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A Diagnostic Classification Analysis of Problem-Solving Competence using Process

Data: An Item Expansion Method

Abstract

Process data refers to data recorded by computer-based assessments (CBA) that

reflect respondents’ problem-solving processes and provide greater insight into how

respondents solve problems, instead of merely how well they solve them. Using the rich

information contained in process data, this study proposed an item expansion method

to analyze action-level process data from the perspective of diagnostic classification in

order to comprehensively understand respondents’ problem-solving competence. The

proposed method not only can estimate respondents’ problem-solving ability along a

continuum, but also can classify respondents according to their problem-solving skills.

To illustrate the application and advantages of the proposed method, a Programme for

International Student Assessment (PISA) problem-solving task was used. The results

indicate that (a) the estimated latent classes provided more detailed diagnoses of

respondents’ problem-solving skills than the observed score classes; (b) although only

one item was used, estimated higher-order latent ability reflected the respondents’

problem-solving ability more accurately than the estimated unidimensional latent

ability taken from the outcome data; and (c) the interactions between problem-solving

skills may follow the conjunctive condensation rule, which assumes that only when a

respondent has mastered all the required problem-solving skills can the specific action

sequence appear. Overall, the main conclusion drawn from this study was that using

diagnostic classification is a feasible and promising method for analyzing process data.

Keywords: process data, diagnostic classification model, problem-solving competence,

cognitive diagnosis, PISA
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Introduction

Computer-based assessments (CBAs) with innovative item types have been

developed rapidly in recent years. Compared to traditional item types (e.g., multiple-

choice items), CBA items usually require multiple decision-making steps that

eventually lead to the solution of a problem. Therefore, CBA items can measure more

complex cognitive processes. These items can often be seen as the problem-solving in

technology-rich environments items in various large-scale international survey

programs, including the National Assessment of Educational Progress (NAEP), the

Programme for International Student Assessment (PISA), and the Programme for the

International Assessment of Adult Competencies (PIAAC).

Despite the appealing attributes of CBA items, a major challenge lies in the

interpretation of process data obtained from CBAs. The most common type of process

data obtained from CBAs is long-format and similar to longitudinal datasets in which

each respondent has multiple rows of data that record his or her sequential actions and

corresponding time stamps, along with identification (ID) indicators (e.g., school and

person ID). Given that CBAs usually assess higher-order thinking skills and involve

intricate problem-solving processes, process data recording how participants solve

tasks play a crucial role in providing information about the latent construct being

measured. However, it is difficult to cope with its non-standard format that

respondents’ response processes are action sequences (e.g., mouse clicks) with lengths

varying across respondents. As a result, existing psychometric models, such as item

response theory (IRT) models and diagnostic classification models (DCMs), are not

readily applicable to process data. Thus, statistical methods that can draw meaningful

inferences from process data are vitally necessary. To cater to this need, the current

study aims to propose a novel method for the analysis process data.

An increasing number of statistical methods for analyzing process data have been

proposed in the past decade. Two categories of statistical methods now exist: (a) data
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analysis methods that classify or explore respondents’ problem-solving processes and

(b) psychometric models that draw statistical inferences about respondents’ latent

proficiency. Data analysis methods mainly include data mining techniques (e.g., He &

von Davior, 2016; Liao et al., 2019; Qiao & Jiao, 2018), social network methods (e.g., Zhu

et al., 2016), diagraphs (e.g., DiCerbo et al., 2011), and process mining (e.g., Howard et

al., 2010). Despite the useful applications of data analysis methods, they are exploratory

in nature and cannot be used to explain latent proficiency.

By contrast, a few efforts have been made to develop psychometric models for

process data (e.g., LaMar, 2018; Levy, 2014; Liu et al., 2018; Shu et al., 2017; Xu et al.,

2020). A shared characteristic of these models is that they relate to both hidden Markov

models (HMMs; Rabiner, 1989) and traditional measurement models (e.g., IRT models).

Such a combination makes these models capable of handling the longitudinal data

structures in time series data and simultaneously drawing inferences about

respondents’ latent proficiency. Furthermore, some joint psychometric models have

been proposed to incorporate item response times, which constitute a special type of

process data at item-level rather than at action-level (e.g., van der Linden, 2007; Wang &

Chen, 2020; Zhan et al., 2018).

The applications of the existing modeling approaches, however, are restricted in

four ways. First, multidimensionality issues cannot be adequately accommodated using

current methodologies (e.g., LaMar, 2018) while multiple latent constructs are likely to

exist in complex assessment forms. Second, the lack of readily available software makes

some methods (e.g., Xu et al., 2020) inaccessible to practitioners. Third, some models are

limited to the analysis of item-level process data (e.g., Zhan et al., 2018). Lastly, most

existing models aim to estimate respondents’ problem-solving abilities along a

continuum but not to classify respondents based on the different problem-solving skills

they adopted (e.g., Liu et al., 2018).
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In the current study, we propose an item expansion method to analyze action-level

process data from the perspective of diagnostic classification based on DCMs that can

be estimated using readily available software programs. Therefore, its analytical process

is easy to implement and practitioner-friendly. The proposed method has two main

uses, (a) estimating respondents’ problem-solving abilities along a continuum and (b)

simultaneously classifying respondents according to their multidimensional problem-

solving skills. The former, as a comprehensive indicator, can be used to determine the

problem-solving levels of respondents and locate their relative positions in a group. The

latter, as a fine-grained indicator, can be used to identify the problem-solving skills

mastered by the respondents for diagnosis purposes.

The rest of this paper is organized as follows. In section 2 we introduce the DCM

framework to acquaint readers with the analysis models used in this study. The

proposed diagnostic classification method for process data is outlined in Section 3.

Section 4 describes an empirical study of process data using a PISA 2012 item to

demonstrate the proposed method and to show that process data contain richer

diagnostic information than traditional outcome data (i.e., item responses). Finally,

some concluding remarks are made and further research directions are discussed in

Section 5.

Diagnostic Classification Model Framework

DCMs are a family of restricted or confirmatory latent class psychometric models

that model relationships between several fine-grained discrete latent attributes and

observed item responses (von Davier & Lee, 2019). A latent attribute can either

correspond to a concrete knowledge point/skill or refer to a more abstract latent

construct (de la Torre & Chiu, 2016). DCMs are developed to make statistical inferences

about respondents’ statues of these latent attributes (e.g., “mastery” versus “non-

mastery”, “advanced” versus “beginner”, and “able to implement” versus “unable to
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implement”) and to separate respondents into several latent classes (i.e., attribute

patterns), according to their observed item responses. Because of the multidimensional

nature, DCMs have the potential to yield richer diagnostic information than traditional

psychometric models (Ma & de la Torre, 2020a), which is especially helpful for

supporting instruction (Chen et al., 2017; Chen et al., 2018; Tang & Zhan, 2021; Wu, 2019;

Zhan et al., 2019; Zhan, 2020).

A Q-matrix is an important component of DCMs that specify the relationships

between items and latent attributes (Tatsuoka, 1983) and reflects the cognitive

specification of a test (Leighton et al., 2004). A correct response to an item may depend

on one or more latent attributes. For example, in a test that measures a total of K latent

attributes, each of the I items requires a distinct subset of relevant attributes to be

answered correctly. These specific item-attribute associations are collected into a binary

I × K Q-matrix. The element qik indicates whether or not the item i (i = 1, ... I) requires the

application of latent attribute k (k = 1, ... K) to give a correct response. Hence, for K latent

attributes, 2K attribute patterns can be constructed. Appropriately specifying the

attributes required by each item is one of the necessary conditions for diagnostic

classification analysis (Chen, Culpepper, Chen et al., 2018; Liu et al., 2012). Furthermore,

the completeness of the Q-matrix (Chiu, 2013) and the model identifiability

requirements of the Q-matrix (Gu & Xu, 2019) are necessary in the correct estimation of

the model parameters.

