  

Note that if the models being compared are not nested, you also need to provide your 

data: r2mlm_comp(modelA, modelB, data). For more on comparing models, including an 

elaboration on different strategies and the appropriate R-squared difference measure to use for 

each possible type of model comparison, see Rights and Sterba (2020). 
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Manual Entry 

If you used another software to run MLMs (e.g., MPlus, SPSS) and not lme4 or nlme in R, 

then you can manually enter information about your model and dataset to calculate R-squared 

estimates using r2mlm_manual, which takes the following parameters as input: 

• data: your dataset 

• within_covs: list of numbers or variable names corresponding to the column numbers or 

variable names in your dataset for level-1 predictors 

• between_covs: list of numbers or variable names corresponding to the column numbers or 

variable names in your dataset for level-2 predictors 

• random_covs: list of numbers or variable names corresponding to the column numbers or 

variable names in your dataset for level-1 predictors with random effects 

• gamma_w: list of fixed slope estimates for level-1 predictors in the order listed in 

within_covs 

• gamma_b: list of intercept estimate (if applicable) followed by fixed slope estimates for 

level-2 predictors in the order listed in between_covs 

• Tau: random effect covariance matrix. The first row/column denotes the intercept variances 

and covariances; set to 0 if intercept is fixed. Subsequent rows/columns denote random 

slope variances and covariances in the order listed in random_covs 

• sigma2: level-1 residual variance 

• has_intercept: true/false indicating whether your model estimates an intercept; default value 

of true 

• clustermeancentered: true/false indicating whether your level-1 predictors are centered-

within-cluster; default value of true 
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Manual entry for l2_model would look as follows: 

r2mlm_manual(data = teachsat, 
             within_covs = c(4, 5), 
             between_covs = c(8), 
             random_covs = c(4), 
             gamma_w = c(0.311, 0.074), 
             gamma_b = c(7.186, -0.037), 
             Tau = matrix(c(0.575, 0.009, 0.009, 0.028), 2, 2), 
             sigma2 = 0.766, 
             has_intercept = TRUE, 
             clustermeancentered = TRUE) 

 

## $Decompositions 
##                 total              within             between           
## fixed, within   0.296022422439019  0.439625147440015  NA                
## fixed, between  0.0671264807082975 NA                 0.205500898247648 
## slope variation 0.0316015152901635 0.0469316503266841 NA                
## mean variation  0.259521632661036  NA                 0.794499101752352 
## sigma2          0.345727948901484  0.513443202233301  NA                
##  
## $R2s 
##     total              within             between           
## f1  0.296022422439019  0.439625147440015  NA                
## f2  0.0671264807082975 NA                 0.205500898247648 
## v   0.0316015152901635 0.0469316503266841 NA                
## m   0.259521632661036  NA                 0.794499101752352 
## f   0.363148903147317  NA                 NA                
## fv  0.39475041843748   0.486556797766699  NA                
## fvm 0.654272051098516  NA                 NA 
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Excepting some trivial differences due to rounding the input values, these results match those 

calculated with r2mlm(l2_model). A similar manual entry process is possible for comparing 

models using r2mlm_comp_manual(). 

Models with Non-Cluster-Mean-Centered Level-1 Predictors 

 Researchers do not always wish to cluster-mean-center level-1 predictors. For example, 

in longitudinal contexts in which “time” is a level-1 predictor, researchers might want to center 

“time” at the first measurement occasion rather than at a person’s mean time. If a researcher’s 

level-1 predictors are not all cluster-mean-centered, the r2mlm package provides two options for 

calculating R-squared values: the r2mlm() function and the r2mlm_long_manual() function. To 

demonstrate both options, we will first remove the cluster-mean-centering from salary_c by adding 

a constant to every value. We will then run a model predicting satisfaction by salary (uncentered).  

teachsat$salary <- teachsat$salary_c + 2 
uncentered_model <- lmer(satisfaction ~ salary + (1 | schoolID), data = teachsat) 

