
Bayesian statistics is an approach to data analysis and 
parameter estimation based on Bayes’ theorem. Unique 
for Bayesian statistics is that all observed and unob-
served parameters in a statistical model are given a joint 
probability distribution, termed the prior and data dis-
tributions. The typical Bayesian workflow consists of 
three main steps (Fig. 1): capturing available knowledge 
about a given parameter in a statistical model via the 
prior distribution, which is typically determined before 
data collection; determining the likelihood function using 
the information about the parameters available in the 
observed data; and combining both the prior distribu-
tion and the likelihood function using Bayes’ theorem in 
the form of the posterior distribution. The posterior distri-
bution reflects one’s updated knowledge, balancing prior 
knowledge with observed data, and is used to conduct 
inferences. Bayesian inferences are optimal when aver-
aged over this joint probability distribution and infer-
ence for these quantities is based on their conditional 
distribution given the observed data.

The basis of Bayesian statistics was first described in a 
1763 essay written by Reverend Thomas Bayes and pub-
lished by Richard Price1 on inverse probability, or how to 
determine the probability of a future event solely based 
on past events. It was not until 1825 that Pierre Simon 
Laplace2 published the theorem we now know as Bayes’ 
theorem (Box 1). Although the ideas of inverse probabil-
ity and Bayes’ theorem are longstanding in mathematics, 

these tools became prominent in applied statistics in 
the past 50 years3–10. We describe many advantages and 
disadvantages throughout the Primer.

This Primer provides an overview of the current 
and future use of Bayesian statistics that is suitable for 
quantitative researchers working across a broad range 
of science-related areas that have at least some knowl-
edge of regression modelling. We supply an overview 
of the literature that can be used for further study and 
illustrate how to implement a Bayesian model on real 
data. All of the data and code are available for teaching 
purposes. This Primer discusses the general framework 
of Bayesian statistics and introduces a Bayesian research 
cycle (Fig. 1). We first discuss formalizing of prior dis-
tributions, prior predictive checking and determining 
the likelihood distribution (Experimentation). We dis-
cuss relevant algorithms and model fitting, describe 
examples of variable selection and variational infer-
ence, and provide an example calculation with poste-
rior predictive checking (Results). Then, we describe 
how Bayesian statistics are being used in different fields 
of science (Applications), followed by guidelines for 
data sharing, reproducibility and reporting standards 
(Reproducibility and data deposition). We conclude 
with a discussion on avoiding bias introduced by using 
incorrect models (Limitations and optimizations), and 
provide a look into the future with Bayesian artificial 
intelligence (Outlook).

Prior distribution
Beliefs held by researchers 
about the parameters in  
a statistical model before 
seeing the data, expressed  
as probability distributions.

Likelihood function
The conditional probability 
distribution of the given 
parameters of the data, 
defined up to a constant.

Posterior distribution
A way to summarize one’s 
updated knowledge, balancing 
prior knowledge with observed 
data.
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Experimentation
This section outlines the first two steps in the Bayesian 
workflow described in Fig. 1. Prior distributions, short-
ened to priors, are first determined. The selection of 
priors is often viewed as one of the more important 
choices that a researcher makes when implementing a 
Bayesian model as it can have a substantial impact on 
the final results. The appropriateness of the priors being 
implemented is ascertained using the prior predictive 
checking process. The likelihood function, shortened to 
likelihood, is then determined. The likelihood is com-
bined with the prior to form the posterior distribution, 
or posterior (Results). Given the important roles that the 
prior and the likelihood have in determining the poste-
rior, it is imperative that these steps be conducted with 
care. We provide example calculations throughout to 
demonstrate the process.