In this paper, we used the generalized deterministic inputs, noisy “and” gate

(GDINA), model (de la Torre, 2011) to illustrate the proposed analysis method. The

GDINA model is a general DCM that can be used to specify a host of reduced DCMs by

using different parameterizations, such as the DINA model (Junker & Sijtsma, 2001), the

deterministic inputs, noisy “or” gate (DINO) model (Templin & Henson, 2006), and the

additive cognitive diagnostic model (ACDM) (de la Torre, 2011), thus, increasing the

generalizability of the proposed analysis method. Like most, if not all, DCMs, the
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GDINA model relies on a Q-matrix to specify the associations between the K latent

attributes and I items. The item response function of the GDINA model is given by:
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attribute patterns with respect to item i contain only the required attributes for the item.

δi0 denotes the intercept of item i, δik denotes the main effect of attribute αnk, δikk’ denotes

the two-way interaction effect of attributes αnk and αnk’, and )( *
iKi

 denotes the highest-

way interaction effect for all the required attributes. Among them, the intercept

parameter reflects the guessing probability of the item, the main effect parameters

reflect the individual contribution of each attribute to the correct response probability of

the item, and the interaction effect parameters reflect the joint influence of multiple

attributes on the correct response probability of the item.

As mentioned earlier, the GDINA model can be constrained to yield several

reduced DCMs. For example, the DINA model can be obtained from the GDINA model

by setting all the parameters, except δi0 and )( *δ
iKi
, to zero. In such cases, the item

response function of the DINA model can be expressed as:
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where gi is the guessing parameter and si is the slipping parameter, respectively. More

details about the GDINA model and its special cases can be found in de la Torre (2011).
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In practice, since the required latent attributes in a test are often conceptually

related and statistically correlated, a higher-order latent structural model (de la Torre &

Douglas, 2004) can be constructed to link them:

)exp(1
)exp()|1(
knk

knk
nnkP




 , (3)

where )|1( nnkP  is the marginal probability of attribute k for person n by given θn.

θn is the higher-order latent ability of respondent n, which denotes the general problem-

solving ability of respondent n in this study; and γk and λk are the slope and difficulty

parameters for attribute k, respectively. The higher-order latent structure can be

incorporated into many DCMs. For example, combining Equations 1 and 3 creates the

higher-order GDINA (HO-GDINA) model and combining Equations 2 and 3 creates the

higher-order DINA (HO-DINA) model (de la Torre & Douglas, 2004).

More importantly, a readily available GDINA package (Version 2.8.0; Ma & de la

Torre, 2020b) can be utilized with R software by practitioners to carry out the analysis.

Overall, based on this general DCM, we provide further theoretical extensions and

practical applications of the proposed diagnostic classification analysis method in this

paper.

Diagnostic Classification Analysis of Process Data: An Item Expansion Method

The DCM framework is a promising modeling approach in CBA settings where

multiple problem-solving skills need to be measured. However, to our knowledge, no

research has attempted to introduce the idea of diagnostic classification into action-level

process data analysis (cf. Jiao et al., 2019). In this section, we provide an item expansion

method for action-level process data analysis from the perspective of diagnostic

classification that can be generalized to a broad scenario of CBA items.

The proposed method is an item-specific analysis method that is normally used in

process data analysis given that the problem-solving scenarios differ widely among
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CBA items (e.g., Greiff et al., 2016; Kroehne & Goldhammer, 2018; Liu et al., 2018; Qiao

& Jiao, 2018). The detailed analysis demonstration using a specific item will be

presented in the next section.

Diagnostic Classification Analysis of Process Data

The DCM framework for process data analysis is portrayed as a tetrad flowchart as

presented in Figure 1. The four dotted rectangles represent the key components of the

proposed method: (1) the problem-solving skills that are required by a specific CBA

item; (2) the phantom items, expanded from the CBA item, representing key actions or

action sequences produced by respondents when completing the CBA item; (3) the Q-

matrix that connects the problem-solving skills and phantom items; its entries consist of

1s and 0s, indicating whether a problem-solving skill is required by a phantom item;

and (4) a DCM that leads to meaningful interpretation of the process data. The four

components are described and explained in detail in the following paragraphs.

Figure 1
Illustration of Key Components in the DCM Framework for Process Data Analysis.
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Note. α = latent attribute; K = number of attributes; PI = phantom item; I = number of
phantom items.

Problem-Solving Skills

In this study, latent attributes refer to the problem-solving skills that are required

to produce various action sequences for a CBA item. In such a case, αnk = 1 indicates that

respondent n is able to implement the kth problem-solving skill, and αnk = 0 otherwise.

Typically, CBA items are designed to measure general cognitive processes involved

in the problem-solving tasks. For example, the PISA 2012 problem-solving items

measure four main cognitive processes: (a) exploring and understanding, (b)

representing and formulating, (c) planning and executing, and (d) monitoring and

reflecting. Given that individual items have one of these cognitive processes as their

main focus, each main cognitive process can be further decomposed into several

concrete problem-solving skills for a particular item.

In practice, we can use the test blueprint, scoring rules, and assessment framework

to capture the required problem-solving skills for an item. This process is similar to that

of using expert judgement to determine latent attributes in traditional diagnostic

assessments (e.g., Roduta Roberts et al., 2014).

Item Expansion: From One CBA Item to Several Phantom Items

Let } , ,{ 1 Aaa Α denote the set of all distinct actions for a specific CBA item (i.e.,

an action space), where A is the total number of distinct actions and each element in A is

a unique action. Typically, these recorded A actions directly relate to item solving, while

other irrelevant actions (e.g., mouse clicks on unrelated areas), if existing, are

considered as noises and eliminated at the beginning of the analysis. One or more

distinct actions can be further combined to form various action sequences:
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where νx denotes the xth distinct action sequence and X is the total number of distinct

action sequences. Since CBA items may allow respondents to repeatedly carry out

certain actions, the value of X (i.e., the volume of S) is usually large.

However, not all action sequences are meaningful or informative, given the noisy

nature of process data. If some action sequences are conducted by too few (or too many)

respondents, these rare (or excessive) action sequences are uninformative in the

inference of problem-solving skills. Additionally, when an item does not examine

problem-solving efficiency, the repeated appearance of an action sequence can be

considered as one appearance (e.g., a1a2a1a2 ≡ a1a2). Therefore, it is necessary to filter the

action sequences in S to form a set of reduced set of action sequences:

SS  }ν,,ν,,ν{ ***1
*

Xx
 , (4)

where νx* is the xth action sequence and X* is the total number of action sequences in

the reduced set of action sequences S*. In this study, the action sequences in S* are

referred to as phantom items. In the rest of this paper, the term “phantom item” is used

interchangeably with the term “action sequence”. Typically, one CBA item can be

expanded to several phantom items. We call this phase as item expansion.

