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Abstract 32 

Theories of moral development propose that empathy is transmitted across 33 

individuals, yet the mechanism through which empathy is socially transmitted 34 

remains unclear. We conducted three studies to investigate whether, and if so, how 35 

observing empathic responses in others affects the empathy of the observer. Our 36 

results show that observing empathic or non-empathic responses generates learning 37 

signals that respectively increases or decreases empathy ratings of the observer and 38 

alters empathy-related responses in the anterior insula (AI), i.e., the same region that 39 

correlated with empathy baseline ratings, as well as its functional connectivity with 40 

the temporal-parietal junction (TPJ). Together, our findings provide a 41 

neurocomputational mechanism for the social transmission of empathy that accounts 42 

for changes in individual empathic responses in empathic and non-empathic social 43 

environments.  44 

 45 

Teaser: 46 

Observing empathic and non-empathic reactions elicits learning that changes the 47 

subjective and neural empathy of the observer.  48 

 49 

50 
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Introduction 51 

Empathy – the ability to share the feelings and thoughts of others – can spread across 52 

individuals (1). Supporting this notion, there is evidence that self-reported empathy 53 

increases if empathy is highly valued by others (2, 3), and when watching empathic 54 

responses of others (4). However, these proofs of principle were unable to elucidate 55 

the mechanisms through which empathy is socially transmitted.  56 

An influential but untested theory suggests that the social transmission of 57 

empathy is based on a learning process that is triggered by observing the empathic 58 

reactions of others (“empathic conditioning”(5). According to observational learning 59 

theory (6), individuals learn from the differences between empathic responses they 60 

observe in others and the empathic response they expected to see in others. The 61 

mismatch between the observed and expected responses generates so called 62 

observational prediction errors that are known to drive learning-related changes in the 63 

actions of the observer (7–9). Here, we investigate whether humans can learn to 64 

increase or decrease empathy by observing that others show more or less empathy 65 

than predicted.  66 

Neurally, observational learning signals have been associated with activation of 67 

the mirror neuron system, including the dorsolateral prefrontal cortex (dlPFC), and 68 

premotor cortex, as well as the mentalizing network, including the temporal parietal 69 

junction (TPJ), dorsal medial prefrontal cortex (dmPFC), and anterior temporal lobe 70 

(ATL) (7–11). Using brain stimulation and computational modeling, a recent study 71 
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suggested that disruption of the left TPJ weakens participants’ choice adjustment 72 

when confronted with dissenting information from others (12). A possible 73 

interpretation of this finding is that reduced TPJ activation results in reduced social 74 

influence on learning.  75 

So far, learning based on observational prediction errors has been associated with 76 

the social transmission of fear (13–15), value-based decision making (7, 8, 16) and the 77 

propensity to take or avoid risks (9). However, it remained unclear whether, and if so, 78 

how observing empathic reactions to the pain of others affects learning of empathic 79 

responses in the observer.  80 

To address this question, we developed an observational-learning-of-empathy 81 

paradigm, which we combined with functional magnetic resonance imaging (fMRI) 82 

and computational modelling (Study 1). The behavioral results of Study 1 were 83 

substantiated by the results of a behavioral control study (Study 2) and replicated in 84 

an independent behavioral study (Study 3).   85 

All studies consisted of three parts: a baseline session in which we assessed 86 

participants’ empathy ratings independently of any experimental manipulation, an 87 

observational empathy learning session, and a generalization session that aimed to test 88 

whether potential learning-related changes in empathy ratings generalize to 89 

individuals that were not part of the learning session (Figure 1A). In the baseline and 90 

the generalization session, participants rated their empathy when observing videos 91 

showing painful or non-painful stimulation in others (Figure 1B). In the observational 92 



5 

 

empathy learning session, participants witnessed the reactions of a demonstrator to the 93 

pain of a recipient and were randomly assigned to two groups, a high and a low 94 

empathy group. In the high empathy group, participants observed strong empathic 95 

reactions whereas in the low empathy group, participants observed weak empathic 96 

reactions to the same pain inflicted on the recipient. In the high empathy group, the 97 

demonstrator’s ratings of the recipient’s pain were consistently higher than the 98 

participant’s baseline ratings, indicating a stronger empathic reaction than the 99 

participant’s empathy baseline. In the low empathy group, the demonstrators’ ratings 100 

of the recipient’s pain were consistently lower than the participant’s baseline ratings, 101 

indicating a weaker empathic reaction compared to the participant (see Methods for 102 

details). In two of the studies, the observed ratings reflected the reactions of a human 103 

demonstrator (Studies 1 and 3), whereas in a third, control study, the observed ratings 104 

were from a computer (Study 2). After observing high or low empathic reactions, 105 

participants rated how they themselves felt when watching pain in the recipient 106 

(Figure 1C).  107 
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 108 

Figure 1. Experimental setup. (A) The main experiment consisted of the baseline 109 

session, observational empathy learning session and the generalization session. In 110 

each session, participants viewed video clips of different recipients receiving 111 

electrical stimulation. The mean pain intensity ratings were comparable across 112 

recipients indicated by a pilot stimulus validation study (Figure S2). (B) During the 113 

observational learning session, participants observed ratings of two demonstrators 114 

(Study 1 and Study 3: human demonstrators; Study 2: computer demonstrators). The 115 

ratings of these demonstrators were generated by a pre-defined algorithm, based on 116 

the participant empathy ratings in the baseline session (Empathy(t0)) as well as the 117 

experimental group the participant was assigned to (i.e., high empathy or low 118 

empathy group). (C) Example trial of the observational-learning-of-empathy task. 119 

Each trial started with an observation phase, followed by a self-rating phase. In the 120 

observation phase, the participants observed the ratings of another person 121 

(demonstrator) who watched and reacted to the painful stimulation inflicted on a 122 

recipient. The observation phase started with an arrow, followed by a lightning bolt 123 

cue that indicated the intensity of the recipient’s pain (bright color indicating painful, 124 

dark color indicating non-painful stimulation) and a video showing the recipient 125 

receiving the respective stimulation. Participants were asked to predict the ratings of 126 

the demonstrator for this specific video on a scale from zero (predicting that the 127 

demonstrator would feel nothing when seeing the other in pain) to hundred (predicting 128 
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that the demonstrator would feel extremely bad when seeing the other in pain). At the 129 

end of the observation phase, the actual rating of the demonstrator was shown. The 130 

self-rating phase started with an arrow pointing to the participant. Next, they viewed 131 

the cue indicating the intensity of the recipient’s stimulation, watched the video 132 

showing the stimulation of the same recipient as in the observation phase, and rated 133 

how they felt after seeing the stimulation of the recipient (from zero – not feeling 134 

anything, to hundred – feeling extremely bad). The trial structure of the control study 135 

(Study 2) was identical, except that we presented computer-generated ratings in the 136 

observation phase. 137 

 138 

We hypothesized that observing others would increase the observer’s empathy 139 

(as measured by ratings) in the high empathy group and decrease it in the low 140 

empathy group. The change in empathy ratings should be driven by learning signals, 141 

specifically, observational prediction errors, referring to the discrepancy between the 142 

predicted and observed empathy ratings. If the change in empathy is specific to the 143 

observational learning from another human, the learning-related changes in empathy 144 

ratings should be stronger after observing empathy ratings generated by human 145 

demonstrators (Studies 1 and 3) compared to computer-generated ratings (Study 2). 146 

On the neural level, learning others’ empathy responses might be related to 147 

activations in the brain regions that were shown to be involved in observational 148 

learning and the processing of social influence, including the dlPFC and dmPFC, the 149 

premotor cortex, (7, 8, 10, 11), and the TPJ (12, 16). Inspired by previous evidence 150 

showing that learning from own experiences about others changes empathy-related 151 

responses in the anterior insula (AI) (17), we further hypothesized that the learning-152 

related changes in empathy may alter the interaction between regions encoding the 153 

observational learning signals and the AI.  154 
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Results 155 

1. Manipulation checks across studies 156 

One would expect that participants’ emotion ratings when observing the pain of others 157 

would relate to trait empathy. To test this, we used a regression model with the 158 

average ratings in the baseline rating session for painful videos of all three studies as 159 

dependent variable and participants score on the Interpersonal Reactivity Index (IRI, 160 

(18)), study (studies 1, 2, and 3), and study x IRI score as predictors. This analysis 161 

revealed a significant effect of IRI score (β = 0.23, t = 2.87, p = 0.005), but no 162 

significant effects of study (β =-0.03, t = -0.34, p = 0.74) and study x IRI score (β = 163 

0.08, t = 0.87, p = 0.38), indicating that across studies, the emotion ratings elicited by 164 

watching the painful stimulation of recipients were similarly related to trait empathy.  165 

As a second manipulation check, we assessed the expectation that observing high 166 

and low empathic responses should differently change participants’ impressions of the 167 

demonstrator. To test this, we used the pre- and post-learning impression scores (17, 168 

19) of Studies 1 and 3 (i.e., the studies including human demonstrators) as dependent 169 

variable and study (study1, study3), group (high, low empathy) and time (pre-, post-170 

learning experiment) as predictors. We found a significant group x time interaction (β 171 

= 0.84,t = 2.42, p = 0.02), which occurred similarly for Study 1 and Study 3 (β = -172 

0.08,t = -0.16, p = 0.87). While participants’ impressions towards the demonstrators 173 

did not differ between the high and low empathy groups before the experiment (β = 174 

0.07,t = 0.36, p = 0.72), their impression ratings towards the demonstrators were 175 
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more positive in the high compared to the low empathy group after the experiment (β 176 

= 0.91,t = 3.20, p = 0.002). This demonstrates that our experimental manipulation 177 

(observing empathic vs non-empathic responses) had an influence on how participants 178 

perceived the demonstrators, thus, validating the social manipulation. 179 

2. Results of the fMRI study 180 

2.1 Regression (model-independent) analyses of behavior 181 

In the observation phase, participants predicted the empathy ratings of the 182 

demonstrator. Entering these prediction ratings as dependent variable in a linear 183 

mixed model (LMM) with group (high empathy, low empathy), trial number and 184 

group × trial number as predictors revealed a significant group × trial number 185 

interaction (χ2(1) = 26.04, p < 0.001), indicating that participants expected increasing 186 

empathy ratings of the demonstrators in the high (χ2(1) = 3.88, p = 0.05) and 187 

decreasing empathy ratings in the low empathy (χ2(1) = 27.58, p < 0.001) group 188 

