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Abstract (155 words) 

In this paper I present PANGEA (Power ANalysis for GEneral Anova designs; 

http://jakewestfall.org/pangea/), a user-friendly, open source, web-based power application that 

can be used for conducting power analyses in general ANOVA designs. A general ANOVA 

design is any experimental design that can be described by some variety of ANOVA model. 

Surprisingly, a power analysis program for general ANOVA designs did not exist until now. 

PANGEA can estimate power for designs that consist of any number of factors, each with any 

number of levels; any factor can be considered fixed or random; and any possible pattern of 

nesting or crossing of the factors is allowed. I demonstrate how PANGEA can be used to 

estimate power for anything from simple between- and within-subjects designs, to more 

complicated designs with multiple random factors (e.g., multilevel designs and crossed-random-

effects designs). I document the statistical theory underlying PANGEA and describe some 

experimental features to be added in the near future. 

 

Keywords: statistical power, experimental design, mixed models. 
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For decades, methodologists have warned about the low statistical power of the typical 

psychology study. Cohen (1962) originally estimated that, in the year 1960, the average 

statistical power of studies in social and abnormal psychology to detect a typical or “medium” 

effect size (fatefully defined by Cohen as a standardized mean difference of 0.5) was about 46%. 

There is scant evidence that the situation has improved since then (Marszalek, Barber, Kohlhart, 

& Holmes, 2011; Maxwell, 2004). Sedlmeier & Gigerenzer (1989) estimated the average 

statistical power in the year 1984, for the same research literature and effect size investigated by 

Cohen, to be about 37%. More recent analyses of the average statistical power in social 

psychology (Fraley & Vazire, 2014) and neuroscience (Button et al., 2013) find estimates of 

about 50% and 21%, respectively, for detecting typical effect sizes in those fields. Thus, despite 

persistent warning, the concept of statistical power has remained largely neglected in practice by 

scientific psychologists. 

In the last few years, however, there has been renewed interest in statistical power and its 

implications for study design, fueled in large part by a “replication crisis” or “reproducibility 

crisis” gripping much of science, but psychology in particular (e.g., Pashler & Wagenmakers, 

2012). It may not seem immediately obvious why such a crisis should lead to increased concern 

about statistical power. Indeed, when considered in the isolated context of a single study, the 

problems of low statistical power seem rather unimpressive; while it would clearly seem to be in 

the experimenter’s own best interest that a study have a reasonably high chance of detecting 

some predicted effect (assuming the prediction is correct), it is not obvious whether it is 

ultimately anyone else’s concern if the experimenter chooses, for whatever reasons, to run a 

statistically inefficient study. However, when considered in the broader context of entire 

programs of research built on many, many low-powered studies, the problems accruing from a 
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policy of running low-powered studies suddenly loom much larger, and it is now widely agreed 

that this has been a major factor precipitating the current crisis (Bakker, Dijk, & Wicherts, 2012; 

Ioannidis, 2005, 2008; Schimmack, 2012).  

 If researchers are to begin taking statistical power seriously, then minimally they need to 

understand and be able to compute statistical power for the kinds of experiments they are 

actually running. However, while complicated designs are entirely commonplace in psychology 

and neuroscience—for example, mixed (split plot) designs with predictors varying both within- 

and between-subjects (Huck & McLean, 1975), multilevel designs with hierarchically nested 

units (Raudenbush & Bryk, 2001), and designs employing random stimulus samples (Wells & 

Windschitl, 1999)—issues of statistical power tend only to be widely understood for relatively 

simple designs. For example, both the most popular textbook on power analysis (Cohen, 1988) 

and the most popular software for power analysis (Faul, Erdfelder, Lang, & Buchner, 2007) 

cover statistical power up to fixed-effects ANOVA, multiple regression models, and tests of the 

difference between two dependent means (i.e., matched pairs), but neither handle any of the three 

classes of more complicated designs just mentioned1. Some literature on statistical power does 

exist for certain special cases of these designs (Raudenbush, 1997; Raudenbush & Liu, 2000; 

Westfall, Kenny, & Judd, 2014), but more general treatments have remained inaccessible to 

psychologists, and there is often no accompanying software for researchers to use. 

 The purpose of this paper is to fix this situation. I present PANGEA (Power ANalysis for 

GEneral Anova designs), a user-friendly, open source, web-based power application that can be 

used for conducting power analyses in general ANOVA designs. A general ANOVA design is 

any experimental design that can be described by some variety of ANOVA model. Surprisingly, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 As of this writing, the software cited in the text, G*Power version 3.1.9.2, supports power analysis for omnibus 
tests in mixed designs, but does not support tests of general within-subject contrasts. 

U488145
Highlight

U488145
Highlight

U488145
Highlight



PANGEA 5 

a power analysis program for general ANOVA designs has not existed until now. PANGEA can 

estimate power for designs that consist of any number of factors, each with any number of levels; 

any factor can be considered fixed or random; and any possible pattern of nesting or crossing of 

the factors is allowed. PANGEA can be used to estimate power for anything from simple 

between- and within-subjects designs, to more complicated designs with multiple random factors 

(e.g., multilevel designs and crossed-random-effects designs), and even certain dyadic designs 

(e.g., social relations model; Kenny, 1994), all in a single unified framework.  

 The rest of this paper is structured as follows. First I walk through demonstrations of how to 

specify several, progressively more complex designs in PANGEA. Next I describe the statistical 

theory and procedures underlying PANGEA. Finally, I give some of the technical details of 

PANGEA’s software implementation and briefly describe some features that I plan to add in 

future versions. PANGEA can be accessed at http://jakewestfall.org/pangea/, where users also 

can download the source code to run PANGEA locally if they wish. 