In practice, we can use one or more approaches to obtain S* from S. Several

common approaches include: (1) action sequences with an appearance rate of less than

5% or more than 95% should be excluded from the analysis (Tang et al., 2020); (2) action

sequences generated from process data should theoretically relate to the latent construct

being measured to achieve better classification results (Sao Pedro et al., 2012); and (3) it

is important that S* should include phantom items that meet the requirements of the Q-

matrix for model parameter identifiability purposes. For example, three conditions need
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to be satisfied for the identifiability of the DINA model (Gu & Xu, 2019): (a) there are

items that solely measure each one of the attributes, namely, an identity matrix in the Q-

matrix; (b) each attribute is measured by at least three items; and (c) any column of the

Q-matrix apart from the identity matrix is distinct. Once S* is obtained, the distinct

action sequences it contained are treated as phantom items for subsequent diagnostic

classification analysis.

Finally, the original long-format process data for the CBA item, referred to as

unformatted process data as shown in Figure A1 in the Appendix, can be transformed into

formatted process data as shown in Figure A2 in the Appendix to be used in the

subsequent diagnostic classification analysis. A formatted process data is a matrix with

each row representing a respondent and each column representing a phantom item.

Furthermore, when an action sequence appears during a respondent’s problem-solving

process, the corresponding element in the matrix is coded as 1, otherwise, the

corresponding element in the matrix is coded as 0. In this way, a correct response to a

phantom item (yni = 1) indicates that the respondent conducts an action or an action

sequence. In terms of the GDINA model (Equation 1), )|1( *
nkniyP α is the probability

that respondent n conducts action sequence i conditional on requisite problem-solving

skills *
nkα .

Q-matrix

Once the phantom items (i.e., action sequences in S*) and problem-solving skills

(i.e., latent attributes) are determined, the Q-matrix can be constructed to specify the

associations among them. In this study, each column of the Q-matrix represents a

problem-solving skill and each row of it represents a phantom item. In such cases, qik = 1

indicates that the ith action sequence requires kth problem-solving skill, while qik = 0

otherwise.
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In addition, our approach in constructing the Q-matrix is based on expert

judgement and is essentially retrofitting. That is, we aligned the phantom items to the

problem-solving skills in a post hoc manner.

Diagnostic Classification Analysis

Existing reduced DCMs (e.g., DINA and DINO models) can be divided into three

categories, based on the condensation rules for how latent attributes influence

respondents’ item responses: conjunctive, disjunctive, and compensatory models (Maris,

1999). The selection of reduced DCMs requires a clear understanding of the theoretical

interactions between the latent attributes, which are usually judged by experts during

the item/test development phase. However, theoretical interactions between problem-

solving skills are not very clear in the analysis of process data. In such a case, it is

suggested to use a general DCM that is not limited to a specific condensation rule,

although multiple DCMs can be used for simultaneous analysis using model–data fit

indices to select the most appropriate one (Chen et al., 2013). In addition, higher-order

DCMs are suggested in this study. The higher-order DCMs can be used to estimate the

problem-solving ability of a respondent along a continuum and to diagnose the

problem-solving skills used by this respondent simultaneously. Parameter estimation

for higher-order DCMs can be carried out using the readily available GDINA package.

Procedure

Based on the above discussion, the diagnostic classification analysis of process data

consists of the following steps:

1. Collect and preprocess the unformatted process data from the raw log files.

2. Define the problem-solving skills (i.e., latent attributes), including their number and

meaning.

3. Create the phantom items (i.e., action sequences in S*).

4. Code the formatted process data matrix from the unformatted process data.
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5. Construct the Q-matrix (i.e., relate each phantom item to different problem-solving

skills).

6. Select an appropriate DCM and analyze the formatted process data.

7. Interpret the diagnostic results.

It can be seen that the analytical procedure for process data is in general consistent

with that for outcome data in traditional diagnostic assessments. An empirical data

analysis is presented in the next section to demonstrate the analytical procedure

described above.

Empirical Study

Item Description

PISA 2012 contains 48 problem-solving items, which assess respondents’ cognitive

ability in solving real-life problems using computer-based simulated scenarios. One of

these items, TICKETS task 2 (CP038Q01),1 was used in the current study. Figure 2

shows the opening page of this item. This item asks respondents to buy the cheapest

ticket that allows them to travel around the city four times on the subway using the

virtual ticket machine. It also informs the respondents that concession fares are

available for respondents.

Several decisions need to be made to solve this item. First, a respondent must

choose a train network (either “city subway” or “country trains”, as shown in Figure 2).

Then, according to the train network chosen, the respondent chooses between “full

fare” and “concession fare”, as shown in Figure A3 in the Appendix. Last, after a fare

type is chosen, the respondent must buy either a “daily” or “individual” ticket, as

shown in Figure A4 in the Appendix. Figures A5 and A6 in the Appendix show the

screenshots when a “daily” ticket or an “individual” ticket is chosen, respectively.

1 More details about this item can be found in https://www.oecd.org/pisa/test-2012/testquestions/question5/ retrieved on
July 11th, 2020.

https://www.oecd.org/pisa/test-2012/testquestions/question5/
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Specifically, the respondent can choose to buy one to five individual tickets if the

“individual” ticket type is chosen. The prices of tickets are shown on the screen for

comparison purposes. The respondent can click on “Cancel” at any of the above steps to

restart the item from the beginning. Both a daily city subway concession fare and four

individual city subway concession fares allow the respondent to travel around the city

in a day, but the latter option is cheaper; therefore, this item requires respondents to

compare the prices between the two and choose to buy four individual city subway

concession fares.

According to the scoring rule, the outcome data for this item has three score

categories: 0, 1, and 2. A respondent who buys four individual city subway concession

fares and compares the price with the daily concession fare receives a full score of 2. A

respondent who buys either four individual city subway concession fares or a daily city

subway concession fare without comparing the prices receives a partial credit of 1. A

respondent who makes any other decisions receives a score of 0.

Figure 2

Opening Page for the TICKETS Task 2 (CP038Q01) in PISA 2012.
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Participants and Datasets

Respondents from the United States, Singapore, Austria, and Turkey were selected

from CBA_cp038q01_logs12_SPSS.csv (see online supporting materials) for the analysis

in the current study, constituting a representative sample of people with a wide

spectrum of problem-solving ability based on their PISA 2012 results (OECD, 2014).

Both unformatted process data and outcome data (i.e., item responses) from these

respondents were used in the current study (see online supporting materials).

Respondents with missing IDs and not-reached item responses were excluded, resulting

in a sample size of 3,760. As mentioned earlier, unformatted process data recorded the

sequential actions and corresponding time stamps for the respondents. No missing data

existed in the process data, while missing data in the outcome dataset were

accommodated by the full information maximum likelihood (FIML) estimation.

In this paper, the observed item response categories from CP038Q01 (i.e., 0, 1, 2)

served as observed classes that were compared with the latent classes estimated by the

DCMs. However, the latent classes indicated different problem-solving skill patterns,

which were expected to have more categories than that of the observed classes and

were perceived as more fine-grained classifications of the respondents. The detailed

analysis is described in the following section.

Analysis

To increase the replicability of this study, all relevant data and analysis code used

in this study are available at https://osf.io/nwtfz. By running the code, readers can

reproduce the analysis and obtain the same results. The analysis presented below serves

as a representative example of the DCM framework for process data analysis as

illustrated as the flowchart in Figure 1. Specifically, the construction of the problem-

solving skills and phantom items, the construction of the Q-matrix, and the procedure

of the diagnostic classification analysis are described in detail.

https://osf.io/nwtfz
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Capturing Problem-solving Skills

Based on the item instructions, scoring rules, and the targeted cognitive process

(i.e., exploring and understanding) for this specific PISA problem-solving item (OECD,

2014), five problem-solving skills are required for respondents to respond correctly: (a)

understanding the city subway and the correct train network, (b) understanding that

concession fares are available, (c) understanding that either a daily or four individual

trip tickets would allow them to travel four times around the city, (d) comparing the

two ticket prices to find the cheapest, and (e) making the decision to buy. These five

problem-solving skills are denoted as α1, α2, α3, α4, and α5 in the remainder of the paper.