(Figure 2A).  189 

Next, we analyzed participants’ own empathy ratings from the self-rating phase. 190 

An LMM with group (high empathy, low empathy), trial number and group × trial 191 

number as predictors revealed a significant group × trial number interaction (χ2(1) = 192 

39.57, p < 0.001), indicating an increase in participants’ empathy ratings in the high 193 

(χ2(1) = 5.44, p = 0.02) and a decrease in empathy ratings in the low empathy group 194 

(χ2(1) = 41.60, p < 0.001). Similarly, a LMM with group (high empathy, low 195 

empathy), session (baseline, observational empathy learning (1-4) and generalization, 196 
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coded as 0-5 respectively), and group × session as predictors and the average of 197 

participants’ empathy ratings in the respective session as the dependent variable 198 

showed a significant group × session interaction (χ2(1) = 116.5, p < 0.001, Figure 199 

2B). There was a trend towards a difference in baseline empathy ratings between the 200 

low and high empathy group (t(50) = 1.87, p = 0.067). Separate analyses then showed 201 

a significant increase in empathy ratings across sessions in the high empathy group 202 

(χ2(1) = 101.3, p < 0.001, Figure 2B), and a significant decrease in empathy ratings 203 

across sessions in the low empathy group (χ2(1) = 40.40, p < 0.001, Figure 2B).  204 

The observed changes in participants’ empathy ratings might be driven by social 205 

desirability and the wish to conform with the ratings of the demonstrators, and 206 

influenced by empathy baseline ratings. To evaluate the influence of social 207 

desirability and conformity on the change in empathy ratings during learning, we 208 

calculated the individual scores measured from social desirability (SDS-17; (20)) and 209 

conformity scales (21) for the high and low empathy group separately. We then 210 

conducted a regression analysis with the change in empathy ratings between baseline 211 

and generalization sessions as dependent variables, and the individual scores on social 212 

desirability and conformity scales as predictors. We also included the averaged 213 

baseline empathy ratings as predictor to check whether individual differences in 214 

empathy baseline ratings account for group differences in subsequent empathy 215 

changes. The analyses revealed no significant effects (Table S1, ps > 0.31), rendering 216 

the possibility unlikely that the individual changes in empathy ratings were driven by 217 
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individual differences in social desirability and conformity or by baseline differences 218 

in empathy. Together, these results show that participants shifted their empathy 219 

ratings towards the ratings of the demonstrators, that these changes could not be 220 

explained by social desirability and that they were preserved even when participants 221 

were no longer presented the demonstrators’ ratings (i.e., generalization session).  222 

 Participants also reported how much pain they thought the person in the video 223 

clip was experiencing and how much time they were willing to spend in order to help 224 

the pain recipient before and after the experiment. Consistent with the change in 225 

empathy ratings, participants in the high empathy group evaluated the intensity of the 226 

pain experienced by the recipient as significantly stronger (M = 7.1 vs. 6.4, t(25) = 227 

2.71 , p = 0.01, Figure 2C) and were willing to spend more time to help the recipient 228 

after learning (M = 26.1 min vs. 20.8 min, t(25) = 4.16, p < 0.001, Figure 2C) 229 

compared to before learning. In contrast, there were no such learning-related changes 230 

in the low empathy group (pain intensity: M = 6.8 vs. 6.7, t(25) = 0.46,  p = 0.65; 231 

prosocial tendency: M = 26.5 min vs. 24.7 min, t(25) = 0.7, p = 0.49, Figure 2C). 232 

Finally, in both groups, the difference in empathy ratings between the baseline and the 233 

generalization session predicted the individual pre-to-post difference in the 234 

willingness to spend time in order to help the recipient (high and low empathy group 235 

combined: rho = 0.345, p = 0.012; high empathy group only, rho = 0.407, p = 0.039; 236 

low empathy group only, rho = 0.392, p = 0.048, Figure 2D). Together, these results 237 

suggest that observing the empathic reactions of the demonstrators changed the 238 
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predictions and empathy ratings of the observer. Moreover, changes in empathy 239 

ratings influenced participants’ willingness to invest time in order to help the 240 

recipient.  241 

  242 

 243 

Figure 2. Observation-induced changes in predictions, empathy ratings, and 244 

willingness to spend time to help after learning. (A) Predictions of demonstrator 245 

ratings in the observation phase (mean across participants) increased in high empathy 246 

(black dots) but decreased in low empathy (white dots) groups across trials. (B) 247 

Averaged empathy ratings in each session of the experiment show an increase in the 248 

high empathy group, and a decrease in the low empathy group. (C) Average pain 249 

intensity ratings and willingness to spend time to help the recipient increased in the 250 

high empathy group after learning. (D) In both groups, the change in empathy rating 251 

from the baseline to the generalization session was related to participants’ willingness 252 

to spend time to help the recipient.  253 

 254 

2.2 Reinforcement learning model-based analyses of behavior  255 

Having demonstrated that participants changed their empathy ratings after observing 256 

the ratings of others, we next sought to examine the computational mechanisms 257 
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supporting these changes. We first modelled participants’ trial-by-trial predictions of 258 

demonstrator ratings using a Rescorla-Wagner reinforcement-learning model (22). 259 

The model fitted the data adequately for both the high and low empathy groups (r2 260 

(mean ± SD) = 0.22 ± 0.21 and 0.27 ± 0.21; Figure 3A and 3B, see Materials and 261 

methods for details). The estimated learning rate was comparable for high and low 262 

empathy groups (ߙ: t(50) = -0.179, p = 0.859, 95% CI = [-0.08, 0.07], Table S2), 263 

suggesting that participants learned to predict the ratings of empathic and non-264 

empathic demonstrators similarly well. 265 

Next, we modeled trial-by-trial update of participants’ empathy ratings as a 266 

linear function of the cumulative impact of observational prediction errors (19, 23, 267 

24), as estimated by the reinforcement learning model. Bayesian model selection was 268 

used to identify the model that was most probable to generate the data, based on 269 

Laplace approximation (see Materials and methods for details). The winning model 270 

(Equation 5, Model 3, XP: 1) successfully captured dynamic changes of empathy 271 

ratings at the individual level for both high (r2 = 0.19 ± 0.14) and low (r2 = 0.24 ± 272 

0.12) empathy groups (Figure 3D). The winning model (Equation 5, Model 3) 273 

assumes that the empathy ratings of participants for each trial t are driven by the time-274 

discounted sum of previous observational prediction error. It considers the empathy 275 

ratings in the first half and second half of the learning session separately and adds up 276 

separately modeled positive and negative observational prediction errors. 277 
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In this model, two parameters (W1 and W2) capture the magnitude (weight) of 278 

the influence of observational prediction errors on changes in participants’ empathy 279 

ratings in the first and second half of the observational learning session. The weights 280 

are separated by the sign of the observational prediction errors (indicated by the 281 

pos/neg subscript). A larger W corresponds to a stronger influence of observational 282 

prediction errors on participants’ empathy ratings. The discount parameter γ (0 ≤ γ ≤ 283 

1) captures an exponentially decaying influence of previous observational prediction 284 

errors over time, such that more recent observational prediction errors have a greater 285 

impact on the changes in empathy ratings than earlier observational prediction errors. 286 

If γ is close to one, all preceding observational prediction errors receive the same 287 

weight, and if it is close to zero, only the last observational prediction error leads to 288 

subsequent changes in empathy ratings.  289 

We fitted the empathy ratings separately for the high and the low empathy group. 290 

For the high empathy group, the weight parameters on positive observational 291 

prediction errors were significantly larger than zero (W1pos: t(25) = 6.79, p < 0.001; 292 

W2pos: t(25) = 6.12, p < 0.001, Figure 3E, Table S2), whereas the weight parameters 293 

on negative observational prediction errors were not different from zero (ts > -1.94, 294 

ps > 0.06, Figure 3E , Table S2). By contrast, the weight parameters on negative 295 

observational prediction errors were significantly larger than zero in the low empathy 296 

group (W1neg: t(25) = 3.23, p = 0.003; W2neg: t(25) = 4.34, p <  0.001, Figure 297 

3F,Table S2), whereas the weight parameters on positive observational prediction 298 



15 

 

errors were not different from zero (ts > -1.87, ps > 0.07, Figure 3F ,Table S2). 299 

These results suggest that participants in the high and low empathy groups were 300 

predominantly influenced by the positive and negative observational prediction errors, 301 

respectively. We also checked the relationships between the weight parameters and 302 

the individual scores on social desirability and conformity scales. The analyses 303 

revealed no significant effects (ps > 0.16), providing little support for the notion that 304 

individual weights on observational prediction errors were influenced by individual 305 

differences in social desirability and conformity.  306 

 Next, we correlated the weight parameters with the change in empathy ratings 307 

across participants. The respective weight parameters in the first half of the learning 308 

session (i.e., W1pos for the high empathy group and W1neg for the low empathy group) 309 

were significantly associated with the increase in empathy rating in the high empathy 310 

group (rho = 0.39, p = 0.047, Figure 3G) and the decrease in empathy rating in the 311 

low empathy group (rho = -0.50, p = 0.009, Figure 3H), whereas the weight 312 

parameters in the second learning session were not (ps > 0.154). These results suggest 313 

that the weight of the observational prediction errors in the first half of the learning 314 

experiment majorly drives the overall changes in empathy ratings. 315 
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 316 

Figure 3. Computational models explain predictions and changes in empathy 317 

ratings. (A and B) Predictions of human demonstrator ratings (light blue line, shaded 318 

area represents the ±1 standard error) increased in the high empathy and decreased in 319 

the low empathy group, and our learning model explained these changes (dark blue 320 

line). (C and D) Trial-by-trial changes of empathy ratings (light grey, shaded area 321 

represents the ±1 standard error) and corresponding model estimates (dark grey) for 322 

the high and the low empathy groups. The model estimates illustrate the best-fitting 323 

model. (E and F) The value of the weight parameters for high (E) and low (F) 324 

empathy groups. The weight parameters for positive (negative) observational 325 

prediction errors were significantly larger than zero in high (low) empathy groups. (G 326 

and H) The weight parameters in the first half of the learning experiment (i.e., W1) 327 

significantly correlated with the change in empathy ratings across participants for 328 

both high and low empathy groups.  329 

 330 

2.3 Neuroimaging results 331 

Our fMRI data analyses focused on the neural mechanisms underlying the 332 

observational learning of empathy. As a manipulation check, we first examined the 333 

neural signals that significantly correlated with the trial-by-trial empathy rating when 334 

viewing the videos in the baseline session (i.e., before learning). Whole-brain 335 

analyses across all participants revealed activations in the dorsal medial cingulate 336 

