Main content
Functional Specificity and Neural Integration in the Aesthetic Appreciation of Artworks with Implied Motion
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Project
Description: Although there is growing interest in the neural foundations of aesthetic experience, it remains unclear how particular mental sub-systems (e.g., perceptual, affective, cognitive) are involved in different types of aesthetic judgments. Here we use fMRI to investigate the involvement of different neural networks during aesthetic judgments of visual artworks with implied motion cues. First, a behavioural experiment (N=45) confirmed a preference for paintings with implied motion over static cues. Subsequently, in a pre-registered fMRI experiment (N=27), participants made aesthetic and motion judgments towards paintings representing human bodies in dynamic and static postures. Using functional region-of-interest and Bayesian multilevel modelling approaches, we show clear functional differences in the way motion, body-image and affective processing systems contribute to aesthetic judgments. Visual motion and body-selective regions were sensitive to implied motion cues, but only body-selective regions showed sensitivity to aesthetic judgments. In contrast, within the affective network, bilateral anterior cingulate cortex showed more sensitivity to the aesthetic than control task. In addition, we show suggestive evidence that motion and body-selective systems may integrate signals via functional connections with a separate neural network in dorsal parietal cortex, which may act as a relay or integration site. Our findings clarify the roles of basic visual and affective brain circuitry in evaluating a central aesthetic feature – implied motion – whilst also pointing towards promising future research directions, which involve modelling aesthetic preferences as hierarchical interplay between visual and affective circuits and integration processes in frontoparietal cortex.