Specifying General ANOVA Designs 

The general ANOVA model encompasses the models classically referred to as fixed-effects, 

random-effects, and mixed-model ANOVA (Winer, Brown, & Michels, 1991). I refer to any 

experimental design that can be described by a general ANOVA model as a general ANOVA 

design. This includes experiments involving any number of factors, each with any number of 

levels; any factor in the experiment can be considered fixed or random; and any possible pattern 

of nesting or crossing of the factors is allowed. Not included in the class of general ANOVA 

designs are designs involving continuous predictors or unequal sample sizes. Despite these 

limitations, this is clearly a very broad class of experimental designs, and PANGEA can be used 

to compute statistical power for any design within this class. While this makes PANGEA quite a 
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general power analysis tool, this very generality can also make PANGEA difficult to use at first, 

since it requires the user to be able to exactly specify the design of the study. In this section I 

give a brief tutorial on specifying general ANOVA designs in terms of what is nested or crossed, 

fixed or random, and what the replicates in the study are. I first give abstract definitions of these 

terms, and then I illustrate these concepts concretely by describing the specification of a series of 

progressively more complex study designs. 

Terminology 

 Factors. The first and most fundamental term to understand is the concept of a factor. A 

factor is any categorical variable—measured by the experimenter—that can potentially explain 

variation in the response variable. The individual categories comprising the factor are called the 

levels of that factor. Importantly, factors refer not only to the treatment factors or predictors that 

are of primary interest (e.g., experimental group; participant gender), but may also refer to 

classification or grouping factors that are presumably not of primary interest, but which 

nevertheless may explain variation in the outcome (e.g., participants that are repeatedly 

measured; blocks or lists of stimulus materials; laboratories in a multi-site experiment).  

 Crossed vs. nested. The crossed vs. nested distinction is similar to the within-subject vs. 

between-subject distinction that is more familiar to most psychologists and neuroscientists. 

Factor A is said to be nested in factor B if each level of A is observed with one and only one 

level of B. For example, if each participant in a study is randomly assigned to a single group, 

then we can say that the Participant factor is nested in the Group factor. Or if we are studying 

students who attend one and only one school, we can say that the Student factor is nested in the 

School factor. In both of these examples, the levels of the containing factor (Group in the first 

case, School in the second case) vary “between” the levels of the nested factor. 
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Factors A and B are said to be crossed if every level of A is observed with every level of B 

and vice versa. For example, if we administer both an active treatment drug and an inert placebo 

drug to each participant in a study, then we can say that the Participant and Drug factors are 

crossed. If we further suppose in this experiment that we measured each participant twice per 

drug—once before administering the drug, and again after administering the drug—then we can 

say that the Drug and Time-point factors are crossed. In this example, the levels of each factor 

vary “within” the levels of the other factors. 

 Fixed vs. random. The distinction between fixed factors and random factors is probably the 

most conceptually subtle of the terms presented here. This situation is not helped by the fact that 

the distinction is not always defined equivalently by different authors (Gelman & Hill, 2006, p. 

245). The definition given here is the one that is standard in the literature on analysis of variance 

(Cornfield & Tukey, 1956; Winer et al., 1991). For this definition, we start by imagining that, for 

each factor in the experiment, there is a theoretical population of potential levels that we might 

have used, the number of which, 𝑁, could be very large (e.g., approaching infinity). Say that our 

actual experiment involved 𝑛 of these potential levels. If 𝑛/𝑁 = 1, so that the 

factor levels in our experiment fully exhaust the theoretical population of levels we might have 

used, then the factor is said to be fixed. If 𝑛/𝑁 ≈ 0, so that the factor levels in our experiment 

are a sample of relatively negligible size from the theoretical population of levels we might have 

used, then the factor is said to be random2. 

 One conceptual ambiguity with this definition is what exactly is meant by “a theoretical 

population of potential levels that we might have used.” In what sense might we have used these 

unobserved factor levels? To answer this, it is useful to consider which factors it would in 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 The in-between case, where the observed factor levels are an incomplete but non-negligible proportion of the 
population of potential levels (e.g., 𝑛/𝑁 = 0.5), has been studied in the ANOVA literature (e.g., Cornfield & Tukey, 
1956), but is rarely discussed in practice. 
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principle be acceptable to vary or exchange in future replications of the study in question 

(Westfall, Judd, & Kenny, 2015). Random factors are ones for which it would be acceptable to 

exchange the levels of the factor for new, different levels in future replications of the experiment; 

that is, there are, in principle, other possible levels of the factor that could have served the 

experimenter’s purposes just as well as those that were actually used. Examples of random 

factors include the participants in a study; the students and schools in an educational study; or the 

list of words in a linguistics study. Fixed factors are ones that we would necessarily require to 

remain the same in each replication of the study; if the levels were to be exchanged in future 

replications of the study, then the new studies would more properly be considered entirely 

different studies altogether. A factor is also fixed if no other potential levels of that factor are 

possible other than those actually observed. Examples of fixed factors include the experimental 

groups that participants are randomly assigned to; the socioeconomic status of participants on a 

dichotomous low vs. high scale; and participant gender.  

 Replicates. In traditional analysis of variance terminology, the number of replicates in a 

study refers to the number of observations in each of the lowest-level cells of the design; lowest-

level in that it refers to the crossing of all fixed and random factors in the design, including e.g. 

participants. For example, in a simple pre-test/post-test style design where we measure each 

participant twice before a treatment and twice after the treatment, the number of replicates would 

be two, since there are two observations in each Participant-by-Treatment cell.  

