Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
**Data** `data.Rdata` ld trial data. Input for the frequency and priming analysis. 448140 lines, word trials only. variables: (27) - subject (subject index) - spelling (item spelling) - lab (lab) - lexicality (word/nonword) - target - cond (priming condition, numeric index) - cond.digits (priming condition, numeric label) - cond.label (priming condition, verbal label) - RT (cleaned RT in milliseconds) - correct - lower (lower RT boundary for this participant) - upper (upper RT boundary for this participant) - freq.uk (raw uk frequency) - zipf.uk (uk zipf score) - freq.us (raw uk frequency) - zipf.us (uk zipf score) - aoa (age of acquisition) - translation (dutch translation) - distance (levenstein distance between an item and its dutch translation / item length) - is.cognate (dutch-english cognate or not) - dutch_neighbors (n of dutch neighbors) - dutch_neighborhood_frequency (summed frequency of the dutch neighbors) - english_neighbors (n of english neighbors) - english_neighborhood_frequency (summed frequency of the english neighbors) - spelling.test (spelling test score per subject) - vocab.test (vocab test score per subject) - language (first/second language subject) **Priming analysis** `priming_fits.R:` - fit the models for the priming analysis (running time ~ 2 days) - input: `data.Rdata` - output: `priming_fits.Rdata` `priming_fits.Rdata:` - fitted model objects `priming_report.R` - report of the priming analysis - input: `priming_fits.Rdata` **Frequency effect analysis** `frequency_fit.R` - fit the models for the frequency analysis (running time ~ 1 week) - input: `data.Rdata` - output: `frequency_fit.Rdata` `frequency_report.R` - report (mostly adjusted anava tables) for the frequency analysis - input: `frequency_fit.Rdata` `frequency_plots.R` - plots for the frequency analysis - input: `frequency_fit.Rdata` - output: `plots` **Diffusion model analysis** `diffusion.R` - Analysis of the diffusion model parameters - Parameter estimates are made per participant using the fastdm program