Main content

Contributors:
  1. Adam J Charles
  2. Ian C Harding
  3. Heiko Pälike
  4. John A Marshall
  5. Ying Cui
  6. Lee kump
  7. Ian W Croudance

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Here we present combined radioisotopic dating (U-Pb zircon) and cyclostratigraphic analysis of the carbon isotope excursion at the Paleocene-Eocene (P-E) boundary in Spitsbergen to determine the numerical age of the boundary. Incorporating the total uncertainty from both radioisotopic and cyclostratigraphic data sets gives an age ranging from 55.728 to 55.964 Ma, within error of a recently proposed astronomical age of ∼55.93 Ma. Combined with the assumption that the Paleocene Epoch spans twenty-five 405 kyr cycles, our new age for the boundary suggests an age of ∼66 Ma for the Cretaceous-Paleogene boundary. Furthermore, our P-E boundary age is consistent with the hypothesis that the onset of the Paleocene-Eocene thermal maximum at the boundary occurred on the falling limb of a 405 kyr cycle, suggesting the event was initiated by a different mechanism to that which triggered the other early Eocene hyperthermals.

License: Academic Free License (AFL) 3.0

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.