(dMCC), bilateral anterior insula (AI), and the bilateral temporal parietal junction 337 
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(TPJ, Figure 4A), replicating the results of previous neuroimaging studies on the 338 

neural basis of empathy for pain (25–30).  339 

Then, we investigated brain regions encoding observational prediction errors as 340 

identified by our computational model. Specifically, we regressed trial-by-trial 341 

observational prediction errors from the winning model as parametric modulator 342 

against neural activity when the ratings of demonstrators were revealed. In the high 343 

empathy group, the trial-wise observational prediction errors were related to 344 

activation in the dorsal medial prefrontal cortex (dmPFC) (Figure 4B; Table 1A), 345 

such that dmPFC activation was stronger when demonstrator ratings were higher than 346 

expected. In the low empathy group, we only observed significant neural responses 347 

with the inverse observational prediction errors, reflected by an increase of activation 348 

in the bilateral premotor cortex, the medial cingulate cortex (MCC), and the anterior 349 

insula (AI) when demonstrator ratings were lower than expected (Figure 4C; Table 350 

1B).  351 

Next, we compared the neural coding of observational prediction errors between 352 

the high and low empathy groups. The results revealed significant group differences 353 

in the TPJ, the MCC, premotor cortex, occipital cortex, and anterior insula (extending 354 

into the anterior temporal pole) (Figure 4D, Table 1C). These regions showed 355 

stronger activations when demonstrator ratings were higher than expected in the high 356 

empathy group (ts > 2.78, ps < 0.010). In contrast, in the low empathy group,  357 
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activations in these regions were stronger when demonstrator ratings were lower than 358 

expected (ts < -3.56, ps < 0.002).  359 

Based on our modelling results, we further tested whether neural regions which 360 

differentially encoded observational prediction errors in the observation phase also 361 

showed group-related differential connectivities with regions encoding empathy-362 

related activity in the self-rating phase.The strength of this functional coupling should 363 

depend on the individual weight given to the observational prediction errors (i.e., the 364 

W1 parameter that accounted for the learning-related changes in empathy ratings). 365 

Given that the observational learning network contained several regions, we 366 

conducted a multi-region PPI analysis (31, 32), which allows defining multiple seed 367 

regions and simultaneously assessing the respective connectivity changes depending 368 

on a given variable (here W1). We defined the seed regions by the brain regions that 369 

showed the strongest differential coding of observation prediction errors between 370 

groups (Table 1C). We calculated the connectivity strength between each of these 371 

seeds and 264 target regions that were defined with an established template (33), and 372 

assessed which of these connectivities was modulated by the W1 parameter. 373 

Visualization of the suprathreshold edges revealed that the left TPJ showed the largest 374 

number of connectivities that were influenced by the magnitude of W1. This result 375 

held when we used different threshold values (ranging from 0.001 to 0.05) to identify 376 

significant connectivities, indicating the robustness of our results (Figure S1). 377 

 378 
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 379 

Figure 4. Neuroimaging results. (A) Neural responses associated with trial-by-trial 380 

empathy ratings in the baseline session. (B) Neural representation of observational 381 

prediction errors in the high empathy group. (C) Neural representation of 382 

observational prediction errors in the low empathy group. (D) Regions encoding 383 

observational prediction errors differently between high and low empathy groups. 384 

Significant clusters were identified by combining a voxel-level threshold of p < .001 385 

(uncorrected) and a cluster-level threshold of p < 0.05, FWE corrected across the 386 

whole brain. Display threshold at puncorrected < 0.001; AI = anterior insula, MCC = mid 387 

cingulate cortex, TPJ = temporal parietal junction; dmPFC = dorsal medial prefrontal 388 

cortex; premotor = premotor cortex; SMA = supplementary motor area. 389 

 390 

Table 1: Brain regions correlating with trial-by-trial observational prediction errors 391 

for the high and the low empathy group separately and across both groups. 392 

Region Cluster

Size 

MNI Coordinates Peak 

z  X Y Z 

A) High empathy group       

dmPFC 80 -6 48 34 3.90 

B) Low empathy group     

R_premotor 122 52 4 48 4.93 

L_fusiform 173 -44 -66 -24 4.68 

Cerebellum 125 -8 -60 -12 4.68 

L_premotor 82 -42 6 46 4.66 

Precuneus 672 22 -74 44 4.50 
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dmPFC: dorsal medial prefrontal cortex. dMCC: dorsal medial cingulate cortex. 393 

SMA: Supplementary motor area. AI: anterior insula. TPJ: temporoparietal 394 

conjunction. L: Left, R: Right. Significant clusters were identified by combining a 395 

voxel-level threshold of p < .001 (uncorrected) and a cluster-level threshold of p 396 

< .05, FWE corrected. 397 

Based on the results of the multi-region PPI, we chose the left TPJ as a seed to 398 

estimate the connectivity strength between the left TPJ (Figure 4D) and other brain 399 

regions when viewing others in pain in the self-rating phase in the first-level analysis. 400 

We then conducted a second-level analysis with the individual W1 parameter (W1pos 401 

for the high empathy group and W1neg for the low empathy group) as a covariate.  402 

Whole-brain analysis showed that the individual W1 parameter modulated the 403 

connectivity of the left TPJ with the left AI (MNIxyz: -38/4/-10, Zstats= 4.25, 404 

p(cluster-FWE) = 0.024), and with the vmPFC (MNIxyz: -8/50/-4, Zstats= 4.63, 405 

p(cluster-FWE) < 0.001) differently in high and low empathy groups while 406 

participants watched painful videos during the self-rating phase (Figure 5). 407 

Cerebellum 120 0 -70 -32 4.43 

R_Lingual 86 10 -64 -12 4.41 

dMCC/SMA 310 6 2 64 4.37 

R_AI 82 46 2 2 4.27 

Cuneus 551 2 -80 18 4.22 

C) High vs. low empathy groups       

dMCC 316 4 4 64 5.01  

R_Premotor 284 56 2 44 4.73  

L_AI 280 -52 8 -12 4.73  

L_Occipital 96 -46 -78 18 4.60  

L_TPJ 192 -56 -58 20 4.45  
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Specifically, the more strongly individuals weighted observational prediction errors 408 

(i.e., larger W1 parameters), the weaker the left TPJ-vmPFC coupling in the low 409 

empathy group (r = -0.70, p < 0.001), and the stronger the left TPJ-vmPFC coupling 410 

in the high empathy group (r = 0.49, p = 0.010). Similarly, with increasing W1 411 

parameter, the coupling between the left TPJ and left AI increased in the high 412 

empathy group (r = 0.71, p < 0.001), and decreased in the low empathy group (r = -413 

0.59, p = 0.001) (Figure 5). Importantly, the same AI-region that showed connectivity 414 

with the TPJ depending on the strength of the observational learning signal (W1) was 415 

also significantly correlated with the trial-by-trial empathy ratings in the baseline 416 

session (t(51) = 2.31, p = 0.025), indicating that observational learning changed the 417 

communications of the TPJ with an AI region that is involved in the processing of 418 

empathy. 419 

To test the specificity of these results, we performed a control analysis in which 420 

we estimated the connectivity strength between the left TPJ, and other brain regions 421 

when participants watched the painful videos in the observation phase (i.e., not the 422 

self-rating phase), and regressed this connectivity against the W1 parameter in both 423 

groups. This analysis revealed no significant group differences in the impact of W1 on 424 

TPJ connectivity even at a lenient threshold (i.e., p < 0.05, uncorrected). Thus, the 425 

group differentiating effect of the weight given to observational prediction errors on 426 

TPJ-AI as well as on TPJ-vmPFC connectivity was specific to the self-rating phase. 427 
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 428 

Figure 5. Group-specific impact of weight given to observational prediction 429 

errors on functional connectivity. The functional connectivity between the LTPJ 430 

and AI, and between the LTPJ and vmPFC during the self-rating phase correlated 431 

with the weights given to observational prediction errors across participants for both 432 

high and low empathy groups. Significant clusters were identified by combining a 433 

voxel-level threshold of p < .001 (uncorrected) and a cluster-level threshold of p < 434 

0.05, FWE corrected across the whole brain. Display threshold at puncorrected < 0.001. 435 

 436 

To specify the results of the PPI analysis, we tested whether the observed AI 437 

region is associated with changes in empathy during the self-rating phase. To do so, 438 

we regressed the individual W1 parameters (W1pos for the high empathy group and 439 

W1neg for the low empathy group) against the neural activity to the painful videos in 440 

the self-rating phase, and calculated the contrast between the high and the low 441 

empathy groups. The results showed significant activation in the AI (p = 0.021, SVC-442 

FWE corrected). Post hoc comparisons revealed that an increase in W1 resulted in an 443 
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increase in AI activation in the high empathy group (r = 0.379, p = 0.056, Figure 6A), 444 

and in a decrease of AI activation in the low empathy group (r = -0.514, p = 0.007, 445 

Figure 6A). As our behavioral results indicated that the learning effects were 446 

preserved even when participants were no longer presented with the demonstrators’ 447 

ratings (i.e., generalization session), we further compared the neural activations of left 448 

AI before (i.e., baseline session) and after (i.e., generalization session) learning 449 

between high and low empathy groups. The results showed a significant group (high 450 

empathy, low empathy) × session (baseline session, generalization session) interaction 451 

(peak = -36/-2/-6, p = 0.030, SVC-FWE corrected for the left AI cluster identified in 452 

the PPI analysis). More specifically, left AI responses were increased in participants 453 

in the high empathy group after learning (t(25) = 2.18, p = 0.039, Figure 6B) and 454 

decreased in the low empathy group after learning (t(25)  = -2.52, p = 0.018, Figure 455 