The r2mlm() function calculates a decomposition of variance yielding total measures.  

r2mlm(uncentered_model) 



R2MLM: R-SQUARED FOR MULTILEVEL MODELS 

 

 

35 

 

## $Decompositions 
##                     total 
## fixed           0.1869275 
## slope variation 0.0000000 
## mean variation  0.3219662 
## sigma2          0.4911063 
##  
## $R2s 
##         total 
## f   0.1869275 
## v   0.0000000 
## m   0.3219662 
## fv  0.1869275 
## fvm 0.5088937 

Alternatively, the r2mlm_long_manual() function calculates both a total decomposition of 

variance and level-specific decompositions of variance, yielding total, within-cluster, and 
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between-cluster measures. 

 

## $Decompositions 
##                               total                                               
## fixed slopes (within)         0.186907226965456                                   
## fixed slopes (between)        0.0000000000000000000000000000000000761887047387227 
## slope variation (within)      0                                                   
## slope variation (between)     0                                                   
## intercept variation (between) 0.321974234044723                                   
## residual (within)             0.491118538989821                                   
##                               within            
## fixed slopes (within)         0.275663900032059 
## fixed slopes (between)        NA                
## slope variation (within)      0                 
## slope variation (between)     NA                
## intercept variation (between) NA                
## residual (within)             0.724336099967941 
##                               between                                            
## fixed slopes (within)         NA                                                 
## fixed slopes (between)        0.000000000000000000000000000000000236629819043657 
## slope variation (within)      NA                                                 
## slope variation (between)     0                                                  
## intercept variation (between) 1                                                  
## residual (within)             NA                                                 
##  
## $R2s 
##     total                                               within            
## f1  0.186907226965456                                   0.275663900032059 
## f2  0.0000000000000000000000000000000000761887047387227 NA                
## v1  0                                                   0                 
## v2  0                                                   NA                
## m   0.321974234044723                                   NA                
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## f   0.186907226965456                                   NA                
## fv  0.186907226965456                                   0.275663900032059 
## fvm 0.508881461010179                                   NA                
##     between                                            
## f1  NA                                                 
## f2  0.000000000000000000000000000000000236629819043657 
## v1  NA                                                 
## v2  0                                                  
## m   1                                                  
## f   NA                                                 
## fv  0.000000000000000000000000000000000236629819043657 
## fvm NA 

See Rights and Sterba (2021) for a demonstration and more information about using 

r2mlm_long_manual() to calculate R-squareds for models with heteroscedastic variance 

estimates. Note that an automatic r2mlm_long() function is under active development.  

Discussion 

Reporting effect sizes is necessary to contextualize results. Rights and Sterba (2019) 

developed a comprehensive effect size framework for R-squared in MLMs that integrates 

previously developed MLM R-squareds as special cases, and Shaw et al. (2020) implemented the 

framework into an accessible R package, r2mlm. In this tutorial, we demonstrated how to use and 

interpret output from r2mlm. We will now discuss considerations for appropriately reporting 

results, package limitations, and future directions.  

Appropriate Reporting 

  

 The most important consideration when reporting and interpreting R-squared values is 

context: they should be reported in the context of other model information, and understood in the 

context of the data at hand, how the variables were measured, and the relevant literature. As a 

standardized effect size, R-squared has advantages and drawbacks (Pek & Flora, 2018). 

Advantageously, it has an intuitive zero-to-one range regardless of the measures involved. This 

standardization facilitates interpreting results for measures that do not have meaningful units. 

However, standardized metrics are calculated based on the variability of the sample. As such, 
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they cannot necessarily be compared across samples that have substantially different degrees of 

variation in the outcome and/or the predictors. Additionally, some unstandardized metrics do 

have interpretable units that provide valuable insights related to a research question. As 

exemplified in the above data demonstration, one should interpret raw MLM parameter estimates 

alongside standardized R-squared effect sizes – as well as additional information like 

significance of and precision of the estimates – to yield a full picture of one’s results.  