In such cases, the higher-order latent ability in higher-order DCMs represents a

respondent’s problem-solving ability regarding the targeted cognitive process (i.e.,

exploring and understanding).

Obtaining Phantom Items and Formatted Process Data Coding

The major task in obtaining the phantom items is to get the reduced action

sequence space S* from the full action sequence space S. The action space A for the

phantom item used in the current study included 13 actions: city subway (city, for

short), country train, concession (con, for short), full fare, daily, individual (ind, for

short), trip 1, trip 2, trip 3, trip 4, trip 5, cancel, and buy. The S was generated by adding

combined adjacent actions to A, with action/action sequence lengths ranging from one

to five (all X = 228 action sequences in S are presented in allactionsequence.csv and can be

generated by running the shared code). Given that the PISA item we used does not

assess problem-solving efficiency, repeated actions/action sequences from one

respondent were considered to be the same as actions/action sequences that have

appeared only once. Hence, we dichotomized all repeated actions (i.e., all non-zero

count data was modified to 1).

We determined the S* based on appearance rate (between 5% to 95%), theory, and

the requirements for the identifiability of the DCMs. First, rare action sequences in S
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with appearance rate less than 5% were removed, resulting in 60 remaining action

sequences. No excessive action sequences (i.e., appearance rate > 95%) existed in the

current example. Second, we retained phantom items that could theoretically reflect the

problem-solving skills defined in the previous paragraph, according to Sao Pedro et al.

(2012). Therefore, some action sequences in S that contain actions that do not reflect the

required problem-solving skills (e.g., country train and full fare) were removed,

resulting in 14 action/action sequences. Lastly, the 14 action/action sequences were

examined to have satisfied the identifiability conditions of the DCM (Gu & Xu, 2019), as

mentioned in the previous section. Therefore, a set of reduced set of action sequences S*,

including 14 phantom items, were retained to measure the five problem-solving skills.

Several issues we encountered in the above procedure specifically for this PISA

item were addressed. First, when respondents intended to buy tickets for four

individual trips (as allowed by the item), they could repeatedly click on other numbers

of trips (i.e., one, two, three, or five) to check the prices before choosing four trips.

Given that this item does not assess problem-solving efficiency, we considered these

less efficient action sequences to be the same as clicking “trip 4” immediately after

“individual” ticket. Therefore, phantom items “ind→other→trip 4”, where “other”

indicated clicking on a number of trips other than four, and “ind→trip 4” were

considered as the same. Second, according to the scoring rule for this item, we

considered both choices of “daily” ticket and “trip 4” (i.e., “individual” ticket with four

trips) as a reflection of the mastery of α3 , given that both of them allowed the

respondents to travel around the city four times. Therefore, phantom items such as

“daily/trip4_buy”, “con_daily/trip4_buy”, and “city_con_daily/trip4_buy” were

generated, with respondents who bought either a daily or four individual tickets

receiving correct scores for these phantom items.
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As a result, we coded the formatted process data matrix for 3,760 respondents who

responded to the 14 phantom items. As mentioned earlier, all responses to the phantom

items were dichotomous.

Constructing Q-matrix

Based on the five problem-solving skills and 14 phantom items, the Q-matrix was

constructed as shown in Table 1. In the current study, we assumed there was no

attribute hierarchy (Leighton et al., 2004) among the five problem-solving skills. For

example, respondents who understood that concession fares were available (α2) may

not also understand the city subway and the correct train network (α1). Even if

respondents made a buy decision, it does not mean that they mastered one or more of

the first four problem-solving skills. For example, the appearance of an action sequence

“country train→full fare→ind→trip 2→buy” only requires α5.

In addition, all phantom item responses (i.e., action sequence appearances) are

assumed to be conditional independent given requisite latent attributes (i.e., problem-

solving skills). For example, the response to phantom item “city” given attribute α1 is

assumed to be conditional independent from the response to phantom item “city→con”

given attributes α1 and α2, as shown in Table 1. In terms of the GDINA model, for

respondent n, yn“city” ≡ yn1 given αn1 is assumed to be conditional independent of

yn“city→con” ≡ yn6 given αn1 and αn2. The local independence between different phantom

items can also be reflected by (item-level) model-data fitting as shown in the results

below.
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Table 1

Q-matrix Created for PISA 2012 Problem-Solving Item TICKETS Task 2.
Item
Numbe
r

Phantom Items
Problem-solving Skills

α1 α2 α3 α4 α5

1 city 1 0 0 0 0
2 con 0 1 0 0 0
3 daily/trip4 0 0 1 0 0
4 cancel 0 0 0 1 0
5 buy 0 0 0 0 1
6 city→con 1 1 0 0 0
7 con→daily/trip4 0 1 1 0 0
8 city→con→daily/trip4 1 1 1 0 0
9 city→con→daily→cancel 1 1 1 1 0
10 daily→cancel 0 0 1 1 0
11 con→daily→cancel 0 1 1 1 0
12 daily/trip4→buy 0 0 1 0 1
13 con→daily/trip4→buy 0 1 1 0 1
14 city→con→daily/trip4→buy 1 1 1 0 1
Note: city = city subway, con = concession, ind = individual, other = number of
individual trips other than four, trip4 = four individual trips, α1 = understanding the
city subway and the correct train network, α2 = understanding that concession fares
were available, α3 = understanding that either a daily or four individual tickets allowed
them to travel four times around the city, α4 = comparing the two ticket prices to find
the cheapest, α5 = making a decision to buy.

Diagnostic Classification Analysis

The GDINA package was used to conduct diagnostic classification analysis on the

formatted process data. First, the test- and item-level model-data fit were examined to

determine whether the HO-GDINA model (Equations 1 and 3) fitted the data. For the

test-level model-data fit evaluation, the M2 root mean squared error of approximation

(RMSEA2) and the standardized root mean squared residual (SRMSR) (Maydeu-

Olivares, 2013) were calculated by the GDINA package. Specifically, RMSEA2 ≤ 0.05 and

SRMSR ≤ 0.05 indicated satisfactory approximate and absolute model fit (Maydeu-
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Olivares, 2013). For the item-level absolute model-data fit evaluation, the Fisher-

transformed correlation of item pairs (Chen et al., 2013) was used and the adjusted p-

value > 0.05 indicated adequate fit.

Typically, a misspecified Q-matrix may also cause model-data misfit in addition to

misfitted items. In this study, the proportion of variance accounted for (PVAF) method

(de la Torre & Chiu, 2016) was used for the Q-matrix validation. In addition, to explore

the empirical interactions between the five problem-solving skills, three reduced

models with different condensation rules were also fitted to the data: the HO-DINA

model with a conjunctive rule, the HO-DINO model with a disjunctive rule, and the

HO-ACDM with a compensatory rule. The relative model-data fit indices were

computed for each model to evaluate the relative model-data fit, including the Akaika

information criterion (AIC; Akaike, 1981), the Bayesian information criterion (BIC;

Schwarz, 1978), the consistent AIC (CAIC; Bozdogan, 1987), and the sample size

adjusted BIC (SABIC; Sclove, 1987). Likelihood ratio tests were also conducted given

that the three reduced models were nested within the HO-GDINA model.