Empirical example 1: PhD delays
To illustrate many aspects of Bayesian statistics we pro-
vide an example based on real-life data. Consider an 
empirical example of a study predicting PhD delays11 in 
which the researchers asked 333 PhD recipients in the 
Netherlands how long it had taken them to complete 
their doctoral thesis. Based on this information, the 
researchers computed the delay — defined as the differ-
ence between the planned and the actual project time 
in months (mean = 9.97, minimum/maximum = –31/91, 
standard deviation = 14.43). Suppose we are interested 
in predicting PhD delay (y) using a polynomial regres-
sion model, y β β Age β Age ε= + + +intercept age age

2
2 , with 

βage representing the linear effect of age (in years). We 
expect this relation to be quadratic, denoted by βage2.  
The model contains an intercept, βintercept, and we assume the  
residuals, ε, are normally distributed with mean zero and 
with an unknown variance, σε

2. Note that we have simpli-
fied the statistical model, and so the results are only meant 
for instructional purposes. Instructions for running the 
code are available for different software12, including steps 
for data exploration13. We refer to this example throughout 
the following sections to illustrate key concepts.

Formalizing prior distributions
Prior distributions play a defining role in Bayesian sta-
tistics. Priors can come in many different distributional 
forms, such as a normal, uniform or Poisson distribu-
tion, among others. Priors can have different levels of 
informativeness; the information reflected in a prior 

distribution can be anywhere on a continuum from com-
plete uncertainty to relative certainty. Although priors 
can fall anywhere along this continuum, there are three 
main classifications of priors that are used in the litera-
ture to categorize the degree of (un)certainty surround-
ing the population parameter value: informative, weakly 
informative and diffuse. These classifications can be 
made based on the researcher’s personal judgement. For 
example, a normal distribution is defined by a mean and 
a variance, and the variance (or width) of the distribution 
is linked to the level of informativeness. A variance of 
1,000 may be considered diffuse in one research setting 
and informative in another, depending on the likelihood 
function as well as the scaling for the parameter.

The relationship between the likelihood, prior and 
posterior for different prior settings for βage from our 
example calculation predicting PhD delays is shown in 
Fig. 2. The first column represents the prior, which has 
a normal distribution for the sake of this example. The 
five different rows of priors represent the different prior 
settings based on the level of informativeness and vari-
ance from the mean. The likelihood, based on the data, 
is represented by a single distribution. The prior and the 
likelihood are combined together to create the poste-
rior according to Bayes’ rule. The resulting posterior is 
dependent on the informativeness (or variance) of the 
prior, as well as the observed data. We demonstrate how 
to obtain the posterior in the Results section.

The individual parameters that control the amount of 
uncertainty in the priors are called hyperparameters. Take 
a normal prior as an example. This distribution is defined 
by a mean and a variance that are the hyperparameters 
for the normal prior, and we can write this distribution 
as N μ σ( , )0 0

2 , where μ0 represents the mean and σ0
2 repre-

sents the variance. A larger variance represents a greater 
amount of uncertainty surrounding the mean, and vice 
versa. For example, Fig. 2 illustrates five prior settings 
with different values for μ0 and σ0

2. The diffuse and 
weakly informative priors show more spread than the  
informative priors, owing to their larger variances.  
The mean hyperparameter can be seen as the peak  
in the distribution.

Prior elicitation. Prior elicitation is the process by which 
a suitable prior distribution is constructed. Strategies 
for prior elicitation include asking an expert or a panel 
of experts to provide values for the hyperparameters of 
the prior distribution14–17. MATCH18 is a generic expert 
elicitation tool, but many methods that can be used to 
elicit information from experts require custom elicita-
tion procedures and tools. For examples of elicitation 
procedures designed for specific models, see refs19–23. 
For an abundance of elicitation examples and methods, 
we refer the reader to the TU Delft expert judgement 
database of more than 67,000 elicited judgements24 
(see also14,25,26). Also, the results of a previous publication 
or meta-analysis can be used27,28, or any combination29 or 
variation of such strategies.