Assessing the size of an R-squared value is also a context-specific exercise. The cutoffs 

for R-squared values proposed in Cohen (1988) are sometimes treated as global 

recommendations. However, Cohen noted that his cutoffs were suggestions that should be 

rejected if they are “unsuited to the substantive content of any given investigation” (p. 414). The 

takeaway from his recommendations was that small, medium, and large benchmarks were for a 

given context, and researchers should consider their R-squared measures in the context of the 

relevant literature and their theory. The interpretation of a given R-squared should be tempered 

by considerations like sample size, measures involved, and the nature of a manipulation (Cortina 

& Landis, 2010).  

Finally, we will note that effect sizes are part of a toolbox of rigorous research practices 

that also includes transparent reporting and valid measurement. To complement the greater 

flexibility afforded by our r2mlm R package regarding what R-squared measures to report, we 

recommend that researchers also preregister their study and include mention of the effect sizes 

they will report and what sizes they expect or consider large given the context. 

Relation to Other R Packages 

 There are other R packages and functions dedicated to estimating multilevel R-squared 

values, but none that provide the full partitioning of variance that r2mlm does. The multilevelR2 
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function from the mitml package (Grund, Robitzsch, & Lüdtke, 2021) allows users to calculate 

the MLM R-squared values proposed by Raudenbush and Bryk (2002), Snijders and Bosker 

(2011), and LaHuis et al. (2014). The r2glmm package (Jaeger, 2017) implements R-squared 

measures described in Johnson (2014), Jaeger et al. (2017), and Edwards et al. (2008). In the 

linear mixed model framework, the functionality of both packages is subsumed by r2mlm. 

r2glmm does extend the three sets of measures from Johnson (2014), Jaeger et al. (2017), and 

Edwards et al. (2008) to a generalized linear mixed model framework with, for instance, binary 

outcomes. For mapping these special cases onto notation from the general framework of 

measures, see Table 3 in Rights & Sterba (2019); for discussion on the relation between the 

general framework and the Jaeger et. al (2017) and Edwards et al. (2008) measures, see Rights & 

Sterba (2019, 2020). 

Future Directions and Limitations 

Effect sizes for MLMs are the subject of active methodological research. As evidenced by the 

breadth of the Rights and Sterba (2019) framework and the number of independently developed R-

squared measures predating and subsumed by it, there are a number of different ways of 

decomposing explained variance for a multilevel model. One can break total variance down by more 

general categories of source contribution (i.e., contributions of all predictors via fixed effects – 

source f1+f2 – vs. contribution of all random effects – source m+v) or further by individual source 

type (e.g., contributions of predictors via level-1 fixed effects – f1 – versus contributions of 

predictors via level-2 fixed effects – f2). Furthermore, there are multiple ways of quantifying the 

contribution of individual predictors. Rights & Sterba (2020) discuss a simultaneous approach in 

which R-squared differences between models quantify proportions of variance explained by 

individual terms over and above all other terms, as well as a hierarchical approach in which R-

squared differences quantify the proportion of variance explained by individual terms over and above 
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the previously entered terms. An alternative approach, known as Shapley regression (Shapley, 1953) 

or dominance analysis (Budescu, 1993; Azen & Budescu, 2003), involves considering all possible 

subset models to which a predictor could be added and computing the average change in an R-

squared measure arising from adding the target predictor (versus another predictor) into each 

different possible subset model. This approach has been extended from the single-level to the 

multilevel context using a subset of possible R-squared difference measures (Luo & Azen, 2013), 

and in future work can be further extended to use the full suite of R-squared difference measures 

from Rights & Sterba, (2020). 