Example Designs 

Two independent groups. We begin with the simplest possible design handled by 

PANGEA: an experiment where the units are randomly assigned to one of two independent 

groups. Interestingly, there are two equivalent ways to specify this design, depending on the unit 
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of analysis that we consider to be the replicates in the design. These two perspectives on the 

design are illustrated in Table 1. 

 

Table 1 
Two equivalent specifications of a two-group between-subjects design. The numbers in each cell 
indicate the number of observations in that cell of the design. Blank cells contain no 
observations. 
 
Two-group between-subject design: Participants as replicates 
Factors: Group (fixed; 2 levels). 
Design: 
Replicates: 5 

g1 5 
g2 5 

 
Two-group between-subject design: Participants as explicit factor 
Factors: Group (fixed; 2 levels), Participant (random; 5 levels per G). 
Design: P nested in G. 
Replicates: 1 
 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

g1 1 1 1 1 1      
g2      1 1 1 1 1 
 

 

In the first specification, we simply have a single fixed factor with two levels, and the 

observations in each cell (i.e., the replicates) are the experimental participants. Thus, the 

participants are only an implicit part of the design. In the second specification, the participants 

are explicitly given as a random factor in the design, one that is nested in the fixed Group factor, 

and the replicates refer to the number of times we observe each subject. Thus, this latter 

specification is more general than the first specification in that it allows for the possibility of 

repeated measurements of each subject; when the number of replicates is one, as it is in Table 1, 

then it equivalent to the first specification. 
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Designs with a single random factor. Designs in which the participants (or, more 

generally, the experimental units) are observed multiple times require that the participants be 

given as an explicit, random factor in the design. Table 2 gives two examples of such designs. 

 

Table 2 
Examples of designs with a single random factor. The numbers in each cell indicate the number 
of observations in that cell of the design. Blank cells contain no observations. 
 
2×2 within-subjects design: Two-color Stroop task 
Factors: Participant (random; 10 levels), Ink Color (fixed; 2 levels), Word Color (fixed; 2 levels) 
Design: P crossed with I, P crossed with W, I crossed with W. 
Replicates: 10 
 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

i1w1 10 10 10 10 10 10 10 10 10 10 
i1w2 10 10 10 10 10 10 10 10 10 10 
i2w1 10 10 10 10 10 10 10 10 10 10 
i2w2 10 10 10 10 10 10 10 10 10 10 

 
2×3 mixed (split plot) design: Pre-test/Post-test assessment of three drugs 
Factors: Time (fixed; 2 levels), Drug (fixed; 3 levels), Participant (random; 3 levels per D) 
Design: T crossed with D, T crossed with P, P nested in D. 
Replicates: 1 

  d1   d2   d3  
 p1 p2 p3 p4 p5 p6 p7 p8 p9 

t1 1 1 1 1 1 1 1 1 1 
t2 1 1 1 1 1 1 1 1 1 

 

 

The first example is a 2×2 within-subjects design based on a simplified Stroop task 

involving only two colors (MacLeod, 1991). In this experiment, participants make speeded 

responses to color words presented on a computer screen, and their task is to indicate the font 

color that the color word is printed in. The word printed on the screen in each trial is either “red” 

or “blue,” and the word is printed in either a red font or a blue font. Participants make 10 

responses toward each of the four stimulus types. The Stroop effect refers to the observation that 
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response times tend to be slower when the font color and color word are inconsistent than when 

they are consistent. This experiment involves one random Participant and two fixed factors, Ink 

Color and Word Color. All three factors are crossed, and the number of replicates is 10, because 

there are 10 response times in each Participant × Ink Color × Word Color cell. The test of the 

Stroop effect corresponds to the test of the fixed Ink Color × Word Color interaction. 

The second example, illustrated in the bottom part of Table 2, is a 2 (Time: pre-test vs. post-

test) × 3 (Drug: d1, d2, or d3) mixed design where the Time factor varies within-subjects and the 

Drug factor varies between-subjects. The Time and Drug factors are both fixed, and the random 

Participant factor is crossed with Time and nested in Drug. Because we measure each subject 

only once at each Time point, the number of replicates in this design is one. 

Designs with multiple random factors. In PANGEA it is simple to specify designs that 

involve multiple random factors, and this is the most appropriate way to think about many 

common designs. Three examples of such designs are illustrated in Table 3.  

The first example is a three-level hierarchical design commonly encountered in education 

research. In this example we have some intervention that we are assessing in a large study 

involving a number of elementary schools. The students (henceforth pupils) attending each 

elementary school belong to one and only one classroom. For each school, we randomly assign 

half of the classrooms to receive the intervention, and the other half of the classrooms to undergo 

some placebo procedure. Thus we have a fixed, two-level Intervention factor that is crossed with 

a random School factor, and which has a random Classroom factor nested in it. The Classroom 

factor is nested in the School factor, and we may view the pupils as the replicates (i.e., the 

observations in each Classroom). As in the two-independent-groups example discussed earlier, it 

is also possible to view this design as having an explicit, random Pupil factor that is nested in all 
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the other factors, and this would be appropriate if we measured each Pupil multiple times. 

PANGEA could easily handle such a four-level design.  

 

Table 3 
Examples of designs with multiple random factors. The numbers in each cell indicate the number 
of observations in that cell of the design. Blank cells contain no observations. 
 