6B). The same analyses in vmPFC did not reveal any significant results (SVC-FWE 456 

correction, ps > 0.289). Together, these results suggest that the observational learning 457 

signals alter empathy-related responses at the neural level.  458 
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 459 

Figure 6. Neural responses in the AI region identified by the PPI analysis (Figure 460 

5, upper panel). (A) The activation of  AI correlated with the weights given to 461 

observational prediction errors across participants for both high and low empathy 462 

groups. (B) Participants in the high empathy group showed increased AI activation in 463 

generalization compared to baseline session whereas participants in the low empathy 464 

group showed the reverse pattern.  465 

 466 

3. Results of the non-social control study 467 

The results of our fMRI study demonstrated significant changes in empathy ratings in 468 

both high and low empathy groups. The computational model further linked the 469 

changes in empathy ratings to the weight given to observational prediction errors. 470 

However, it is possible that participants provided higher ratings in the high empathy 471 

group compared to the low empathy group only because they were shown larger 472 

numbers. Viewing larger or smaller numbers could anchor participants’ responses on 473 

these values, thereby creating systematic biases (34). To examine this possibility as 474 

well as the extent to which the observational learning effect depends on observing the 475 

behavior of human vs. nonhuman computer demonstrators, we investigated 476 
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observational learning from non-social demonstrators (i.e., from computer-generated 477 

ratings) in a control study.  478 

 We first tested whether participants would learn to predict the observed empathy 479 

ratings of the computer demonstrators similarly to participants who learned to predict 480 

the observed empathy ratings of human demonstrators. To this end, we conducted an 481 

LMM with experiment (fMRI, non-social control), group (high empathy, low 482 

empathy), trial number and group × trial number as predictors, and participants’ 483 

predictions of demonstrators’ ratings as the dependent variable. The results revealed a 484 

significant group × trial number interaction (χ2(1) = 8.31, p = 0.004). The experiment 485 

× group × trial number interaction was not significant (χ2(1) = 0.22, p = 0.64, Figure 486 

7A), indicating that participants paid attention to the computer-generated ratings and 487 

learned to predict them.  488 

 Next, we tested whether participants’ empathy ratings were similarly influenced 489 

by human and computer demonstrators. As in the analysis of the fMRI study, we first 490 

fitted the participants’ predictions of (computer) demonstrators’ ratings using a 491 

Rescorla-Wagner reinforcement-learning model (22). The reinforcement learning 492 

model fitted the predictions of computer demonstrators’ ratings adequately (r2 = 0.17 493 

± 0.19 for the high empathy group, r2 = 0.29 ± 0.22 for the low empathy group), and 494 

did not differ from the fMRI study (t(50) = 0.996, p = 0.324 for the high empathy 495 

group; t(54) = -0.369, p = 0.713 for the low empathy group). We then extracted the 496 

trial-wise observational prediction errors from both the fMRI study and the non-social 497 
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control study and fitted an LMM to directly test the association between trial-wise 498 

observational prediction errors and changes in empathy ratings. If participants change 499 

their empathy ratings based on the observational prediction errors, we would expect a 500 

positive association between trial-wise observational prediction errors and changes in 501 

empathy ratings. The LMM included experiment (fMRI, non-social control), empathy 502 

group (high empathy, low empathy), and trial-wise observational prediction errors, as 503 

well as their interactions as fixed effects predicting trial-wise changes of empathy 504 

ratings. The analysis revealed a significant experiment × prediction errors interaction 505 

(χ2(1) = 5.34, p = 0.021, Table S3 for full statistical results) indicating a stronger 506 

relationship between trial-wise prediction errors and changes in empathy ratings in the 507 

fMRI study, compared to the control study (Figure 7B). Thus, although participants 508 

predicted the ratings of human demonstrators and computer demonstrators similarly 509 

well, the observations of the computer influenced the empathy ratings of participants 510 

to a lesser extent than the observations of the human demonstrator.  511 

 512 

Figure 7. Participants learn, but to a lesser degree, from computer compared to 513 

human demonstrators. (A) Participants’ predictions diverged in the high and low 514 

empathy groups of the non-social control study. (B) Experiment × prediction error 515 
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interaction. The observational prediction errors shifted participants’ empathy ratings 516 

more strongly in the fMRI study compared to the non-social control study. 517 

 518 

4. Results of the behavioral replication study 519 

To test the reproducibility of the learning effects observed in the fMRI study, we 520 

conducted a behavioral study with the identical paradigm on an independent sample. 521 

In addition, participants were seated alone in the behavioral experimental rooms in 522 

which their ratings were unobserved and they would not interact with the 523 

experimenter to reduce the effect of social desirability. We first analyzed the 524 

predictions from the observational learning phase. To this end, we conducted an 525 

LMM with group (high empathy, low empathy), trial number and group × trial 526 

number as predictors, and participants’ predictions of ratings as the dependent 527 

variable. The results revealed a significant group × trial number interaction (χ2(1) = 528 

67.4, p < 0.001, Figure 8A), indicating that participants expected increasing empathy 529 

ratings of the demonstrators in the high (χ2(1) = 14.37, p < 0.001) and decreasing 530 

empathy ratings in the low empathy (χ2(1) = 62.4, p < 0.001) group also in this 531 

independent sample.  532 

We then tested the participants’ own empathy ratings in the self-rating phase of 533 

the observational learning session. The LMM with group (high empathy, low 534 

empathy), trial number and group × trial number as predictors, and participants’ 535 

empathy ratings as the dependent variable revealed a significant group × trial number 536 

interaction (χ2(1) = 18.56, p < 0.001). Replicating the results of the fMRI study, 537 

participants showed increasing empathy ratings in the high empathy group (χ2(1) = 538 
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4.46, p = 0.03), and decreasing empathy ratings in the low empathy group (χ2(1) = 539 

16.82, p < 0.001) over the course of learning. We also analyzed the empathy ratings 540 

of our participants over the whole experiment (i.e., from the baseline session to the 541 

generalization session). To this end,we conducted an LMM with group (high 542 

empathy, low empathy), session (baseline session, observational empathy learning 543 

session 1-4 and generalization session, coded as 0-5 respectively) and group × session 544 

as predictors, and participants’ empathy ratings as the dependent variable. Similar to 545 

the results of the fMRI study, we found a significant group × session interaction 546 

(χ2(1) = 34.4, p < 0.001), with an increase in ratings across sessions in the high 547 

empathy group (χ2(1) = 9.13, p = 0.003) and a decrease in ratings across sessions in 548 

the low empathy group (χ2(1) = 37.6, p < 0.001). In summary, the prediction data and 549 

participants’ own empathy ratings in the behavioral replication study resembled those 550 

of the fMRI study.  551 

To test if these changes in empathy ratings were associated with the observational 552 

learning mechanism revealed in Study 1, we first fitted the participants’ predictions 553 

using a Rescorla-Wagner reinforcement-learning model (22). The reinforcement 554 

learning model fitted the predictions well (r2 = 0.22 ± 0.19 for the high empathy 555 

group, r2 = 0.28 ± 0.19 for the low empathy group), and did not differ from the fMRI 556 

study (t(49) = 0.001, p = 0.999 for the high empathy group; t(51) = -0.212, p = 0.833 557 

for the low empathy group). We then extracted the trial-wise observational prediction 558 

errors and associated them with trial-wise changes in empathy ratings in an LMM. 559 
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The results revealed that trial-wise observational prediction errors positively predicted 560 

the trial-wise changes of empathy ratings (χ2(1) = 25.75, p < 0.001, Figure 8B), and 561 

similarly well in the high and the low empathy group (χ2(1) = 0.225, p = 0.61). 562 

To compare studies more thoroughly, we also integrated an additional LMM with 563 

experiment (fMRI, behavioral replication), empathy group (high empathy, low 564 

empathy), and trial-wise observational prediction errors, as well as their interaction to 565 

predict the trial-wise changes of empathy ratings. The analysis showed that the 566 

experiment × prediction errors interaction effect was not significant (χ2(1) = 0.55, p = 567 

0.46, Figure 8B, Table S3 for full statistical results), compatible with the notion that 568 

participants’ empathy ratings were similarly influenced by the observational 569 

prediction errors in the fMRI study and the behavioral replication study. In summary, 570 

the behavioral replication study resulted in similar behavior as the fMRI study.  571 

 572 

Figure 8. Replication of behavior in the fMRI study. (A) Trial-by trial prediction in 573 

the behavioral replication study. The results showed differential effects in the high 574 

and low empathy groups.  (B) Effect of prediction error on changes in empathy 575 

ratings in the behavioral replication study (red) and the fMRI study (blue). The 576 

interaction between experiment × prediction error was not significant, indicating 577 

comparable observational learning of empathy in both studies.  578 
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Discussion 579 

The assumption that empathy can be transmitted between individuals forms the basis 580 

of influential theories of moral development (1). Here, we provide mechanistic 581 

insights into the social transmission of empathy. Confirmed in two independent 582 

studies and substantiated by a control study, our results showed that empathy is 583 

transmitted by learning from observed empathic reactions of others. The observational 584 

learning of empathy can increase or decrease empathy in the observer, depending on 585 

the role model the participants learn from. Notably, the learning-related changes in 586 

empathy were elicited by observing empathic responses of an unknown, random 587 

individual, and expressed themselves on the subjective (empathy ratings) and neural 588 

level (connectivity between TPJ and an AI region that correlated with trial-by-trial 589 

empathy ratings as well as the neural activity of AI region). This indicates that the 590 

social transmission of empathy occurs in ‘random’ social interactions and changes the 591 

neural responses to the misfortune of others, here their pain.  592 

The finding that observing empathic responses in others changes empathic 593 

responses in the observer is important, because empathy is commonly related to an 594 

increase in prosocial behavior (35, 36). In line with these findings, the learning-595 

related increase in empathy ratings was related to an increase in participants’ 596 

willingness to invest time to help another person. From a policy point of view, these 597 

results suggest that creating a highly empathic environment may enhance prosocial 598 

tendencies. On the flipside, our findings also show that the presence of non-empathic 599 

individuals can undermine empathy and prosocial motivation. 600 
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It has been shown before that empathy ratings of a group can shift individual 601 

empathic feelings and influence donations to a homeless shelter (4). Going beyond 602 

these previous results, our study reveals a mechanism through which empathy is 603 

transmitted across individuals. We show that the extent to which people change their 604 

subjective and neural responses to the pain of others is predicted by the weight they 605 

give to the prediction-error signal generated by the discrepancy between expected and 606 

observed empathy ratings of others. Specifically, our results show that participants 607 

generate positive observational prediction errors if human demonstrators display a 608 

stronger empathic reaction than expected, and, as a result, increase their empathy 609 

ratings. In contrast, being confronted with individuals who show less empathy than 610 

expected results in negative prediction errors and a decrease in empathy ratings of the 611 

observer.   612 

It is well established that observational learning parameters can predict 613 

differences in socially relevant phenomena such as the social transmission of fear 614 