As illustrated, the r2mlm R package can be used to calculate effect sizes for two-level 

MLMs. Functionality for three-or-more-level models (Rights & Sterba, in press) is in 

development. There is currently a manual entry option for three-level models; see help(r2mlm3) 

for documentation. Functionality for other model complexities is also in development. There is 

currently a manual entry option for models with heteroscedastic and/or autocorrelated level-1 

residuals, which also provides level-specific variance explained under any centering option; see 

help(r2mlm_long_manual) for documentation, and Rights & Sterba (2021) for more details. 

Cross-classified models are not currently supported. You cannot use the I() function within a 

model to create higher-order terms; such terms need to exist explicitly as variables in your 

dataset. Additionally, only your cluster variable can be categorical in the dataset; all other 

variables in the model must be numeric (thus, to incorporate categorical predictors, one must 

directly input the associated independent variable codes, e.g., dummy or effects codes). The 

r2mlm package is under active development. If any interested readers would like to report a bug 

or make a request for functionality, they can file an issue or pull request at 

www.github.com/mkshaw/r2mlm. 

  

http://www.github.com/mkshaw/r2mlm
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Table 1 

 

Definitions of Multilevel Model R2 Measures in Integrative Framework 

 

Measure Definition/Interpretation 

Total MLM R2 Measures 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓1)

=
𝑣𝑎𝑟𝑓1

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by level-1 

predictors via fixed slopes 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓2)

=
𝑣𝑎𝑟𝑓2

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by level-2 

predictors via fixed slopes 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓)

=
𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by all 

predictors via fixed slopes 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑣)

=
𝑣𝑎𝑟𝑉

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by level-1 

predictors via random slope variation/covariation 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑚)

=
𝑣𝑎𝑟𝑚

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by cluster-

specific outcome means via random intercept variation 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓𝑣)

=
𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by 

predictors via fixed slopes and random slope 

variation/covariation 

𝑅𝑡𝑜𝑡𝑎𝑙
2(𝑓𝑣𝑚)

=
𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑚

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑣  + 𝑣𝑎𝑟𝑚 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of total outcome variance explained by 

predictors via fixed slopes and random slope 

variation/covariation and by cluster-specific outcome 

means via random intercept variation 

Within-Cluster MLM R2 Measures 

𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1)

=
𝑣𝑎𝑟𝑓1

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of within-cluster outcome variance explained 

by level-1 predictors via fixed slopes 

𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑣)

=
𝑣𝑎𝑟𝑣

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of within-cluster outcome variance explained 

by level-1 predictors via random slope 

variation/covariation 

𝑅𝑤𝑖𝑡ℎ𝑖𝑛
2(𝑓1𝑣)

=
𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣

𝑣𝑎𝑟𝑓1 + 𝑣𝑎𝑟𝑣 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑
 

Proportion of within-cluster outcome variance explained by 

level-1 predictors via fixed slopes and random slope 

variation/covariation 
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Between-Cluster MLM R2 Measures 

𝑅𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2(𝑓2)

=
𝑣𝑎𝑟𝑓2

𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑚
 

Proportion of between-cluster outcome variance explained 

by level-2 predictors via fixed slopes 

𝑅𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2(𝑚)

=
𝑣𝑎𝑟𝑚

𝑣𝑎𝑟𝑓2 + 𝑣𝑎𝑟𝑚
 

Proportion of between-cluster outcome variance explained 

by cluster-specific outcome means via random intercept 

variation 

Note. A given R-squared is described by two elements: a subscript and a superscript. The 

subscripts indicate at what level variance is being explained: “within” for within-cluster, 

“between” for between-cluster, and “total” for total. The superscripts indicate what potential 

sources of variance are contributing to variance explained: “f1” for level-1 predictors via 

fixed effects, “f2” for level-2 predictors via fixed effects, “v” for level-1 predictors via 

random slope variation/covariation, “m” for cluster-specific outcome means via random 

intercept variation. Adapted from “Quantifying explained variance in multilevel models: An 

integrative framework for defining R-squared measures,” by J. Rights, and S. Sterba, 2019, 

Psychological Methods, 24(3), p. 7. Copyright 2019 by the American Psychological 

Association. 
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