Outcome Data Analysis

For the outcome data analysis, the partial credit model (PCM; Masters, 1982) was

fitted to the dataset using the full information maximum likelihood (FIML) with the

expectation-maximization (EM) computation algorithm (Bock & Aitkin, 1981) using the

TAM R package (Version 3.5-19; Robitzsch et al., 2020). We compared the estimated

higher-order latent ability (denoted as θ1) from the best fitting DCM and the estimated

unidimensional latent ability (denoted as θ2) from the PCM to explore their consistency

in reflecting respondents’ problem-solving abilities. Ability estimates from both models

were expected a posteriori (EAP) estimates. The correlation coefficient were computed.

Since there were several phantom items in the process data, but only one item in the

outcome data, it was expected that the standard errors of θ1s would generally be
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smaller than those of θ2s. In other words, the best fitting DCM could provide more

accurate problem-solving ability estimates than the PCM.

Results

Diagnostic Classification Analysis Results

The HO-GDINA model was first fitted to the formatted process data with the

original Q-matrix (see Table 1). The test-level model-data fit indices are presented in

Table 2. The RMSEA2 and SRMSR suggested adequate fit. Additionally, the model-data

fit became worse when using the revised Q-matrix based on PVAF. Combined with

expert judgement (e.g., Ravand, 2016), the original Q-matrix was used for the next step.

Table 2
Summary of Test-level Absolute Model–data Fit.
Q-matrix RMSEA2 [90% CI] SRMSR
Original 0.032 [0.025, 0.041] 0.033
Revised 0.085 [0.079, 0.091] 0.017
Note: Full = 14 phantom items, Reduced = 13 phantom items, M2 = M2 statistic, df =
degree of freedom, RMSEA2 = M2 root mean squared error of approximation, CI =
confidence interval, SRMSR = standardized root mean squared residual.

Item fit was further examined based on the HO-GDINA model. According to the

heatmap for the adjusted p-values of the transformed correlation presented in Figure A7

in the Appendix, the fifth phantom item (i.e., “buy”) was a misfit possibly because only

7% respondents did not conduct this action. However, the phantom item “buy” was

necessary for the identifiability of the DINA model (i.e., Q-matrix contained an identity

matrix) and was retained for subsequent analyses.

Table 3 presents the relative model-data fit indices for four models. Specifically,

AIC, BIC, CAIC, and SABIC all suggested the HO-DINA model to be the best fitting

model, and the likelihood ratio test showed that there was no significant difference

between the HO-DINA model and the HO-GDINA model. Therefore, the more
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parsimonious HO-DINA model was used in subsequence analyses. Such results

indicate that the interactions between problem-solving skills followed the conjunctive

condensation rule: only when the respondent had mastered all the required problem-

solving skills did the specific action sequence appear.

Table 3
Summary of Relative Model-data Fit.
Model #par –2LL AIC BIC CAIC SABIC χ2 df p-value
HO-
GDINA

92 16,951.31 17,135.31 17,708.67 17,800.67 17,416.33

HO-DINA 38 17,014.83 17,090.83 17,327.65 17,365.65 17,206.91 63.52 54 0.180
HO-DINO 38 31,304.61 31,380.61 31,617.44 31,655.44 31,496.69 14,353.31 54 <0.001
HO-ACDM 54 20,179.61 20,287.61 20,624.15 20,678.15 20,452.57 3,228.31 38 <0.001
Note: HO-GDINA = higher-order generalized deterministic-inputs, noisy “and” gate
model; HO-DINA = higher-order deterministic-inputs, noisy “and” gate model; HO-
DINO = higher-order deterministic-inputs, noisy “or” gate model; HO-ACDM = higher-
order additive cognitive diagnostic model; #par = number of estimated parameters; –
2LL = –2 log-likelihood; AIC = Akaike information criterion; BIC = Bayesian information
criterion; CAIC = Consistent AIC; SABIC = sample-size adjusted BIC; df = degree of
freedom; in the likelihood ratio tests, models were tested against the HO-GDINA model.

Table 4 presents the item parameter estimates based on the HO-DINA model. The

guessing parameter gi indicates the probability of performing action i for respondents

who did not master the problem-solving skills required for action i, while the slipping

parameter si indicates the probability of not performing action i for respondents who

have mastered the problem-solving skills required for action i. All item-level aberrant

responses probabilities were quite small except for phantom item “buy”, which means

that most items had a high discrimination parameter (i.e., IDIi). One possible reason for

the relatively high guessing probability of item 5 is that “to buy a ticket” was written on

the item description, thus, this action did not require much cognitive processes. Overall

speaking, high quality of the majority of the phantom items provide the necessary

guarantee for the high accuracy of diagnostic classification (de la Torre et al., 2010).
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Table 4
Phantom Item Parameter Estimates based on the HO-DINA Model.
Item Number Phantom Item gi si IDIi
1 city 0.054 (0.030) 0.000 (0.045) 0.946
2 con 0.021 (0.012) 0.000 (0.090) 0.979
3 daily/trip4 0.025 (0.010) 0.000 (0.090) 0.975
4 cancel 0.107 (0.008) 0.000 (0.181) 0.893
5 buy 0.442 (0.029) 0.000 (0.026) 0.558
6 city→con 0.016 (0.012) 0.000 (0.121) 0.984
7 con→daily/trip4 0.000 (0.015) 0.000 (0.170) 1.000
8 city→con→daily/trip4 0.000 (0.171) 0.001 (0.002) 0.999
9 city→con→daily→cancel 0.000 (0.358) 0.021 (0.004) 0.979
10 daily→cancel 0.015 (0.004) 0.000 (0.166) 0.985
11 con→daily→cancel 0.000 (0.354) 0.000 (0.009) 1.000
12 dail/trip4→buy 0.023 (0.007) 0.000 (0.043) 0.977
13 con→daily/trip4→buy 0.000 (0.192) 0.000 (0.002) 1.000
14 city→con→daily/trip4→buy0.000 (0.206) 0.009 (0.002) 0.991
Note: HO-DINA = higher-order deterministic-inputs, noisy “and” gate model; gi =
guessing parameter; si = slipping parameter; IDIi = phantom item discrimination index,
which equals to 1 – si – gi; standard errors in parenthesis.

Respondents’ latent classes, estimated by the HO-DINA model, were compared to

their observed item scores. As expected, there were multiple latent classes for each

observed score category. The number of respondents in the three observed score

categories (i.e., 2, 1, 0) in each latent class is shown in Table 5. The number of

respondents who received scores of 2, 1, and 0 were 1,093, 1,637, and 1,030, respectively.

By contrast, the theoretical number of all possible latent attribute patterns was 25 = 32,

given 5 latent attributes. Although only 26 latent attribute patterns were diagnosed in

this study, the number of latent classes was still larger than that of the observed score

category.

Table 5 shows the distribution of respondents and their latent attribute patterns

with respect to their observed score categories. Respondents who received a full credit
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of 2 were estimated to have mastered all the problem-solving skills (i.e., pattern = 11111,

n = 1,093), which was consistent with their observed score category.

For the respondents who received a partial credit of 1, the majority of them were

estimated to have mastered all the problem-solving skills except α4 (i.e., pattern = 11101,

n = 1,481), which was supposed to be the latent attribute pattern for respondents who

received a partial credit; that is, they made the correct decision to buy a ticket that

allowed them to travel around the city four times, but did not compare the prices

between tickets. A small proportion of respondents were estimated to have mastered all

the problem-solving skills (i.e., pattern = 11111, n = 156). By taking a closer look at their

actual sequential actions, we found that these respondents may have compared the

prices of a daily ticket and four individual trips, but still decided to buy the daily ticket,

which was more expensive.