(13–15), and the social modulation of risk (9) and choice preferences (7, 8). In 615 

influential theoretical models, observational learning has long been assumed to 616 

constitute a mechanism for the social transmission of empathy (5). Providing the first 617 

empirical evidence for this notion, we show that an observational learning model can 618 

predict the extent to which empathy is transmitted from one individual (i.e., the 619 

demonstrator) to another (i.e., the observer) and applied by the observer to third 620 

parties uninvolved in the learning process (generalization).  621 
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We find that learning from observing other’s empathic reactions does not only 622 

change participants’ empathy ratings, but also their neural responses to other’s pain. 623 

Specifically, the weight participants assigned observational prediction errors 624 

modulated connectivity between regions associated with observational learning, such 625 

as the TPJ (12, 16, 37), and regions associated with the processing of other’s pain, 626 

such as the AI (17, 25–27, 29, 30). Taking an individual difference perspective, the 627 

more strongly a person weighted the observational prediction errors, the stronger the 628 

coupling of left TPJ-AI in the high empathy group, and the weaker the TPJ-AI 629 

coupling in the low empathy group. Apart from this, the individual differences in the 630 

magnitude of observational learning (i.e., weight parameter) also modulated the 631 

neural activations in the AI. Thus, the empathy shown by the role model modulated 632 

the way in which observational prediction error weights affected brain connectivity. 633 

The finding of the processing of observational prediction errors in the left TPJ is 634 

in line with recent evidence linking this region to social influence on reward learning 635 

(12, 16) and prosocial decision making (38). Extending these previous results, our 636 

findings show that learning by observing high and low empathic individuals 637 

modulates the connectivity between the left TPJ and the AI as well as the vmPFC. 638 

Importantly, the AI region that was modulated by learning was also active when 639 

participants observed another person in pain in the baseline session. Therefore, 640 

observational learning indeed changed the processing of other’s pain in the AI, i.e., a 641 

region that forms a central part of the empathy network (17, 25–27, 29, 30).  642 
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Neural responses in the vmPFC have been related to value computation in general 643 

(39), and in particular, to the computation of the value of pain (40). Given the present 644 

findings, it is possible that observing empathic responses of others changes 645 

participants’ valuation of the pain of others to justify an increase or decrease in their 646 

own empathy ratings. Together, our neural findings uncover a neural mechanism for 647 

the social transmission of empathy that can explain the plasticity of empathic 648 

responses in different social environments.  649 

Although we show a change in empathy ratings and neural responses to the pain 650 

of others that is closely predicted by learning parameters, alternative explanations to 651 

observational learning have to be considered. First, the observed changes in subjective 652 

and neural empathy responses may reflect mere imitation of motor responses. The 653 

results of the non-social control study argue against this alternative explanation. 654 

Although participants paid attention to, and learned to predict, the computer-generated 655 

ratings equally well as those of the human demonstrators, they did not use the learned 656 

information to update their own empathy as much as with human demonstrators. 657 

Second, participants may have changed their ratings to conform with the ratings of the 658 

demonstrator. Testing this assumption, we found no significant relationship between 659 

participants’ ratings on a well-established conformity scale (41) and their changes of  660 

empathy ratings in the observational-learning-of-empathy task. Third, and related to 661 

conformity, participants may have shown higher empathy ratings in the high-empathy 662 

group to please the demonstrator or the experimenter. We assessed individual 663 
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differences in social desirability (based on a social desirability scale, (19) and found 664 

no significant relationship with the observed changes in empathy ratings. In addition, 665 

in the behavioral replication study, participants were seated alone during the 666 

experiment, such that they were unobserved and could not interact with the 667 

experimenter. Although this setting minimized the influence of social desirability, the 668 

findings still replicated the learning-related changes in empathy ratings observed in 669 

the fMRI study. Based on this evidence, and given that the estimates from our 670 

observational learning model fitted the changes in empathy ratings and neural 671 

responses to other’s pain, observational learning is likely to contribute to the social 672 

transmission of empathy.  673 

That said, we acknowledge that our study was based purely on female 674 

participants, which allowed us to control for unspecific gender effects (e.g., induced 675 

by gender-mixed pairings of participants and confederates), but limits the 676 

generalizability of our results. Future studies should test the effect of observational 677 

learning of empathy in males. Moreover, although our results show that learning from 678 

observing the empathic reactions of a demonstrator changes the willingness of 679 

observers to invest time to help a recipient of pain, it would be important to 680 

investigate changes in actual prosocial behavior in real life.  681 

In sum, our study shows how empathy spreads in random social interactions and 682 

provides a computational and neural mechanism for the social transmission of 683 

empathy across societies.  684 
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Materials and methods 685 

Participants 686 

We recruited three independent samples that are described below. 687 

Study 1 - fMRI study. 55 healthy females (mean age  SD = 21  2.1 years) 688 

participated in the fMRI study as paid volunteers. We chose an all-female instead of a 689 

gender-mixed group of participants so that we could also use all-female confederates 690 

and avoid the complications of the gender-mixed pairing of participants and 691 

confederates. Three participants were excluded from further analyses due to excessive 692 

head movements (> 3 mm) during scanning. The analyses included data from 52 693 

participants (mean age  SD = 21  2.1 years; 26 in the high empathy group).  694 

Study 2 - Non-social control study. 57 healthy females (mean age  SD = 20.8  2.4 695 

years) participated in the non-social control study as paid volunteers. One participant 696 

was excluded because of technical issues during the experiment. Data from 56 697 

participants were analyzed (26 in the high empathy group). Of these, one participant 698 

did not fill in the questionnaire (see below).   699 

Study 3- Behavioral replication study. 56 healthy females (mean age  SD = 20.8  700 

1.9 years) participated in the behavioral replication study as paid volunteers. Four 701 

participants were excluded because of technical issues during the experiment. Data 702 

from 52 participants were analyzed (25 in the high empathy group).  703 

  The experimental procedures were approved by the local Research Ethics 704 

Committee (No. 2018-01-04). All participants had normal or corrected-to-normal 705 
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vision, no history of psychological or neurological disorders, and provided written 706 

informed consent after the experimental procedure had been fully explained. 707 

Participants were reminded of their right to withdraw at any time during the study. 708 

The sample size for the studies was determined by an a priori power analysis using 709 

G*Power 3.1(42) for a within-between interaction in a repeated-measures analysis of 710 

variances (ANOVA) design with two groups (groups: high empathy, low empathy) 711 

and two measurements (time: before learning, after learning). A total sample size of 712 

46 participants (23 participants per group) was required for each study to detect a 713 

medium effect size of f = 0.25 at α = 0.05 (two-tailed) with a power of 90%. We 714 

recruited more than 46 participants in all studies to account for possible data loss. 715 

Questionnaires 716 

In Studies 1 and 3 (i.e., the studies with human demonstrators), participants rated their 717 

impression of the demonstrator before and after the experiment (17, 19, 26, 43). In 718 

addition, participants rated the perceived empathy of the demonstrator (“How 719 

empathic do you find this person?”) from 1 (not empathic at all) to 9 (extremely 720 

empathic). In Study 1, participants also rated the the perceived pain intensity of the 721 

recipient (“How much pain did the person in the video clip experience?”) from 1 722 

(none at all) to 9 (extreme) and indicated how much time they would like to spend 723 

comforting the recipient (0-60 min in 1 min increments), an item that was used to 724 

measure prosocial tendencies in previous studies (44). 725 
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Participants of all three studies completed the social desirability scale (SDS-17, 726 

(20) as well as the conformity scale (41) to measure their propensity to respond in a 727 

socially desirable manner and their tendency to conform to others. We used the 728 

Interpersonal Reactivity Index (IRI, 17) and the subscales measuring empathy and 729 

behavioral contagion from the Empathy Index (45) to measure the trait empathy. 730 

There were no differences in these trait measures across the three studies (ps > 0.166, 731 

Table S4).We also compared the trait measures between groups (i.e., high and low 732 

empathy group) within each study, and the results revealed no significant difference 733 

in these trait measures between the high and low empathy group for all studies (ps > 734 

0.068, Table S5).  735 

Preparation and validation of the stimulus set 736 

For the purpose of this study, we recorded videos of four different females receiving 737 

painful and non-painful stimulation. In each video clip, two pain electrodes were 738 

visibly attached to the recipient’s right hand. The recipient reacted to the shocks by 739 

twitching her hand and arm when receiving a painful electrical stimulation and acted 740 

calmly when receiving a non-painful electrical stimulation. For each recipient, we 741 

recorded at least 10 video clips showing painful stimulation and 4 video clips showing 742 

non-painful stimulation with a duration of 2 s each. We then selected 25 out of the 40 743 

video clips showing painful stimulations for further stimulus validation.  744 

To validate the video clips, we conducted an online study with 37 female 745 

participants (mean age  SD = 21.9  4.4 years).The rating task was completed 746 
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electronically via a Qualtrics link (https://www.qualtrics.com/). Participants were 747 

instructed to watch the 25 video clips and to rate the pain intensity felt by the recipient 748 

(“How painful do you think the model feels?”) on a 7-point Likert scale (1 = not 749 

painful at all, 7 = extremely painful). The order of the presentation of the video clips 750 

was randomized. Based on these ratings, we selected four video clips showing painful 751 

stimulation for each recipient (16 video clips in total). We then averaged the pain 752 

intensity ratings for each recipient and conducted further statistical tests. The mean 753 

pain intensity ratings were comparable across recipients (F(3,34) = 0.473, p = 0.703, 754 