Three-level hierarchical design: Pupils (replicates)-in-Classrooms-in-Schools 
Factors: School (random; 3 levels), Intervention (fixed; 2 levels), Classroom (random; 2 levels 
per S×I). 
Design: S crossed with I, C nested in S, C nested in I. 
Replicates: 20 
  s1    s2    s3   
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 

i1 20 20   20 20   20 20   
i2   20 20   20 20   20 20 

 
Crossed random factors: Stimuli-within-Condition design 
Factors: Participant (random; 6 levels), Type (fixed; 2 levels), Word (random; 3 levels per T). 
Design: P crossed with T, P crossed with W, W nested in T. 
Replicates: 1 
  t1   t2  
 w1 w2 w3 w4 w5 w6 

p1 1 1 1 1 1 1 
p2 1 1 1 1 1 1 
p3 1 1 1 1 1 1 
p4 1 1 1 1 1 1 
p5 1 1 1 1 1 1 
p6 1 1 1 1 1 1 

 
Crossed random factors: Counterbalanced design 
Factors: Group (fixed; 2 levels), Participant (random; 3 levels per G), Block (fixed; 2 levels), 
Stimulus (random; 3 levels per B). 
Design: P nested in G, S nested in B, G crossed with B, P crossed with S. 
Replicates: 1 
  b1   b2  
 s1 s2 s3 s4 s5 s6 

p1 1 (t1) 1 (t1) 1 (t1) 1 (t2) 1 (t2) 1 (t2) 
g1    p2 1 (t1) 1 (t1) 1 (t1) 1 (t2) 1 (t2) 1 (t2) 

p3 1 (t1) 1 (t1) 1 (t1) 1 (t2) 1 (t2) 1 (t2) 
p4 1 (t2) 1 (t2) 1 (t2) 1 (t1) 1 (t1) 1 (t1) 

g2    p5 1 (t2) 1 (t2) 1 (t2) 1 (t1) 1 (t1) 1 (t1) 
p6 1 (t2) 1 (t2) 1 (t2) 1 (t1) 1 (t1) 1 (t1) 



PANGEA 13 

 

The second example involves a design that has been frequently discussed in the 

psycholinguistics literature (Clark, 1973; Raaijmakers, Schrijnemakers, & Gremmen, 1999). In 

this example, a sample of participants study a set of noun words that are either abstract (e.g., 

“truth”) or concrete (e.g., “word”) and then undergo a recognition test in which they indicate 

their degree of recognition for each word (Gorman, 1961). In this design, every participant 

responds to every word. In the past we have referred to this type of design as a Stimuli-within-

Condition design (Westfall et al., 2014). As has been pointed out by many authors over many 

years (e.g., Coleman, 1964; Judd, Westfall, & Kenny, 2012), it is appropriate to view the sample 

of stimulus words as a random factor in the design, and failure to do so in the analysis can, in 

many cases, lead to a severely inflated type 1 error rate. Thus, this design consists of a random 

Word factor nested in a fixed Type factor, as well as a random Subject factor that is crossed with 

both Word and Type. 

The final example of a design involving multiple random factors is similar to the Stimuli-

within-Condition design just discussed, but in this design the fixed treatment factor is 

counterbalanced across the stimuli, so that each stimulus is sometimes observed in one level of 

the treatment factor and sometimes observed in the other level. For example, we give each 

participant two lists of words to study; for one of the lists, they are to give a definition of each 

word (“deep processing”), and for the other list, they are to indicate how many letters are in the 

word (“shallow processing”; Craik & Lockhart, 1972). After this task they undergo a recognition 

memory test in which they rate their degree of recognition toward every word. The 

counterbalancing takes place as follows. The full set of words is divided into two blocks, b1 and 

b2. Likewise, the participants are randomly assigned to one of two groups, g1 or g2. Thus, there is 
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a random Participant factor nested in a fixed Group factor, and a random Word factor nested in a 

fixed Block factor. The g1 participants receive the b1 words with the deep processing instructions 

(denoted t1—the first level of an implicit Treatment factor) and the b2 words with the shallow 

processing instructions (denoted t2). The g2 participants receive the b1 words with the shallow 

processing instructions and the b2 words with the deep processing instructions. As discussed by 

Kenny and Smith (1980), and as illustrated at the bottom of Table 3, the test of the Group × 

Block interaction is equivalent to the test of t1 vs. t2, the levels of the implicit Treatment factor 

representing deep vs. shallow processing of the words. 

Statistical Details of Power Computations 

In this section I describe how PANGEA performs the actual power analysis once the user 

has specified the design. To obtain statistical power estimates, there are ultimately three pieces of 

information needed: (1) the noncentrality parameter for a noncentral t or F distribution; (2) the 

associated degrees of freedom; and (3) the alpha level of the test. Here I show how the 

noncentrality parameter (henceforth denoted 𝛿) and degrees of freedom (henceforth denoted 𝜈) 

are obtained from the information that PANGEA solicits from the user. I first describe the 

unstandardized solution, in which 𝛿 and 𝜈 are written in terms of means and variances (i.e., on 

the scale of the dependent variable), and then describe a standardized solution, in which 𝛿 and 𝜈 

are written in terms of standardized mean differences and proportions of variance (i.e., in a 

dimensionless metric). In a final subsection I give some theoretical and empirical justifications 

for some of the default values of the input parameters used by PANGEA. 

Unstandardized Solution 
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 Noncentrality parameter. The noncentrality parameter for a noncentral t distribution can 

be written in the same form as the sample t-statistic, but it is based on population values. Thus, if 

there are 𝑓 fixed cells in total, then the noncentrality parameter is equal to 

𝛿 =
E 𝛽

var(𝛽)
=

𝑐!
!
! 𝜇!
𝑐!!

!
!