Prior elicitation can also involve implementing data-
based priors. Then, the hyperparameters for the prior 
are derived from the sample data using methods such 
as maximum likelihood30–33 or sample statistics34–36. 
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Informativeness
Priors can have different  
levels of informativeness  
and can be anywhere on a 
continuum from complete 
uncertainty to relative 
certainty, but we distinguish 
between diffuse, weakly and 
informative priors.

Hyperparameters
Parameters that define the 
prior distribution, such as 
mean and variance for a 
normal prior.

Prior elicitation
The process by which 
background information  
is translated into a suitable 
prior distribution.
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These procedures lead to double-dipping, as the same 
sample data set is used to derive prior distributions 
and to obtain the posterior. Although databased priors 
are relatively common, we do not recommend the use 
of double-dipping procedures. Instead, a hierarchical 
modelling strategy can be implemented, where priors 
depend on hyperparameter values that are data-driven 
— for example, sample statistics pulled from the sam-
ple data — which avoids the direct problems linked to 
double-dipping. We refer the reader elsewhere34 for more 
details on double-dipping.

Prior (un)certainty. An informative prior is one that 
reflects a high degree of certainty about the model para
meters being estimated. For example, an informative 

normal prior would be expected to have a very small 
variance. A researcher may want to use an informative 
prior when existing information suggests restrictions 
on the possible range of a particular parameter, or a 
relationship between parameters, such as a positive but 
imperfect relationship between susceptibility to various 
medical conditions37,38. In some cases, an informative 
prior can produce a posterior that is not reflective of 
the population model parameter. There are circum-
stances when informative priors are needed, but it is 
also important to assess the impact these priors have on 
the posterior through a sensitivity analysis as discussed 
below. An arbitrary example of an informative prior for 
our empirical example is βage ~ N(2.5, 5), with a prior 
mean for the linear relation of age with PhD delay of 2.5 

Literature and theory
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Fig. 1 | The Bayesian research cycle. The steps needed for a research cycle using Bayesian statistics include those of a 
standard research cycle and a Bayesian-specific workflow. a | Standard research cycle involves reading literature, defining  
a problem and specifying the research question and hypothesis248,249. The analytic strategy can be pre-registered to enhance 
transparency. b | Bayesian-specific workflow includes formalizing prior distributions based on background knowledge and 
prior elicitation, determining the likelihood function by specifying a data-generating model and including observed data, 
and obtaining the posterior distribution as a function of both the specified prior and the likelihood function134,250. After 
obtaining the posterior results, inferences can be made that can then be used to start a new research cycle. θ, unknown 
parameter; P(.), probability distribution; y, data.

Informative prior
A reflection of a high degree  
of certainty or knowledge 
surrounding the population 
parameters. Hyperparameters 
are specified to express 
particular information 
reflecting a greater degree  
of certainty about the model 
parameters being estimated.
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and a prior variance of 5. A ShinyApp was developed 
specifically for the PhD example containing a visualiza-
tion of how the different priors for all parameters in the 
regression model interact39.

A weakly informative prior has a middling amount of 
certainty, being neither too diffuse nor too restrictive. 
A weakly informative normal prior would have a larger 
variance hyperparameter than an informative prior. 
Such priors will have a relatively smaller impact on the 
posterior compared with an informative prior, depend-
ing on the scale of the variables, and the posterior results 
are weighted more by the data observations as expressed 
in the likelihood.

A researcher may want to use a weakly informative 
prior when some information is assumed about a param-
eter, but there is still a desired degree of uncertainty. In 
Fig. 2, the two examples of weakly informative normal 
priors for the regression coefficient could allow 95% 
of the prior density mass to fall within values between 
–10 and 10 or between 0 and 10. Weakly informative 

priors supply more information than diffuse priors, but 
they typically do not represent specific information 
like an informative prior40,41. When constructing a 
weakly informative prior, it is typical to specify a plausi-
ble parameter space, which captures a range of plausible 
parameter values — those within a reasonable range of 
values for the select parameter (for an example, see the 
ShinyApp we developed for the PhD example39) — and 
make improbable values unlikely by placing a limited 
density mass over them. For example, if a regression coef-
ficient is known to be near 0, then a weakly informative 
prior can be specified to reduce the plausible range to, for 
example, ±5. This prior would reduce the probability of 
observing out-of-bound values (for example, a regression 
coefficient of 100) without being too informative.