η2
p, = 0.040, Figure S2).  755 

Experimental design and procedure 756 

Study 1 - fMRI study 757 

Prescanning procedure  758 

Before the experiment, participants briefly met two other individuals (confederates 759 

who were not known by the participant) who were trained to act as the demonstrators 760 

during the observational learning task. Participants and confederates were instructed 761 

together. They were told that the current study was part of a project on pain 762 

perceptions and that they would be randomly assigned to one of two groups; a 763 

‘recipient’ group that would receive painful or non-painful electrical stimulations, or 764 

an ‘observer’ group that would watch the stimulation of the recipients and rate their 765 

feelings. The participants and the two confederates were ostensibly assigned to the 766 

‘observer’ group.  767 
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 Next, the individual pain thresholds of the participants and confederates were 768 

determined by a standard procedure (17, 46, 47) to provide a first-hand experience of 769 

the stimulation they would observe in recipients. To do so, participants and 770 

confederates entered into a private room successively in which another experimenter 771 

performed the pain threshold assessment. More specifically, two pain electrodes were 772 

attached to the back of the left or right hand. Using a Digitimer DS7 electrical 773 

stimulator, a low-voltage electric shock (0.5 mA) was delivered and increased in 774 

increments of 0.5 mA. Participants and confederates were asked to rate the intensity 775 

of the respective electrical stimulation from 0 (not painful at all) to 10 (extremely 776 

painful). Participants and confederates were informed that the recipients would 777 

receive pain stimulation with the intensity they rated as “8” and non-painful 778 

stimulation with the intensity they rated as “1” in the pain thresholding procedure.  779 

 After measuring individual pain thresholds, the experimenter introduced the 780 

empathy rating scale. Participants and confederates were told that they would be 781 

asked to indicate how they felt when watching a video clip of a recipient on a scale 782 

from 0 (did not feel anything) to 100 (feeling extremely bad). Next, the participants 783 

received instructions for the observational empathy learning task in the preparation 784 

room while the two confederates were seated outside. They were then instructed that 785 

apart from reporting their feelings when watching the video clips, their task would be 786 

to predict the ratings of the demonstrators (i.e., the two confederates) as accurately as 787 

possible. To help with their predictions, the participants would see the rating of the 788 
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demonstrator in real time after their prediction. We made clear to the participants that 789 

their own ratings were personal and could not be observed by others.  790 

Scanning Procedure 791 

The fMRI scanning session consisted of a baseline session, an observational empathy 792 

learning session, and a generalization session.  793 

 In the baseline session, the participant in the scanner watched the video clips of a 794 

person receiving either painful (18 trials) or non-painful (12 trials) stimulations. Each 795 

trial started with a lightning bolt symbol (1000 ms) indicating the pain intensity the 796 

recipient was about to receive (bright = painful; dark = non-painful). After a fixation 797 

period (500 – 1500 ms), the video showed the hand of the recipient undergoing 798 

stimulation for 2000 ms. Participants were then asked to report their current feelings 799 

from 0 (felt nothing at all) to 100 (felt extremely bad) in 5000 ms.  800 

 The observational empathy learning session was adapted from an observational 801 

learning paradigm we used previously (7, 8). In each trial, an observation phase (i.e., 802 

observing the demonstrator’s empathy ratings) was followed by a self-rating phase 803 

(i.e., making empathy ratings oneself; Figure 1). To distinguish the two phases and 804 

the different demonstrators, the beginning of each phase was marked with arrows in 805 

different colors (500 ms) pointing away (observation phase) or towards (self-rating 806 

phase) the participant. During the observation phase, the lightning bolt symbol (1000 807 

ms) was shown followed by the presentation of a video clip (2000 ms). Participants 808 

were told that the demonstrator had watched this video and rated her feelings. Then, 809 
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participants had 5000 ms to predict the demonstrator’s ratings. After that, the rating of 810 

the demonstrator was presented (2000 ms). Next, an arrow pointing to the participant 811 

indicated the start of the self-rating phase (500 ms). After the presentation of the 812 

lightning bolt  (1000 ms) and the video clip (2000 ms), participants were asked to rate 813 

how they felt when watching the video on a scale from zero (not feeling anything) to 814 

hundred (feeling extremely bad) (5000 ms). The videos used in the observation and 815 

the self-rating phase showed the same recipient receiving the same type of stimulation 816 

(i.e., either depicting painful or non-painful stimulation).  817 

The observational empathy learning session consisted of four blocks, with 12 818 

trials in each block, resulting in 48 trials in total (36 trials of painful and 12 trials of 819 

non-painful videos). To prevent habituation, participants saw the video clips of two 820 

different recipients (one recipient for two blocks) in the observational empathy 821 

learning session. 822 

 Unbeknownst to the participants, the ratings of all demonstrators were generated 823 

by a pre-defined algorithm, based on the participant empathy ratings in the baseline 824 

session. In the high empathy group, the observed ratings for pain videos were drawn 825 

from a normal distribution in which the mean equaled the participant mean in the 826 

baseline session plus three standard deviations (SD = 5). In the low empathy group, 827 

they were drawn from a normal distribution in which the mean equaled the participant 828 

mean in the baseline session minus three standard deviations (SD = 5). As a result, in 829 

the high empathy group, participants observed empathy ratings that were consistently 830 
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higher, and in the low empathy group they observed ratings that were consistently 831 

lower than their baseline ratings for the painful videos. The observed ratings for non-832 

painful videos were sampled from a normal distribution in which the mean of the 833 

distribution was the individual mean in the baseline session (SD = 5).  834 

 The generalization session was identical to the baseline session, except that the 835 

participants provided emotion ratings when observing a new recipient, i.e., video clips 836 

that were not part of the baseline or the observational empathy learning session. The 837 

participant and confederates were informed that they would not meet after the study 838 

and had separate visual displays to keep empathy ratings anonymous. 839 

Study 2 - Non-social control study 840 

The task of the control study was identical (i.e., instructions, number of sessions, 841 

number of blocks, and number of trials) to the task of the fMRI study described 842 

above, except that participants were told that they observed ratings generated by two 843 

computers.  844 

Study 3 - Behavioral replication study 845 

To test the robustness of the learning effects observed in the fMRI study, we 846 

conducted a behavioral study on an independent sample. The experimental procedure 847 

was identical to the procedure of the fMRI study described above, except that the 848 

demonstrators were represented by real participants instead of confederates. Care was 849 

taken to ensure that the participants had neither met nor known each other before the 850 

study. To further minimize a potential effect of reputation concerns on empathy 851 
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ratings, participants were seated alone in the laboratory, i.e., the experimenter was not 852 

present and did not interact with the participants during the experiment. Importantly, 853 

the ratings of the demonstrators in the observational-learning-of-empathy session 854 

were also generated with the pre-defined algorithm described above.  855 

MRI Image acquisition  856 

We acquired functional and anatomical images with a Siemens Trio 3.0 T MR 857 

scanner using a 12-channel phase-array head coil at the Center for MRI Research, 858 

Peking University. Multiband functional images were acquired with T2-weighted, 859 

gradient-echo, echo-planar imaging sequences sensitive to BOLD contrast (matrix = 860 

112×112, 62 slices, 2×2×2 mm3 voxel size, interslice gap = 0.3 mm, repetition time 861 

(TR) = 2000 ms, echo time (TE) = 30 ms, field of view (FOV) = 22.4 × 22.4 cm, flip 862 

angle (FA) = 90°, interleaved slice acquisition, multiband acceleration factor = 2). A 863 

high-resolution anatomical T1-weighted image was acquired for each participant 864 

(256×256mm matrix, 192 slices, 1×1×1.00 mm3 voxel size; TR = 2530 ms, TE = 865 

2.98 ms, inversion time (TI) =1100 ms, FOV = 25.6×25.6 cm, FA = 7°). Padded 866 

clamps were used to minimize head motion and earplugs attenuated scanner noise.  867 

Data analyses 868 

Regression analyses 869 

We performed linear mixed models (LMM, ‘lme4’) in R v.4.1.1 (R Development 870 

Core Team, 2012) for the behavioral analyses on empathy ratings and prediction 871 

ratings as the dependent variables to investigate observational learning. In particular, 872 
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we conducted LMMs with empathy group (high empathy, low empathy), time and 873 

empathy group × time as predictors, and the empathy ratings or prediction ratings as 874 

the dependent variable. The time variable corresponds to the trial number (i.e., 1-36 875 

trials) during the observational empathy learning session or the session number of the 876 

whole experiment (baseline, observational empathy learning (1-4) and generalization, 877 

coded as 0-5 respectively). We predicted significant empathy group × time 878 

interactions for both the empathy ratings and the prediction ratings. Specifically, we 879 

hypothesized that participants’ prediction and empathy ratings would diverge between 880 

high and low empathy groups over the course of learning. We used participants as 881 

random intercepts.  882 

In addition, we performed LMMs to compare observational learning effects as 883 

captured by computational models between studies. Specifically, experiment (fMRI, 884 

non-social control/ behavioral replication), empathy group (high empathy, low 885 

empathy), and trial-wise observational prediction errors (obtained in the 886 

reinforcement learning model) as well as their interactions were included as a fixed 887 

effect to predict the trial-wise changes of empathy ratings. We also used by-888 

participant intercepts for all LMMs. 889 

Likelihood ratio tests were applied to assess the significance of the fixed effects. 890 

The resulting χ2 values indicate how much more likely the data are under the 891 

assumption of a more complex model (i.e., a model including a particular parameter) 892 
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than under the assumption of a simpler model (i.e., a model not including this 893 

particular parameter).  894 

Computational modeling 895 

To investigate the mechanisms underlying changes in empathy on a trial-by-trial basis 896 

in the observational learning session, we employed a computational modeling 897 

approach (19, 23, 24). The results were based on the original (raw) ratings. Using 898 

normalized ratings revealed similar results. First, we modeled the predictions 899 

participants made regarding the ratings of the demonstrators using a standard 900 

Rescorla-Wagner (22) reinforcement learning (RL) algorithm in the observation 901 

phase. The RL model assumes that participants changed their predictions when the 902 

demonstrator ratings differed from the ratings expected by the participants.  903 

ܸሺݐ ൅ 1ሻ ൌ 	ܸሺݐሻ ൅	ߙ ൈ  ሾ1ሿ      904																																											௜ߜ

ሻݐ௜ሺߜ ൌ ܴሺݐሻ െ ௜ܸሺݐሻ																																																							ሾ2ሿ              905 