𝜎!"##! 𝑓
𝑁 𝑐!!

!
!

=
𝑐!

!
! 𝜇! 𝑁

𝜎!"##! 𝑓 𝑐!!
!
!

, 

where 𝛽 is the estimate of the effect, the 𝑐! are the contrast code values that multiply the cell 

means (the 𝜇!), 𝑁 is the total number of observations in the experiment, and 𝜎!"##!  is the 

appropriate error mean square, i.e., the variance of the mean difference implied by the contrast 

(Winer et al., 1991, p. 147). 

Most of the terms comprising the noncentrality parameter—the whole numerator, as well as 

the contrast codes and sample sizes—are obtained simply by direct input from the user. Finding 

𝜎!"##!  requires a little more work. To do so, PANGEA first uses the Cornfield-Tukey algorithm 

(Cornfield & Tukey, 1956; Winer et al., 1991, pp. 369–374) to find the expected mean square 

equations for the design specified by the user. Then 𝜎!"##!  can be obtained by taking the expected 

mean square for the effect to be tested and subtracting the term that involves the corresponding 

variance component, so that what remains is all the sources of variation that lead to variation in 

the effect other than true variation in the effect. This is the same logic used to select the 

appropriate denominator of an F-ratio for testing effects in an ANOVA.  

There is one minor, necessary modification to the procedure described above based on the 

Cornfield-Tukey algorithm, which is due to the two slightly different ways that a variance 

component is defined in classical ANOVA (on which Cornfield-Tukey is based) compared to in 

the modern literature on linear mixed models (which is the notation used by PANGEA). In the 
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classical ANOVA literature, the variance component associated with a factor is defined as the 

variance in the effects of that factor’s levels; let the variance component defined in this way be 

denoted as 𝜎!"#! . In the mixed model literature, a variance component is defined as the variance 

in the coefficients associated with that factor’s levels; let the variance component defined in this 

way be denoted as 𝜎!""! . As a consequence, the two definitions of the variance component for a 

given factor have the relationship 

𝜎!"#! = 𝑐!!
!

!

𝜎!""! . 

Practically, this simply means that after applying the Cornfield-Tukey algorithm in the manner 

described above, one must also multiply the variance components by the sum of squared contrast 

codes associated with that factor, where applicable. 

As an example, consider the Stimuli-within-Condition design illustrated in the middle part 

of Table 3. The expected mean squares for this design, and the associated degrees of freedom, 

are given in Table 4. So when computing power for a test of the Treatment effect in this design, 

we find 𝜎!"##!  by taking the expected mean square for Treatment, subtracting the term involving 

the Treatment variance component (𝜎!!), and multiplying the 𝜎!×!!  term by the sum of squared 

contrasts for the Treatment factor, leaving us with 

𝜎!"##! = 𝜎!! +   𝑟𝜎!×!
! + 𝑟𝑤 𝑐!!

!

!

𝜎!×!! +   𝑟𝑠𝜎!! . 

PANGEA would require the user to enter the values of the variance components found in the 

right-hand side of this equation, namely, the error variance (𝜎!!), the Word × Subject interaction 

variance (𝜎!×!
! , a.k.a. the variance of the random Word × Subject intercepts), the Treatment × 

Subject interaction variance (𝜎!×!! , a.k.a. the variance of the random Subject slopes), and the 
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Word variance (𝜎!! , a.k.a. the variance of the random Word intercepts). Once these variances 

have been given, they can easily be combined with the contrast codes, sample sizes, and 

expected regression coefficient supplied by the user to form the noncentrality parameter. 

 

Table 4 
Expected mean squares for the Stimuli-within-Condition design. The lower-case labels denote 
the sample sizes of the corresponding factor, so that 𝑡 is the number of Treatments, 𝑤 is the 
number of Words per Treatment, and 𝑠 is the number of subjects. The number of replicates is 
denoted by 𝑟.  
 
Label Source of variation Degrees of freedom Expected value of mean square 
T Treatment 𝑡 − 1 𝜎!! +   𝑟𝜎!×!

! + 𝑟𝑤𝜎!×!! +   𝑟𝑠𝜎!! +   𝑟𝑤𝑠𝜎!! 
W Word 𝑡(𝑤 − 1) 𝜎!! +   𝑟𝜎!×!

! +   𝑟𝑠𝜎!!  
S Subject 𝑠 − 1 𝜎!! +   𝑟𝜎!×!

! +   𝑟𝑡𝑤𝜎!! 
T×S Treatment×Subject (𝑡 − 1)(𝑠 − 1) 𝜎!! +   𝑟𝜎!×!

! +   𝑟𝑤𝜎!×!!  
W×S Word×Subject 𝑡(𝑤 − 1)(𝑠 − 1) 𝜎!! +   𝑟𝜎!×!

!  
E Error 𝑡𝑤𝑠(𝑟 − 1) 𝜎!! 

 

 

 Degrees of freedom. The degrees of freedom used by PANGEA are based on the Welch-

Satterthwaite approximation (Satterthwaite, 1946; Welch, 1947). The first step is to find the 

linear combination of mean squares whose expectation will result in the correct expression for 

𝜎!"##! . Then the Welch-Satterthwaite approximation states that the degrees of freedom 𝜈 for this 

linear combination of mean squares is approximately equal to 

𝜈 ≈
𝑘!𝑀!

!

𝑘!𝑀!
!

𝜈!