Respondents who scored 0 (n = 1,030) were expected to have latent attribute

patterns other than 11111 (i.e., the pattern for the full credit respondents) and 11101 (i.e.,

the pattern for the partial credit respondents). This meant that, if they scored 0,

respondents did not understand what available tickets would allow them to travel

around the city in four trips and did not compare the prices of these options. The main

advantage of diagnostic classification analysis was that it can diagnose respondents’

erroneous problem-solving skill patterns. For example, 72 respondents were classified

as latent attribute pattern 01001, meaning that these respondents only understood the

concession fares (α2) and made the decision to buy (α5), but did not master other

problem-solving skills. One possible problem-solving process was that respondents

could choose to buy a single individual concession ticket for the country train, which

did not allow them to have four trips around the city. Furthermore, 157 respondents

were estimated to have the latent attribute pattern 11001, which indicated that they did

not understand that the ticket must allow them to travel four times around the city and

did not compare the prices of possible options. One such answer was that a respondent
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bought two individual concession fares for the city subway, which also did not allow

them to have four trips around the city. However, respondents with pattern 11001

mastered more problem-solving skills than respondents with pattern 01001, despite that

they all received 0 scores. This indicated that using the diagnostic classification analysis

method proposed in the current study provided a more fine-grained diagnosis of the

error types in respondents’ problem-solving processes than do the observed scores.

Additionally, although 3 respondents were estimated to have latent profile 11101, and

29 respondents were estimated to have latent profile 11111 in the current study, such

small amount of misclassification may have been due to estimation error, given that

only 14 phantom items were used in the diagnostic classification analysis.

Table 5
Distribution of Respondents’ Attribute Patterns with Respect to Their Observed Score Category.
Observed Score Category Latent Attribute Pattern Frequency
2 11111 1,093
1 11111 156

11101 1,481
0 00000 87

00001 22
00100 10
00101 39
00110 2
00111 1
01000 6
01001 72
01100 21
01101 88
01110 13
01111 2
10000 9
10001 29
10100 10
10101 107
10110 2
10111 6
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11000 19
11001 157
11010 6
11011 35
11100 98
11101 3
11110 157
11111 29

In addition, some supplementary diagnostic classification analysis results are

reported in the Appendix, including attribute mastery proportions (Table S1), attribute

pattern mixing proportions (Table S2), and attribute correlations (Table S3).

Furthermore, a sensitivity analysis was conducted to examine the impact of different

choices of phantom items in the construction of Q-matrix and formatted process data.

Specifically, two Q-matrices and formatted process datasets that included less or more

items than that used in the current study were constructed. More details can be found

in the section S1 in the Appendix. The results indicate that the classification results

remained similar to the original analysis in terms of the number of classes and the

number of respondents in each class.

Outcome Data Analysis Results

For the problem-solving ability estimate, the correlation coefficient between θ1s and

θ2s was 0.826 (p < 0.001). Such a significantly high positive correlation indicated that θ1

and θ2 were likely to measure the same latent construct. Additionally, Figure 3 displays

the smooth scatter plot for the problem-solving ability estimates using the HO-DINA

model and the PCM. It can be seen that the PCM estimated respondents’ problem-

solving ability as one of three values according to their item responses: scores of 0, 1,

and 2 were estimated to be -0.733, -0.012, and 0.709, respectively. By contrast, the HO-

DINA model can clearly showed the differences between respondents’ problem-solving

abilities, especially for respondents who scored 0. Furthermore, for the estimation
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standard error, the results of the dependent t-test with a one-tailed alternative

hypothesis showed that the average of the standard errors for θ1s were significantly less

than those for θ2s (t(3759) = -115.58, p < 0.001).

Figure 3
Smooth Scatter Plot for Problem-solving Ability Estimates using the HO-DINA model and the
PCM.

Note. Darker color indicates more respondents.

Reliability and Validity

When new methods are used to analyze existing data, the reliability and validity of

the analysis results should also be considered. In this study, the classification accuracy

index (Wang et al., 2015) was used for evaluating the reliability of classification results.

In addition, validity evidence was provided in the interpretation of the problem-solving

abilities and the problem-solving skill patterns obtained using the proposed method. In

sum, the proposed method can be used to assess problem-solving competence through

the process data analysis with adequate reliability and validity. More details can be

found in the section S2 in the Appendix.
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Conclusion and Discussion

To comprehensively understand respondents’ problem-solving competence

through the rich information contained in process data, this study proposed an item

expansion method from the perspective of diagnostic classification based on DCMs. In

the proposed method, action sequences for a specific CBA item were treated as

phantom items, and the problem-solving skills required to produce these action

sequences were treated as latent attributes. In such cases, original unformatted process

data can be transformed into formatted process data, and an additional Q-matrix can be

used in the application of DCMs. By incorporating the idea of diagnostic classification

into process data analysis, the proposed item-specific method cannot only estimate

respondents’ problem-solving ability along a continuum, but also classify respondents

according to their problem-solving skills. More importantly, the data analysis in the

proposed method can easily be handled by readily available software, which is very

practitioner-friendly.

To illustrate the application and advantages of the proposed method, a PISA 2012

problem-solving item (i.e., TICKETS task 2 (CP038Q01)), was used in this study. The

results indicated that (a) the estimated latent classes provided more detailed diagnoses

of respondents’ problem-solving skills than observed score classes; (b) although only

one item was used, the estimated higher-order latent ability could reflect respondents’

problem-solving ability more accurately than the estimated unidimensional latent

ability from the outcome data; and (c) the interactions between problem-solving skills

appeared to follow the conjunctive condensation rule. Furthermore, reliability of

classification was reported and validity evidence was provided for the problem-solving

ability and the problem-solving skill patterns, respectively. Overall, the main conclusion

drawn from this study was that using DCMs is a feasible and promising method for

analyzing process data and problem-solving competency measured by CBA items.
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Despite the promising findings, further studies are still needed. First, as an item-

specific method, the proposed method requires a deep understanding of respondents’

cognitive processes during problem-solving. A considerable amount of expert

judgement is required for the data preparation and Q-matrix construction. Thus, it may

be ‘expensive’ for applications in a large number of items (Tang et al., 2020). In future

research, we can try to integrate more generic automated methods (e.g., He & von

Davier, 2016; Tang et al., 2020) into the proposed method. Second, although the results

of this study have shown that even a single CBA item can be used to conduct a detailed

diagnostic analysis of problem-solving competence using the proposed method, a

means to carry out simultaneous analysis of multiple CBA items is still worth exploring

in the future. Third, this study has shown that, through item expansion, the applications

of DCMs can be extended from the item-level outcome data analysis to the action-level

process data analysis. Similarly, through item expansion, the applications of other

psychometric models (e.g., IRT models) can also be explored in the analysis of process

data, which deserves future research. Fourth, process data often includes time stamps of

the actions in addition to actions. The proposed method does not make use of this

information. Thus, future studies are needed to incorporate time information into the

current method. Fifth, given that the item analyzed in this study did not examine

problem-solving efficiency, we dichotomized all recurring actions. In future studies,

information about recurring actions can be considered in relation to problem-solving

efficiency. Sixth, background variables (Liao et al., 2019) were not considered in the

current method and future studies could explore the utilities of such auxiliary

information. Lastly, the CBA item (CP038Q01) used in this study only required one

problem-solving strategy that led to the correct response. In fact, by properly setting the

Q-matrix, the item expansion method can also be used for CBA items with multiple

problem-solving strategies. For example, we can first capture different problem-solving

skill patterns for different strategies and then retain action sequences required by
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different strategies in S*. The feasibility of the method needs to be validated using CBA

items allowing multiple problem-solving strategies in the future.