Thus, on each trial t, the (future) predictions ܸሺݐ ൅ 1ሻ of demonstrator ratings 906 

are a function of current predictions ܸሺݐሻ and the prediction error ߜ (Equation 1), 907 

which corresponds to the difference between the actual demonstrator rating R(t) at 908 

trial t and the current prediction ܸሺݐሻ  (Equation 2). In our study, the demonstrator’s 909 

rating can be higher or lower than expected. Observing higher ratings than expected 910 

generates a positive prediction error, while observing lower ratings than expected 911 

generates a negative prediction error. The learning rate α (0 ≤ α ≤ 1) controls the 912 
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extent to which the current predictions of demonstrators’ ratings are updated by new 913 

information.  914 

Next, we formally modelled the participants’ empathy ratings in the self-rating 915 

phase as a linear function of prediction errors elicited by demonstrator’s empathy 916 

ratings in the preceding observation phase. In all models, we assumed that 917 

participants’ ratings are a linear combination of the time-discounted sum of previous 918 

observational prediction errors (as originating from the RL model, Equations 1-2) and 919 

participants’ baseline ratings (ݕ݄ݐܽ݌݉ܧሺ0ݐሻ), which were defined as the individuals’ 920 

mean ratings towards painful videos in the baseline session when no social influence 921 

was implemented.  922 

We considered models which separated the first and second half of the 923 

observational learning session as these two halves used different recipients of pain 924 

stimulation in the videos. Moreover, we found that empathy group (high, low) and 925 

session half (first, second) interacted for observational prediction errors (χ2(1) = 926 

19.82, p < 0.001). Specifically, in the first half, the observational prediction errors 927 

were mostly positive for the high empathy group and mostly negative for the low 928 

empathy group, resulting in a group difference (χ2(1) = 33.36, p < 0.001). In contrast, 929 

in the second half, the observational prediction errors were close to zero for both 930 

groups, resulting in no difference between groups (χ2(1) = 0.07, p = 0.79). We also 931 

considered models with common and separate weighting of positive and negative 932 

prediction errors:  933 
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E݉ݕ݄ݐܽ݌ሺݐሻ ൌ 0ሻݐሺݕ݄ݐܽ݌݉ܧ ൅ 	ܹ∑ ௧ି௝௧ߛ
௝ୀଵ  ሾ3ሿ                              934																																														௝ߜ

ሻݐሺݕ݄ݐܽ݌݉ܧ ൌ 0ሻݐሺݕ݄ݐܽ݌݉ܧ ൅ ௣ܹ௢௦ ∑ ௧ି௝௧ߛ
௝ୀଵ ௝ݏ݋݌ߜ ൅ ௡ܹ௘௚ ∑ ௧ି௝௧ߛ

௝ୀଵ  ሾ4ሿ                 935			௝݃݁݊ߜ

ሻݐሺݕ݄ݐܽ݌݉ܧ ൌ ቊ
0ሻݐሺݕ݄ݐܽ݌݉ܧ ൅ܹ1௣௢௦ ∑ ௧ି௝௧ߛ

௝ୀଵ ௝ݏ݋݌ߜ ൅ܹ1௡௘௚ ∑ ௧ି௝௧ߛ
௝ୀଵ ,௝݃݁݊ߜ ݐ ൏ 25

0ሻݐሺݕ݄ݐܽ݌݉ܧ ൅ܹ2௣௢௦ ∑ ௧ି௝௧ߛ
௝ୀଵ ௝ݏ݋݌ߜ ൅ܹ2௡௘௚ ∑ ௧ି௝௧ߛ

௝ୀଵ ,௝݃݁݊ߜ ݐ ൒ 25
				    [5] 936 

E݉ݕ݄ݐܽ݌ሺݐሻ ൌ 0ሻݐሺݕ݄ݐܽ݌݉ܧ ൅ 	݇ ൈ ܴሺݐሻ																																																										ሾ6ሿ                              937 

The winning model 3 (Equation 5) considered the empathy rating in the first and 938 

second half of the observational learning session separately, separated the prediction 939 

errors by sign, and added them up separately. This model included the parameters W1 940 

and W2, which capture the magnitude (weight) of the influence of observational 941 

prediction errors on changes in participants’ empathy ratings in the first and second 942 

half of the observational learning session. The W parameter ranges from -1 to +1 943 

because one represents the maximum of the empathy ratings after the transformation 944 

(i.e., divided by 100). A larger W corresponds to a stronger influence of observational 945 

prediction errors on participants’ empathy ratings. The discount parameter γ (0 ≤ γ ≤ 946 

1), captures an exponential decay of the influence of previous observational prediction 947 

errors over time, such that the more recent observational prediction errors have a 948 

greater impact on participants’ empathy ratings than the earlier observational 949 

prediction errors. If γ is close to one, all preceding observational prediction errors 950 

receive the same weight, and if it is close to zero, only the last observational 951 

prediction error leads to subsequent changes in participants’ empathy ratings.  952 

We also tested less complex models in which positive and negative prediction 953 

errors were not modelled separately (Equation 3, Model 1) or the empathy ratings 954 
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were not fitted separately for the first and second half of the observational learning 955 

session (Equation 4, Model 2). Moreover, we tested an imitation model in which 956 

participants were allowed to differ in the extent to which they copied the 957 

demonstrators’ ratings (Equation 6, Model 4). In this model, k represents the imitation 958 

parameter and R(t) is the actual demonstrator rating at trial t. We fitted all 959 

computational models to participants’ ratings of the painful videos in both high and 960 

low empathy groups.  961 

Parameter estimation 962 

We optimized model parameters by minimizing the negative logarithm of the 963 

posterior probability (LPP) over the free parameters using MATLAB’s fmincon 964 

function, initialized at multiple starting points of the parameter space. 965 

LPP = െ log൫ܲሺߠெ|ܯ,ܦሻ൯ 	∝ 	െ logሺܲሺܯ|ܦ, ெሻሻߠ െ	 logሺܲሺ  ሻሻ 966ܯ|ெߠ

Here, ܲሺܯ|ܦ,  ெሻ is the likelihood of the data given the considered model M and 967ߠ

parameter values ߠெ, and ܲሺߠெ|ܯሻ	is the prior probability of the parameters. 968 

Following previous research (48), the prior probability distributions for the learning 969 

rate were defined as beta distributions (beta pdf(α,1.1,1.1)). For the weight parameters 970 

and forgetting parameters, the prior distributions were unknown and assumed to be 971 

uniform, such that every value in the parameter range had equal probability. Formally, 972 

this is equivalent to maximum likelihood estimation (49). 973 

Model comparison 974 
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We computed the Laplace approximations to the model evidence (LAME) as criteria 975 

for model comparison, which measure the ability of each model to explain the 976 

experimental data, by trading-off their goodness-of-fit and complexity (48, 50). 977 

ܧܯܣܮ ൌ	 logሺܲሺܯ|ܦ, ெሻሻߠ ൅	 logሺܲሺ ሻሻܯ|ெߠ ൅	
݂݀
2
log ߨ2 െ	

1
2
log  978 |ܪ|

Where df is the number of model parameters, and |H| is the determinant of the 979 

Hessian. 980 

The individual model comparison criteria (LAME) were then fed to the mbb-vb-981 

toolbox (https://code.google.com/p/mbb-vb-toolbox/). For each model within a set of 982 

models, we estimated the exceedance probability (denoted XP), given the data 983 

gathered from all subjects. XP quantified the belief that the model was more likely 984 

than all the other models in the model space. An XP > 95% for one model within a set 985 

is typically considered as significant evidence in favor of this model being the most 986 

likely. 987 

MRI Image analyses 988 

Preprocessing 989 

Imaging data were analyzed in SPM12 990 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We followed a standardized 991 

preprocessing procedure. Functional images were slice-time corrected, realigned, 992 

and coregistered to the anatomical image of the participant. The anatomical image 993 

was processed using a unified segmentation procedure combining segmentation, bias 994 

correction, and spatial normalization to the MNI template (51), the same 995 

normalization parameters were then used to normalize the EPI images. Lastly, the 996 
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functional images were spatially smoothed using an isotropic 6 mm full-width at a 997 

half-maximum (FWHM) Gaussian kernel. 998 

First-level analysis 999 

We first sought to identify neural regions that tracked trial-by-trial empathy 1000 

ratings. To do so, we interrogated event-related general linear models (GLMs) in the 1001 

baseline session. We included the onsets and durations of (1) the lightning bolt 1002 

indicating the level of pain intensity; (2) the videos of recipients undergoing 1003 

electrical stimulations, parametrically modulated by the trial-by-trial empathy ratings 1004 

of participants; and (3) participant ratings. These regressors were convolved with the 1005 

canonical hemodynamic response function and its time derivatives. The model also 1006 

contained six (three translation and three rotation) regressors to account for motion.  1007 

To examine neural activity correlating with observational prediction errors, we 1008 

investigated GLMs for the observational empathy learning session. We included the 1009 

onsets and durations of: (1) the cues indicating the beginning of the observation 1010 

phase or self-rating phase; (2) the electric bolt indicating the level of pain intensity 1011 

(modelling painful and non-painful stimulations separately); (3) the videos of 1012 

recipients receiving electrical stimulations (modelling separately for the painful and 1013 

non-painful stimulation videos in the observation phase and self-rating phase); (4) 1014 

the prediction of the demonstrator rating (modelled separately for the painful and 1015 

non-painful stimulations); (5) the ratings of the demonstrator (modelled separately 1016 

for the painful and non-painful stimulations), parametrically modulated by 1017 
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observational prediction errors derived from the reinforcement learning model (see 1018 

computational model for details); and (6) participant ratings. These regressors were 1019 

again convolved with the canonical hemodynamic response function and its time 1020 

derivatives, and the model contained six (three translation and three rotation) 1021 

regressors to account for motion. The results are based on the original (raw) ratings. 1022 

Using normalized ratings revealed similar results.  1023 

Second-level analysis 1024 

First, we assessed the regions tracking the trial-by-trial empathy ratings in the 1025 

baseline session. We brought the first-level contrast images created by the 1026 

parametric modulator of empathy ratings to the second level and tested against zero 1027 

in a one-sample t-test.  1028 

Next, we investigated the regions encoding observational prediction errors. 1029 

First, we investigated the high and low empathy groups separately and identified 1030 

regions encoding observational prediction errors (i.e., by setting the prediction error 1031 

regressor to “1”) or inverse observational prediction errors (i.e., by setting the 1032 

prediction error regressor to “-1”) in one-sample t-tests at the second level. 1033 