Finally, a diffuse prior reflects a great deal of uncer-
tainty about the model parameter. This prior form 
represents a relatively flat density and does not include 
specific knowledge of the parameter (Fig. 2). A researcher 
may want to use a diffuse prior when there is a complete 
lack of certainty surrounding the parameter. In this case, 
the data will largely determine the posterior. Sometimes, 
researchers will use the term non-informative prior as a 
synonym for diffuse42. We refrain from using this term 
because we argue that even a completely flat prior, such 
as the Jeffreys prior43, still provides information about 
the degree of uncertainty44. Therefore, no prior is truly 
non-informative.

Diffuse priors can be useful for expressing a com-
plete lack of certainty surrounding parameters, but they 
can also have unintended consequences on the poste-
rior45. For example, diffuse priors can have an adverse 
impact on parameter estimates via the posterior when 
sample sizes are small, especially in complex modelling 
situations involving meta-analytic models46, logistic 
regression models44 or mixture models47. In addition, 
improper priors are sometimes used with the intention of 
using them as diffuse priors. Although improper priors 
are common and can be implemented with relative ease 
within various Bayesian programs, it is important to note 
that improper priors can lead to improper posteriors. We 
mention this caveat here because obtaining an improper 
posterior can impact the degree to which results can be 
substantively interpreted. Overall, we note that a diffuse 
prior can be used as a placeholder before analyses of 
the same or subsequent data are conducted with more 
informative priors.

Impact of priors. Overall, there is no right or wrong 
prior setting. Many times, diffuse priors can produce 
results that are aligned with the likelihood, whereas 
sometimes inaccurate or biased results can be obtained 
with relatively flat priors47. Likewise, an informative 
prior that does not overlap well with the likelihood can 
shift the posterior away from the likelihood, indicat-
ing that inferences will be aligned more with the prior 
than the likelihood. Regardless of the informativeness 
of the prior, it is always important to conduct a prior 
sensitivity analysis to fully understand the influence 
that the prior settings have on posterior estimates48,49. 
When the sample size is small, Bayesian estimation 
with mildly informative priors is often used9,50,51, but 

Box 1 | Bayes’ theorem

Rényi’s axiom of probability253 lends itself to examining conditional probabilities,  
where the probabilities of Event A and Event B occurring are dependent, or conditional. 
The basic conditional probability can be written as:

p B A
p B A
p A

( )
( )
( )

, (1)| = ∩

where the probability of Event B occurring is conditional on Event A. Equation 1 sets the 
foundation for Bayes’ rule, which is a mathematical expression of Bayes’ theorem that 
recognizes p(B|A) ≠ p(A|B) but p(B ∩ A) = p(A ∩ B), where the notation ∩ represents an 
intersection. Similarly, we can write:

∩| =p A B
p A B
p B

( )
( )
( )

, (2)

which, based on Eq. 1, can be reworked as:

p A B
p B A p A

p B
( )

( ) ( )

( )
(3)| = | .

Equation 3 is Bayes’ rule. These principles can be extended to the situation of data 
and model parameters. With data set y and model parameters θ, Eq. 3 (Bayes’ rule) can 
be written as follows:

θ θ θ| = |
y

y
y

p
p p

p
( )

( ) ( )

( )
, (4)

which is often simplified to:

∝θ θ θ| | .y yp p p( ) ( ) ( ) (5)

The term p(θ|y) represents a conditional probability, where the probability of  
the model parameters (θ) is computed conditional on the data (y), representing the 
posterior distribution. The term p(y|θ) represents the conditional probability of the data 
given the model parameters, and this term represents the likelihood function. Finally, 
the term p(θ) represents the probability of particular model parameter values existing  
in the population, also known as the prior distribution. The term p(y) is a normalizing 
factor and can be dropped from the equation as it does not depend on θ. Thus, the 
posterior distribution is proportional to the likelihood function multiplied by the prior 
distribution.