, 

where the 𝑀! are the mean squares, the 𝑘! are the weights for each mean square in the linear 

combination, and the 𝜈! are the degrees of freedom associated with each mean square. 
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 The appropriate linear combination of mean squares is found by solving the system of 

expected mean square equations for the 𝑘!. To do this, we first collect the expected mean square 

equations into a matrix X where the rows represent the mean squares, the columns represent the 

variance components, and the entries in each cell are the corresponding terms from the table of 

expected mean square equations. We then set 

XTk = s, 

where k is the vector of weights 𝑘! and s is a vector containing the terms that comprise 𝜎!"##! . 

Finally we solve this equation for k, yielding 

k = XT !𝟏s,  

 To illustrate this process, consider again the Stimuli-within-Condition design. In this case 

for X and s we have 

X =

𝜎!! 𝑟𝜎!×!
! 𝑟𝑤𝜎!×!! 0 𝑟𝑠𝜎!! 𝑟𝑤𝑠𝜎!!

𝜎!! 𝑟𝜎!×!
! 0 0 𝑟𝑠𝜎!! 0

𝜎!! 𝑟𝜎!×!
! 0 𝑟𝑡𝑤𝜎!! 0 0

𝜎!! 𝑟𝜎!×!
! 𝑟𝑤𝜎!×!! 0 0 0

𝜎!! 𝑟𝜎!×!
! 0 0 0 0

𝜎!! 0 0 0 0 0

, 𝐬 =

𝜎!!

𝑟𝜎!×!
!

𝑟𝑤𝜎!×!!

0
𝑟𝑠𝜎!!
0

, 

so that when we solve for k we obtain kT = 0 1 0 1 −1 0 , indicating that the 

appropriate linear combination of mean squares is 𝑀! +𝑀!×! − 𝑀!×!. And indeed we can 

verify that 

E 𝑀! +𝑀!×! − 𝑀!×! = 𝜎!! +   𝑟𝜎!×!
! + 𝑟𝑤 𝑐!!

!

!

𝜎!×!! +   𝑟𝑠𝜎!! = 𝜎!"##! . 

With the weights 𝑘!, the degrees of freedom 𝜈!, and the variance components and sample sizes 

input by the user, we can now simply plug values into the Welch-Satterthwaite equation to obtain 

the approximate degrees of freedom 𝜈 for the noncentral t distribution. 
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Standardized Solution 

 Standardized mean difference. The standardized effect size used by PANGEA is a 

generalized version of Cohen’s d, or the standardized mean difference between conditions. 

Cohen’s d is classically defined for two independent groups as 

𝑑 =
𝜇! − 𝜇!
𝜎!""#$%

, 

where 𝜇! and 𝜇! are the means of the two groups and 𝜎!""#$% is the pooled standard deviation, 

i.e., the square root of the average of the two variances, assuming the two groups are of equal 

size. Our generalized d extends this in two ways: The numerator allows for arbitrary contrasts 

among the group means rather than simply a difference between two groups, and the 

denominator is given a corresponding definition based on the standard deviation of an 

observation within each group, pooled across all groups.  

 First we consider the numerator. One way to view the numerator of d is as the regression 

coefficient from a simple linear regression with a categorical predictor 𝑐!, with values 𝑐! and 𝑐! 

such that 𝑐! − 𝑐! = 1. For example, values 𝑐! and 𝑐! might be {0, 1} or {− !
!
, !
!
}. So one 

obvious way to generalize the numerator is as 𝑐!
!
! 𝜇! / 𝑐!!

!
! , which is the population value 

of the regression coefficient for a contrast-coded predictor, where 𝑓 is the total number of fixed 

cells and the 𝑐! can be any set of weights that sum to 0. Generalizing the numerator in this way 

would create the complication that the overall value of d is sensitive to the choice of contrast 

code values even when the means and pooled standard deviation remain constant. For example, 

choosing contrast codes of {−1,1} would result in a smaller effect size than choosing {− !
!
, !
!
}. 

Clearly this is an undesirable property of a standardized effect size. To correct this, we will insert 

a term that rescales the contrast codes so that the range of the codes is always equal to 1 as it is in 
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the classical case. Let 𝑎 and 𝑏 be the minimum and maximum values, respectively, of the 𝑐!. 

Then the numerator of our generalized effect size 𝑑 will be 

𝑐!
!
! 𝜇! 𝑏 − 𝑎

𝑐!!
!
!

, 

which is invariant to the scale of the contrast codes and allows for a natural generalization to 

multiple groups. 

 Next we define the 𝜎!""#$% term comprising the denominator of d, representing the pooled 

standard deviation, that is, the square root of the variance of an observation in each fixed cell, 

averaged across all the fixed cells. To find this in the general ANOVA case, first we consider the 

variance of an observation in any single condition. Let var(𝑦!) be the variance of an observation 

in the ith fixed cell, from a total of f fixed cells. For example, in an experiment with two fixed 

factors, each with two levels, we have 𝑓 = 4. This variance can be written in a general way as 

var 𝑦! = 𝜎!!

!
random
intercepts

+ 𝑐!"! 𝜎!!

!
random
slopes

+ 2𝑐!"𝜎!
intercept-­‐
slope

covariances

+ 2𝑐!"𝑐!"𝜎!"
!!!

slope-­‐slope
covariances

+ 𝜎!!
random
error
term

. 

Because the variance within each cell is a function of the contrast code values in that cell, there 

is generally unequal variance across the cells, a fact pointed out by Goldstein, Browne, and 

Rasbash (2002). The pooled variance across all of the fixed cells, 𝜎!""#$%! , is then equal to   

1
𝑓

var 𝑦! =
1
𝑓

𝜎!!

!

+ 𝑐!"! 𝜎!!

!