We then collapsed all contrast images created by the observational prediction 1034 

error parametric modulator from the first level and compared them between high and 1035 

low empathy group at the second level. Imaging results were obtained in whole-brain 1036 

analyses, using a combined voxel-level threshold of Puncorrected < 0.001 and a family-1037 

wise error (FWE) corrected cluster-level threshold of P < 0.05. 1038 
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Psychophysiological interaction (PPI) analyses 1039 

To examine how neural activity related to observational prediction errors influences 1040 

neural responses in the self-rating phase and lead to the differential responses between 1041 

high and low empathy groups, we performed psychophysiological interaction (PPI) 1042 

analyses (52, 53). We used the generalized PPI (gPPI) toolbox 1043 

(https://www.nitrc.org/projects/gppi), which has the benefit of accommodating 1044 

multiple task conditions in the same connectivity model (54). Given that multiple 1045 

regions were associated with the differential encoding of observational learning 1046 

prediction errors between groups (i.e., Table 1C), we first conducted a multi-region 1047 

PPI analysis (32) to identify brain regions that changed their functional connectivities 1048 

with other regions depending on the individual size of the W1 parameter, i.e., the 1049 

parameter associated with the change in empathy across participants in the behavioral 1050 

analyses, Figure 3G and 3H). To do so, we defined regions of interest (ROIs) using 1051 

the full set of activated clusters related to the differential processing of observational 1052 

prediction errors between groups (Table 1C). Next, we used each of these ROIs as a 1053 

seed and obtained the respective connectivity strengths with other regions across the 1054 

whole brain (264 regions based on an established template (33) when participants 1055 

watched others in pain in the self-rating phase (vs. the implicit baseline). Finally, we 1056 

correlated the connectivity strength with the W1 parameter. To prevent arbitrariness in 1057 

the definition of the seed region, we defined it with different thresholds, ranging from 1058 

0.001 to 0.05, which led to similar conclusions (see (32) for a similar approach).  1059 
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The multi-region PPI analysis revealed that the connectivity between the left 1060 

TPJ and the rest of the brain showed the strongest modulation by the W1 parameter. 1061 

As such, we focused on the left TPJ in a follow-up PPI analysis. We extracted the 1062 

time series of the left TPJ (the region tracking the observational prediction error) as 1063 

the physiological regressor. Psychological regressors were then convolved onset 1064 

regressors and parametric modulators. Psychophysiological interaction (PPI) terms 1065 

were created by multiplying the time series from the psychological regressors with 1066 

the physiological variable. All of the above were performed for each participant 1067 

separately, and individual gPPI models were created by including the physiological 1068 

variables, the psychological regressors, and the PPI terms (54).  1069 

The physiological, psychological, and psychophysiological interaction 1070 

regressors as well as six motion parameters were then entered into the GLM. We 1071 

first used this GLM to determine regions in which connectivity strength with the left 1072 

TPJ was modulated by watching painful videos in the self-rating phase (vs. the 1073 

implicit baseline) or the observation phase (vs. implicit baseline for a control 1074 

analysis) in the first-level analyses. Thus, we put a weight of 1 on the PPI regressor 1075 

in which the corresponding psychological regressor was the onset time when 1076 

participants watched painful videos in the self-rating phase or in the observation 1077 

phase, and a weight of 0 on all other regressors at the first level. Next, we 1078 

determined regions whereby connectivity strength to the left TPJ was modulated by 1079 

the weight given to observational prediction errors. To do so, we conducted second-1080 
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level covariate analyses in which the contrast image obtained for the first-level gPPI 1081 

analysis was entered into a full-factorial design, with the individual W1 parameters 1082 

in the first session (see computational models for details) as the covariates. We 1083 

entered the W1pos for the high empathy group and W1neg for the low empathy group. 1084 

We tested the functional connectivity that was differentially associated with the W1 1085 

parameter in the high and low empathy group. Imaging results were determined in 1086 

whole-brain analyses, using a combined voxel-level threshold of Puncorrected < 0.001 1087 

and a FWE-corrected cluster-level threshold of P < 0.05. 1088 

The PPI analysis revealed that the individual W1 parameters modulated the 1089 

connectivity between the left TPJ and the left AI in the self-rating phase. In 1090 

additional analyses, we aimed to specify the function of the AI that was identified in 1091 

the PPI analysis. Using the identified AI region (Figure 5, upper panel) as a mask 1092 

for small-volume-correction (FWE-SVC < 0.05), first we regressed the individual 1093 

W1 parameters against the the neural activity to the painful videos in the self-rating 1094 

phase using a second-level regression. Second, we compared the neural activity 1095 

tracked by the trial-by-trial empathy ratings between baseline session and 1096 

generalization session between high and low empathy groups  1097 

Using MarsBaR (http://marsbar.sourceforge.net), we extracted beta values of 1098 

identified clusters to visualize the correlations of the left TPJ with the left AI, and 1099 

with vmPFC, and the weight parameters for high and low empathy groups 1100 

respectively. Specifically, we plotted the connectivity strength for the left AI and 1101 
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vmPFC identified by the PPI analysis (Figure 5). We also extracted the activation of 1102 

the left AI (Figure 5) when watching others in pain in the baseline session to reveal 1103 

the functional role of the AI.  1104 
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Figure S1. Multi-region PPI analysis. The upper panel shows the seeds for the
multi-region PPI analysis and the target regions. The lower panel shows the number
of connectivities modulated by the strength of observational learning (i.e., W1
parameter), collapsed over high and low empathy conditions.



Figure S2. Rating scores from an independent group of female participants (N =
37). The pain intensity ratings were matched between recipients.



Table S1. Predicting change in empathy ratings from baseline ratings, social
desirability, and conformity.
∆Empathy ratings

Predictors β (SE) T-value P-value

High empathy group

Baseline rating 0.096 (0.063) 0.43 0.675

Conformity 0.145 (0.075) 0.66 0.515

Social desirability -0.219 (0.321) -1.04 0.308

Low empathy group

Baseline rating 0.126 (0.122) 0.59 0.558

Conformity -0.158 (0.205) -0.74 0.469

Social desirability 0.091 (0.677) 0.41 0.683



Table S2. Means and standard deviations for computational model parameters of the
winning model for high and low empathy condition in the fMRI study.

Computational Parameter High empathy Low empathy

W1pos 0.46 (0.35) -0.18 (0.49)

W2pos 0.41 (0.34) -0.03 (0.37)

W1neg -0.10 (0.38) 0.25 (0.39)

W2neg -0.18 (0.47) 0.31 (0.36)

Forgetting parameter (γ) 0.80 (0.27) 0.90 (0.14)

Learning rate (α) 0.46 (0.14) 0.47 (0.13)

Note: The parameters W1 and W2, which capture the weight of the influence of
observational prediction errors on changes in participants’ empathy ratings in the
first/second half of the observational learning session.



Table S3. Results of linear mixed models predicting the change of empathy ranting
and the comparison between experiments.

Experiment Regressors Statistic value
χ2 p

fMRI &
Non-social control

Empathy Condition 1.24 0.26
PE 27.70 < 0.001
Experiment 0.51 0.48
Empathy Condition × PE 0.55 0.46
Empathy Condition × Experiment 0.0002 0.98
PE × Experiment 5.34 0.021
Empathy Condition × PE × Experiment 0.29 0.59

fMRI &
Behavioral
replication

Empathy Condition 0.22 0.64
PE 53.62 < 0.001
Experiment 0.0001 0.97
Empathy Condition × PE 0.25 0.62
Empathy Condition × Experiment 0.50 0.48
PE × Experiment 0.55 0.46
Empathy Condition × PE × Experiment 0.06 0.81



Table S4. Sample characteristics of the three studies.

Variables Study 1 Study 2 Study 3 ANOVA

Mean  SD Mean  SD Mean  SD F-value p

Age 21.1  2.1 20.8  2.4 20.7 1.9 0.421 0.657
IRI 96.7  10.3 97.2  99.1  11.9 0.768 0.466

Contagion 22.6  3.8 22.4  23.0  3.7 0.416 0.661
Empathy 23.3 4.5 22.2  22.7  0.872 0.420
SDS 10.1  3.3 9.1  2.7 9.2  3.0 1.814 0.166

Conformity 53.9  10.3 54.0  12.7 51.5  13.6 0.706 0.495

IRI = Interpersonal Reactivity Index; SDS = Social Desirability Scale; Contagion =
Behavioral Contagion; Empathy = Empathy Index.



Table S5. Results of the questionnaire and behavioral measures within studies.

Variables High empathy
group

Low empathy
group

T test

Mean  SD Mean  SD T-value P

Study 1 Age 21.1  2.3 20.8  1.8 -0.066 0.948
IRI 97.6  11.3 95.6  0.698 0.488

Contagion 23.4  4.2 21.7  3.4 1.572 0.122
Empathy 24.3  5.0 22.3  3.7 1.630 0.109
SDS 9.8  3.7 10.5  2.8 -0.720 0.475

Conformity 56.5  10.9 51.3  9.1 1.862 0.068

Study 2 Age 20.7  2.2 20.9  2.6 -0.310 0.758
IRI 97.7  10.6 96.8  0.356 0.723

Contagion 22.4  3.7 22.3  3.4 0.118 0.907
Empathy 22.1  4.2 22.3  3.8 -0.185 0.854
SDS 8.9  2.7 9.3  2.8 -0.570 0.571

Conformity 51. 12.9 56. 12.3 -1.516 0.135

Study 3 Age 21.0  1.9 20.5  1.9 0.962 0.341
IRI 99.6  10.9 98.7  13.0 0.280 0.780

Contagion 22.4  2.8 23.6  4.4 -1.206 0.234
Empathy 22.2  2.8 23.0  5.4 -0.658 0.514
SDS 8.8  3.1 9.6  3.0 -0.981 0.331

Conformity 53.0  15.2 50.0  12.0 0.805 0.425

IRI = Interpersonal Reactivity Index; SDS = Social Desirability Scale; Contagion =
Behavioral Contagion; Empathy = Empathy Index.