Weakly informative prior
A prior incorporating some 
information about the 
population parameter  
but that is less certain  
than an informative prior.

Diffuse priors
Reflections of complete 
uncertainty about population 
parameters.

Improper priors
Prior distributions that 
integrate to infinity.
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the prior specification might have a huge effect on the 
posterior results.

When priors do not conform with the likelihood, this 
is not necessarily evidence that the prior is not appro-
priate. It may be that the likelihood is at fault owing to 
a mis-specified model or biased data. The difference 
between the prior and the likelihood may also be reflec-
tive of variation that is not captured by the prior or like-
lihood alone. These issues can be identified through a 
sensitivity analysis of the likelihood, by examining dif-
ferent forms of the model, for example, to assess how the 
priors and the likelihood align.

The subjectivity of priors is highlighted by critics as a 
potential drawback of Bayesian methods. We argue two 
distinct points here. First, many elements of the estima-
tion process are subjective, aside from prior selection, 
including the model itself and the error assumptions. 
To place the notion of subjectivity solely on the priors 
is a misleading distraction from the other elements in 
the process that are inherently subjective. Second, priors 
are not necessarily a point of subjectivity. They can be 
used as tools to allow for data-informed shrinkage, enact 
regularization or influence algorithms towards a likely 
high-density region and improve estimation efficiency. 
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Fig. 2 | Illustration of the key components of Bayes’ theorem. The prior distribution (blue) and the likelihood function 
(yellow) are combined in Bayes’ theorem to obtain the posterior distribution (green) in our calculation of PhD delays.  
Five example priors are provided: one diffuse, two weakly informative with different means but the same variance and  
two informative with the same mean but different variances. The likelihood remains constant as it is determined by  
the observed data. The posterior distribution is a compromise between the prior and the likelihood. In this example, the 
posterior distribution is most strongly affected by the type of prior: diffuse, weakly informative or informative. βage, linear 
effect of age (years); θ, unknown parameter; P(.), probability distribution; y, data.
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Priors are typically defined through previous beliefs, 
information or knowledge. Although beliefs can be char-
acterized as subjective points of view from the researcher, 
information is typically quantifiable, and knowledge can 
be defined as objective and consensus-based. Therefore, 
we urge the reader to consider priors in this broader 
sense, and not simply as a means of incorporating 
subjectivity into the estimation process.

This section on informative, weakly informative and 
diffuse priors was written in a general sense, with these 
terms applicable to both univariate and multivariate pri-
ors. The majority of the discussion in this Primer per-
tains to univariate priors placed on individual model 
parameters; however, these concepts can be extended 
to the multivariate setting, where priors are placed on 

an entire covariance matrix rather than a single element 
from a matrix, for example. For more information on 
multivariate priors, see refs52,53.

Prior predictive checking
Because inference based on a Bayesian analysis is subject 
to the ‘correctness’ of the prior, it is of importance to care-
fully check whether the specified model can be considered 
to be generating the actual data54,55. This is partly done 
by means of a process known as prior predictive checking. 
Priors are based on background knowledge and cannot 
be inherently wrong if the prior elicitation procedure is 
valid, that is, if the background knowledge is correctly 
expressed in probability statements. However, even in the 
case of a valid prior elicitation procedure, it is extremely 
important to understand the exact probabilistic specifi-
cation of the priors. This is especially true for complex 
models with smaller sample sizes9. Because smaller sam-
ple sizes usually convey less information, priors, in com-
parison, will exhibit a strong influence on the posteriors. 
Prior predictive checking is an exercise to improve the 
understanding of the implications of the specified priors 
on possible observations. It is not a method for changing 
the original prior, unless this prior explicitly generates 
incorrect data.