In sum, the work presented in this paper is an initial attempt to analyze action-level

process data from the perspective of diagnostic classification via an item expansion

method. It shows the great potential of using DCMs to analyze process data which can

provide more fine-grained diagnostic information on the respondents than using

outcome data alone.
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Online Appendix

A Diagnostic Classification Analysis of Problem-Solving Competence using Process Data:
An Item Expansion Method

Figure A1
Screenshot of Unformatted Process Data for One Student From the TICKETS Task2
(CP038Q01) in PISA 2012.



2

Figure A2
Screenshot of Formatted Process Data for Twenty Students.
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Figure A3
Screenshot for the TICKETS Task2 (CP038Q01) in PISA 2012 after Clicking on A Train
Network in Figure 2.

Figure A4
Screenshot for the TICKETS Task2 (CP038Q01) in PISA 2012 after Clicking on A Fare Type in
Figure A3.
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Figure A5
Screenshot for the TICKETS Task2 (CP038Q01) in PISA 2012 after Clicking on A Daily Ticket
Type in Figure A4.

Figure A6
Screenshot for the TICKETS Task2 (CP038Q01) in PISA 2012 after Clicking on An
Individual Ticket Type in Figure A4.



5

Figure A7
Item-level Absolute Model-data Fit.
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The attribute mastery proportions, attribute pattern mixing proportions, and

attribute correlations obtained from the HO-DINA model fitted to the formatted

process data with 3,760 respondents and 14 phantom items are presented in Tables S1,

S2, and S3, respectively. Based on Table S1, α4 (i.e., comparing the two ticket prices to

find the cheapest) was estimated to be mastered by the least respondents (39.9%), which

indicates that α4was the most difficult problem-solving skill given the current PISA

item. Further, the attribute pattern mixing proportions shown in Figure A8 indicate the

proportions of respondents in each estimated latent attribute pattern. It can be seen that

respondents were classified into more categories than their observed score categories.

Such fine-grained diagnostic classifications provide valuable remedial information to

the respondents. Lastly, the maximum likelihood polychoric correlation estimates

among the attributes were obtained using the polychor function in the “polycor” R

package (Fox, 2019), as shown in Table S2. All correlations were positive and

statistically significant except for the correlation between α4and α5, which was negative

and nonsignificant. This indicates that respondents who were able to make a decision to

buy tickets did not necessarily compared the tickets to find the cheapest one to buy.

Table S1
Attribute Mastery Proportions.

Attribute Attribute Mastery Proportions
α1 0.903
α2 0.914
α3 0.882
α4 0.399
α5 0.883

Note. α1 = understanding the city subway and the correct train network, α2 =
understanding that concession fares were available, α3 = understanding that either a
daily or four individual tickets allowed them to travel four times around the city, α4 =
comparing the two ticket prices to find the cheapest, α5 = making a decision to buy.
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Figure A8
Attribute Pattern Mixing Proportions.

Table S2
Attribute Correlations.

α1 α2 α3 α4
α2 0.715 (0.025)
α3 0.691 (0.025) 0.600 (0.030)
α4 0.619 (0.032) 0.654 (0.033) 0.536 (0.030)
α5 0.526 (0.032) 0.492 (0.034) 0.398 (0.035) -0.015 (0.034)
Note. α1 = understanding the city subway and the correct train network, α2 =
understanding that concession fares were available, α3 = understanding that either a
daily or four individual tickets allowed them to travel four times around the city, α4 =
comparing the two ticket prices to find the cheapest, α5 = making a decision to buy.
Numbers in parenthesis are standard errors.
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Section S1. Sensitivity Analysis

A sensitivity analysis was conducted to examine the impact of different choices

of phantom items in the construction of Q-matrix and formatted process data.

Specifically, Q-matrices and formatted process data that included less or more items

than that used in the current study were constructed. To be consistent with the main

study, HO-DINA model was fitted to the modified datasets. Then, the diagnostic

classification results obtained from the analyses were compared to that from the main

study.

Table S3 shows the reduced Q-matrix consisting of 11 phantom items, which

satisfied the minimum requirements for the identifiability of the DINA model, as

mentioned in the section “Item Expansion”. Table S4 shows the expanded Q-matrix

with 3 more items (i.e., con_ind_trip4, ind_trip4_cancel, ind_trip4_buy), which were

considered as either not reflecting the latent construct or duplicated from existing items.

Table S4 shows the diagnostic classification results from the two modified Q-matrices

and formatted process data. We can see that the classification results remained similar

to the original analysis in terms of the number of classes and the number of respondents

in each class. It is worth noting that reduced Q-matrix led to slight misclassifications

among the respondents. Therefore, we recommend to keep all phantom items that are

believed to reflect the latent construct.
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Table S3
Reduced Q-matrix Created for PISA 2012 Problem-solving Item TICKETS Task 2.
Item
Numbe
r

Phantom Items
Problem-solving Skills

α1 α2 α3 α4 α5

1 city 1 0 0 0 0
2 con 0 1 0 0 0
3 daily/trip4 0 0 1 0 0
4 cancel 0 0 0 1 0
5 buy 0 0 0 0 1
6 city→con 1 1 0 0 0
7 city→con→daily/trip4 1 1 1 0 0
8 daily→cancel 0 0 1 1 0
9 con→daily→cancel 0 1 1 1 0
10 daily/trip4→buy 0 0 1 0 1
11 con→daily/trip4→buy 0 1 1 0 1

Note: city = city subway, con = concession, ind = individual, other = number of
individual trips other than four, trip4 = four individual trips, α1 = understanding the
city subway and the correct train network, α2 = understanding that concession fares
were available, α3 = understanding that either a daily or four individual tickets allowed
them to travel four times around the city, α4 = comparing the two ticket prices to find
the cheapest, α5 = making a decision to buy.
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Table S4
Expanded Q-matrix Created for PISA 2012 Problem-solving Item TICKETS Task 2.
Item
Numbe
r

Phantom Items
Problem-solving Skills

α1 α2 α3 α4 α5

1 city 1 0 0 0 0
2 con 0 1 0 0 0
3 daily/trip4 0 0 1 0 0
4 cancel 0 0 0 1 0
5 buy 0 0 0 0 1
6 city→con 1 1 0 0 0
7 con→daily/trip4 0 1 1 0 0
8 city→con→daily/trip4 1 1 1 0 0
9 city→con→daily→cancel 1 1 1 1 0
10 daily→cancel 0 0 1 1 0
11 con→daily→cancel 0 1 1 1 0
12 daily/trip4→buy 0 0 1 0 1
13 con→daily/trip4→buy 0 1 1 0 1
14 city→con→daily/trip4→buy 1 1 1 0 1
15 con→ ind→trip4 0 1 1 0 0
16 ind→trip4→cancel 0 0 1 1 0
17 ind→trip4→buy 0 0 1 0 1

Note: city = city subway, con = concession, ind = individual, other = number of
individual trips other than four, trip4 = four individual trips, α1 = understanding the
city subway and the correct train network, α2 = understanding that concession fares
were available, α3 = understanding that either a daily or four individual tickets allowed
them to travel four times around the city, α4 = comparing the two ticket prices to find
the cheapest, α5 = making a decision to buy.
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Table S5
Diagnostic Classification Results from the Sensitivity Analyses Compared to Original Results

Observed Score
Category

Latent Attribute
Pattern Frequency

Original
Q

Reduced
Q

Expanded
Q

2 11111 1,093 1,093 1,093
1 11111 156 176 156

11101 1,481 1,461 1,481
0 00000 87 87 87

00001 22 22 22
00100 10 10 10
00101 39 39 39
00110 2 1 2
00111 1 1 1
01000 6 6 6
01001 72 72 72
01100 21 19 21
01101 88 81 88
01110 13 8 13
01111 2 7 2
10000 9 9 9
10001 29 29 29
10100 10 10 10
10101 107 107 107
10110 2 4 2
10111 6 5 6
11000 19 19 19
11001 157 158 157
11010 6 6 6
11011 35 26 35
11100 98 92 98
11101 3 12 3
11110 157 160 156
11111 29 40 30
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Section S2. Reliability and Validity

When new methods are used to analyze existing data, the reliability and validity of

the analysis results should also be considered. In this study, the classification accuracy

(Pa) index (Wang et al., 2015) was used for evaluating the reliability of classification

results. In addition, validity evidence was provided in the interpretation of the

problem-solving abilities and the problem-solving skill patterns obtained using the

proposed method (see Reliability and Validity.R in the shared code).