+ 2𝑐!"𝜎! + 2𝑐!"𝑐!"𝜎!"
!!!

+ 𝜎!!
!

!

!

!

  

=
1
𝑓

𝜎!!

!

!

!

+ 𝑐!"! 𝜎!!

!

+ 2𝑐!"𝜎!
!

!

!

!

!

+ 2𝑐!"𝑐!"𝜎!"
!!!

!

!

+ 𝜎!!
!

!

  

=
1
𝑓

𝑓 𝜎!! + 𝜎!!

!

𝑐!"!
!

!!

+ 𝜎!
!

2𝑐!"

!

!

+ 𝜎!"
!!!

2𝑐!"𝑐!"

!

!

+ 𝑓𝜎!!   
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= 𝜎!! + 𝜎!!

!

𝑐!"!!

𝑓
!

+ 𝜎!!. 

The last step above depends on the assumption that the predictors comprise a complete set of 

orthogonal contrast codes; it is an important step because it means that, under the contrast coding 

assumption, the pooled variance does not depend on any of the random covariances in the model. 

 Putting all this together, we define our generalized d as 

𝑑 =
𝑐!

!
! 𝜇! 𝑏 − 𝑎

𝑐!!
!
! 𝜎!""#$%!

, 

which reduces to the classical definition in the case of two independent groups, but can be 

extended to an arbitrary number of fixed cells and allows for the inclusion of random effects. 

 Variance partitioning coefficients. The concept of variance partitioning coefficients 

(VPCs) was discussed by Goldstein et al. (2002), who define them in the context of multilevel 

models (i.e., mixed models with hierarchically nested random factors; Raudenbush & Bryk, 

2001; Snijders & Bosker, 2011) as the proportion of random variance in the outcome that is 

accounted for by the different “levels” of the model. General ANOVA models do not generally 

involve a notion of multiple “levels” of the model, but we will make use of VPCs to partition the 

random variance in the outcome into the proportion due to each individual variance component. 

 The definition of the VPCs is simple. We saw earlier that the pooled variance can be written 

as a linear combination of variance components: 

𝜎!""#$%! = 𝜎!! + 𝜎!!

!

𝑐!"!!

𝑓
!

+ 𝜎!!. 

The VPC for each variance component is formed by taking the ratio of the corresponding term 

(i.e., the variance component as well as any coefficients multiplying it) over the pooled variance. 

For example, the VPC for the error variance component, 𝜎!!, would be 
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𝑉! =
𝜎!!

𝜎!! + 𝜎!!!
𝑐!"!!
𝑓! + 𝜎!!

. 

The sum of all the VPCs is 1, and each VPC can be interpreted simply as the proportion of 

variance due to that variance component.  

 Noncentrality parameter and degrees of freedom. It is easy to write the noncentrality 

parameter and degrees of freedom in terms of the standardized effect size and VPCs just defined. 

The noncentrality parameter is 

𝛿 =
𝑐!

!
! 𝜇! 𝑁

𝜎!"##! 𝑓 𝑐!!
!
!

=
𝑐!

!
! 𝜇! 𝑁

𝜎!"##! 𝑓 𝑐!!
!
!

𝑏 − 𝑎 𝜎!""#$%!

𝑏 − 𝑎 𝜎!""#$%!
=

𝑑 𝑁 𝑐!!
!
! /𝑓

𝑏 − 𝑎
𝜎!"##!

𝜎!""#$%!

=
𝑑 𝑁𝜎!

𝑏 − 𝑎 𝜎!"#!
, 

where 𝜎! is the standard deviation of the contrast codes 𝑐!, and 𝜎!"#!  is identical to 𝜎!"##!  except 

the variance components in that expression are replaced by their VPCs. The degrees of freedom 

are approximately equal to 

𝜈 ≈
𝑘!𝑀!

!

𝑘!𝑀!
!

𝜈!

=
𝑘!𝑀!

!

𝑘!𝑀!
!

𝜈!

𝜎!""#$%! !

𝜎!""#$%! ! =
𝑘!𝑀!

!"# !

𝑘!𝑀!
!"# !

𝜈!

, 

where the 𝑀!
!"#  are identical to the 𝑀! except the variance components in their expectations are 

replaced by the corresponding VPCs. 

Default Inputs 

 When one finishes specifying the experimental design in PANGEA and begins considering 

the experimental parameters for the power analysis (effect size, sample sizes, etc.), one finds 
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some default values suggested for the standardized effect size and VPCs. In this section I give 

the rationale behind these default values. 

 Typical effect sizes. The default effect size suggested by PANGEA is 𝑑 = 0.45, which is 

based on a distribution of values of Cohen’s d derived from a meta-analysis by Richard, Bond 

Jr., & Stokes-Zoota (2003) and illustrated in Figure 1. Richard et al. (2003) conducted a meta-

analysis of meta-analyses in the field of social psychology to determine the range of typical 

effect sizes across the field, involving some 25,000 individual studies published over 100 years 

in diverse research areas. While the focus of this meta-meta-analysis was the field of social 

psychology, I believe there is little reason to expect the distribution of typical effect sizes to be 

appreciably different in other areas of psychology (e.g., cognitive psychology), and in the 

absence of meta-analytic evidence of such a difference, I submit that a default of 𝑑 = 0.45 

represents a reasonable suggestion for most psychological studies if one has no other information 

about the specific effect to be studied. 