Reliability of Classification. Pa index refers to the degree to which a respondent’s

classification estimate matches his/her true latent class. According to Ravand and

Robitzsch (2018), values of at least 0.8 for the Pa index can be considered as acceptable

classification rates. As shown in Table S6, both test- and attribute-level classification

accuracies were within the acceptable range. Therefore, the results indicate adequate

reliability of classification obtained from the proposed method.

Table S6
Classification Accuracy for the HO-DINA Model.

Attributes- or Test-level Accuracy Classification Accuracy (Pa)
A1 0.998
A2 0.999
A3 0.999
A4 0.995
A5 0.987

Test-level 0.981

Validity evidence for problem-solving ability. Validity evidence for problem-solving

ability was based on its relations to other variables (AERA et al., 2014). First, item

responses for five problem-solving items CP025Q01, CP025Q02, CP038Q01, CP038Q02,

CP038Q03 from these 3,760 respondents were analyzed using IRT models to show the

consistency between the problem-solving ability estimates obtained from the proposed
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method (denoted as θ1) and those obtained from the IRT models (denoted as θG).

Specifically, the former is the problem-solving ability regarding the targeted cognitive

process (i.e., exploring and understanding) and the latter is the general problem-solving

ability regarding all four measured cognitive processes in PISA 2012 (i.e., exploring and

understanding, planning and executing, monitoring and reflecting, and representing

and formulating). These five problem-solving items, including 3 polytomously scored

items and 2 dichotomously scored items, were analyzed using the PCM and the Rasch

model (Rasch, 1960), respectively. The correlation coefficient between θ1s and θGs was

0.674 (p < 0.001). Such a significantly positive correlation indicates that there was a high

consistency between θ1 and θG, but they can still be distinguished because of the

different latent constructs being measured.

Second, statistically significant correlations among problem-solving, math, and

reading abilities would support the validity of the problem-solving abilities estimated

from the proposed method based on existing studies (e.g., Öztürk et al., 2020). In the

sample of 3,760 respondents, 2,594 respondents who had both math and reading scores

were retained in the correlation analysis of their problem-solving abilities and

reading/math abilities (see cogsdata.rds in the shared code). In PISA 2012, there were 84

math items, among which 8 items were polytomously scored and 76 items were

dichotomously scored. There were 44 reading items, among which 1 item was

polytomously scored and 43 items were dichotomously scored.

Then, the math items and reading items were calibrated separately using the Rasch

model and the PCM. Missing responses were accommodated by FIML. The math and

reading ability estimates were further obtained using IRT scoring. The problem-solving

ability θ1s obtained from the proposed method were further correlated with math and

reading ability estimates, respectively.

As a result, the correlation between the problem-solving ability estimates θ1s and

the math ability estimates was 0.444 (p < 0.001). The correlation between the problem-
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solving ability estimates θ1s and the reading ability estimates was 0.326 (p < 0.001).

These results are consistent with the results from existing studies (e.g., Öztürk et al.,

2020). Therefore, these results supported that the problem-solving ability estimates

obtained from the proposed methods were valid.

Validity evidence for problem-solving skill pattern. As aforementioned, Table 5 in the

main text shows the distribution of respondents and their latent attribute patterns with

respect to their observed score categories. The consistency between the latent attribute

patterns and their observed score categories suggested the score validity from the

proposed method. In addition, k-means and SOMwere used to cross validate the

classification results from the proposed method. Specifically, the k-means was carried

out using the kmeans function in the R package stats (Version 4.0.3) with maximum

iterations allowed equal to 10. The SOM was carried out using the R package kohonen

(Version 3.0.10). The learning rate of the SOM declined from 0.05 to 0.01 over 2000

iterations. The phantom item response matrix was used as input data. The number of

clusters was set at both the number of observed scores (i.e., 3 score categories) and the

number of latent attribute patterns obtained from the DCM (i.e., 26 latent classes). It is

expected that the number of latent attribute patterns is more than the number of

observed scores, thus, showing more fine-grained diagnostic classification information

on students’ problem-solving skills. Consistency between the classification results from

the DCM and the unsupervised data mining methods indicates the validity of the

proposed method.

The results of the two unsupervised data mining methods (i.e., k-means and SOM)

with 3 clusters based on 3 observed score categories (i.e., 0, 1, 2) are shown in Table S7.

It can be seen that the classification results are consistent between the two data mining

methods. In addition, these results are also consistent as those obtained from the

proposed method shown in the Table 5 in the main text. The results of the two

unsupervised data mining methods with 26 clusters (i.e., the number of latent attribute
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pattens from the DCM) were also obtained and are presented in Table S8. The

classification results were consistent among the two data mining methods and the

proposed method in general. Specifically, the numbers of students in cluster 1 in both

data mining methods were the same as the number of students who mastered all

attributes (i.e., latent attribute pattern = 11111) in the score category 2. Although the

classification results are not exactly the same for students in score categories 1 and 0

among the methods due to their inherent differences and estimation errors, consistency

can be found to some extent. In addition, the proposed method based on DCM is more

advantageous than unsupervised data mining methods in that it has readily

interpretable latent attribute patterns while the clusters obtained from unsupervised

data mining methods require further labeling. Therefore, the proposed method can

provide both valid and interpretable diagnostic classifications on students’ problem-

solving skills.

In sum, we have provided validity evidence related to the purpose of the proposed

method based on the available data from PISA. All the evidence indicates that the

proposed method has the capability to assess problem-solving competence.

Table S7
Results from k-means and SOM with 3 Clusters with Respect to Their Observed Score Category.

Observed Score Category
k-means Clusters SOM Clusters

1 2 3 1 2 3
2 1,093 0 0 1,093 0 0
1 156 1,481 0 156 1,481 0
0 194 9 827 189 9 832

Note, results are obtained based on fixed random seed in R: set.seed(1234).
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Table S8
Results from k-means and SOM with 26 Clusters with Respect to Their Observed Score
Category.
Observed Score Category Cluster k-means SOM

2 1 1,093 1,093
1 1 130 130

2 156 156
3 1,305 1,305
4 46 26
5 0 20

0 1 28 5
2 3 3
3 0 0
4 1 1
5 4 1
6 6 0
7 7 0
8 8 0
9 9 8
10 11 11
11 13 14
12 16 15
13 16 17
14 19 19
15 22 29
16 25 32
17 39 35
18 44 45
19 54 54
20 73 57
21 77 78
22 78 80
23 92 94
24 100 110
25 102 114
26 183 208

Note, results are obtained based on fixed random seed in R: set.seed(1234).
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