 

Figure 1 
Distribution of typical values of Cohen’ d in social psychology as shown on the PANGEA page. 
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 The meta-analysis by Richard et al. (2003) was actually based on average values of the 

correlation coefficient, rather than Cohen’s d; some assumptions were required in order to 

construct the d distribution shown in Figure 1, which I describe here. First I sought to 

characterize the distribution of correlation coefficients reported by Richard et al. (2003), which is 

shown in Figure 2 as the bumpy density curve. Based on the shape and range of this distribution, 

I considered characterizing it as a beta distribution. The mean and standard deviation of the 

empirical distribution were reported by Richard et al. (2003) to be 𝑥 = .21 and 𝜎! = .15, 

respectively. The beta distribution has two parameters 𝛼 and 𝛽, and I estimated these parameters 

by finding the values that would produce the observed mean and standard deviation, using the 

estimates 

𝛼 = 𝑥
𝑥(1 − 𝑥)

𝜎!!
− 1  

𝛽 = 1 − 𝑥
𝑥(1 − 𝑥)

𝜎!!
− 1 . 

This produced the beta distribution illustrated as the smooth density in Figure 2, which appears 

to provide a good characterization of the empirical distribution. 

Figure 2 
Empirical distribution of correlation coefficients from Richard et al. (2003) along with best-
fitting beta distribution. 
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 The next step is to convert this distribution of correlation coefficients to a distribution of 

values of Cohen’s d. To do this, I simulated many, many values from the best-fitting beta 

distribution, converted each of these values to the d metric using 

𝑑 =
2𝑟
1 − 𝑟!

, 

and computed the mean, median, and percentiles of this distribution, which is what is reported in 

Figure 1. This conversion from r to d is based on an assumption of two equally sized groups, and 

to the extent that this is not true in actual psychological studies, the d values produced by this 

conversion will be somewhat too small (McGrath & Meyer, 2006). To investigate the extent of 

underestimation of the d values, I repeated the process above using the more general formula 

𝑑 =
𝑟

1 − 𝑟! 𝑝!𝑝!
, 

where 𝑝! and 𝑝! are the proportions of participants in the two groups of the study. The values of 

𝑝! and 𝑝! for each simulated study were based on assuming that participants were randomly 

assigned to conditions by a binomial process with probability 0.5, and number of trials equal to a 

typical sample size in experimental psychology (e.g., 30 to 150). The results of this simulation 

suggested that the degree of underestimation, at least under this assumption of binomial 

assignment to conditions, is negligible; the average d value in this new distribution was 0.46 

rather than 0.45. 

 Hierarchical ordering. The default values of the VPCs suggested by PANGEA are based 

on the hierarchical ordering principle, a concept often invoked in discussions of fractional 

factorial designs in the literature on design of experiments (Montgomery, 2013). Wu and 

Hamada (2000) summarize this principle as “(i) lower order effects are more likely to be 

important than higher order effects, (ii) effects of the same order are likely to be equally 
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important” (p. 143). For example, consider the counterbalanced design illustrated at the bottom 

of Table 3, in which we have a fixed (implicit) Treatment factor, a random Participant factor, a 

random Stimulus factor, and all interactions thereof, all the way up to a three-way Participant × 

Stimulus × Treatment interaction. The idea of hierarchical ordering is that, on average, we 

should expect the main effects of Participant, Stimulus, and Treatment to explain more variance 

in the outcome than the two-way interactions, and we should expect the two-way interactions to 

explain more variance than the three-way interaction. Anecdotally, this does seem to concord 

with my own personal experience fitting mixed models to many different datasets in psychology. 

 As for why hierarchical ordering should tend to occur, one possible explanation is given by 

Li, Sudarsanam, and Frey (2006), who suggest that this phenomenon is 

“partly determined by the ability of experimenters to transform the inputs and outputs of the 

system to obtain a parsimonious description of system behavior […] For example, it is well 

known to aeronautical engineers that the lift and drag of wings is more simply described as a 

function of wing area and aspect ratio than by wing span and chord. Therefore, when 

conducting experiments to guide wing design, engineers are likely to use the product of span 

and chord (wing area) and the ratio of span and chord (the aspect ratio) as the independent 

variables” (p. 34). 

This process described by Li et al. (2006) certainly happens in psychology as well. For example, 

in priming studies in which participants respond to prime-target stimulus pairs, it is common for 

researchers to code the “prime type” and “target type” factors in such an experiment so that the 

classic priming effect is represented as a main effect of prime-target congruency vs. 

incongruency, rather than as a prime type × target type interaction. And in social psychology, 

many studies involve a my-group-membership × your-group-membership interaction effect, 
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which is often better characterized and coded as a main effect of ingroup (group congruency) vs. 

outgroup (group incongruency). It seems natural to expect random slopes associated with these 

robust effects to have greater variance than the random slopes of the incidental effects, which are 

now coded as interactions, and this would give rise to hierarchical ordering. 

 The way the hierarchical ordering assumption is implemented in PANGEA is as follows. 

For every estimable source of random variation in the design (i.e., every random variance 

component) except for the random error term, I count the number of variables that comprise that 

source. For example, random three-way interactions are comprised of three variables, random 

two-interactions are comprised of two variables, and random main effects are comprised of one 

variable. Let this number be 𝑛! for the ith variance component. I then reverse these numbers 

using 𝑛!! = max+min− 𝑛!, where max and min are the maximum and minimum 𝑛!, 

respectively, and assign a value of max+1 to the random error variance. Finally I divide all these 

values by the sum of the values, making them proportions or VPCs. As an example, the 

counterbalanced design discussed above has the following default VPC values: 

𝑉! = 30%,       𝑉! = 20%,       𝑉! = 20%,       𝑉!×! = 10%,       𝑉!×! = 10%,       𝑉!×! = 10%. 
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