Box56 suggested deriving a prior predictive distribution 
from the specified prior. The prior predictive distribu-
tion is a distribution of all possible samples that could 
occur if the model is true. In theory, a ‘correct’ prior 
provides a prior predictive distribution similar to the 
true data-generating distribution54. Prior predictive 
checking compares the observed data, or statistics of the 
observed data, with the prior predictive distribution, or 
statistics of the predictive distribution, and checks their 
compatibility55. For instance, values are drawn from 
the prior distributions. Using kernel density estimation, 
a non-parametric smoothing approach used to approx-
imate a probability density function57, the original sam-
ple and the samples from the predictive distribution 
can be compared58. Alternatively, the compatibility can 
be summarized by a prior predictive p-value, describing 
how far the characteristics of the observed data lie in 
the tails of the reference prior predictive distribution59. 
Evans and Moshonov60,61 suggested restricting Box’s 
approach to minimal sufficient statistics, that is, sta-
tistics that are as efficient as possible in relaying infor-
mation about the value of a certain parameter from  
a sample62.

Young and Pettit63 argued that measures based on 
the tail area of the prior predictive distribution, such 
as the approaches of Box and Evans and Moshonov, do 
not favour the more precise prior in cases where two 
priors are both specified at the correct value. Instead, 
they propose using a Bayes factor64 to compare two priors 
(Box 2). The Bayes factor would favour the more precise 
prior. These three approaches leave the determination 
of prior–data conflict subjective, depending on an arbi-
trary cut-off value. The data agreement criterion65 tries 
to resolve the prior–data conflict determination issue by 
introducing a clear classification, removing the subjec-
tive element of this decision66. This is done at the expense 
of selecting an arbitrary divergence-based criterion.  

Box 2 | Bayes factors

Hypothesis testing consists of using data to evaluate the evidence for competing claims 
or hypotheses. In the Bayesian framework, this can be accomplished using the Bayes 
factor, which is the ratio of the posterior odds to the prior odds of distinct hypotheses43,64. 
For two hypotheses, H0 and H1, and observed data y, the Bayes factor in favour of H1, 
denoted BF10, is given by:

y y
BF

p H p H

p H p H

( ) / ( )

( ) / ( )
, (6)10

1 0

1 0

= | |

where the prior probabilities are p(H0) and p(H1) = 1 – p(H0). A larger value of BF10 provides 
stronger evidence against H0 (ref.64). The posterior probability of hypothesis Hj, p(Hj|y), 
for j = 0 or 1, is obtained using Bayes theorem:

| =
|

.y
y

y
p H

p H p H

p
( )

( ) ( )

( )
(7)j

j j

Thus, the Bayes factor can equivalently be written as the ratio of the marginal 
likelihoods of the observed data under the two hypotheses:

= |
|

.y
y

BF
p H

p H

( )

( )
(8)10

1

0

The competing hypotheses can take various forms and could be, for example,  
two non-nested regression models. If H0 and H1 are simple hypotheses in which  
the parameters are fixed (for example, H0: μ = μ0 versus H1: μ = μ1), the Bayes factor is 
identical to the likelihood ratio test. When either or both hypotheses are composite or 
there are additional unknown parameters, the marginal likelihood p(y|Hj) is obtained  
by integrating over the parameters θj with prior densities p(θj|Hj). This integral is often 
intractable and must be computed by numerical methods. If p(θj|Hj) is improper (that is, 
p H d( )j j j∫ θ θ| = ∞), then p(y|Hj) will be improper and the Bayes factor will not be uniquely 

defined. Overly diffuse priors should also be avoided, as they result in a Bayes factor 
that favours H0 regardless of the information in the data104.

As a simple illustrative example, suppose one collects n random samples from a 
normally distributed population with an unknown mean μ and a known variance σ2,  
and wishes to test H0: μ = μ0 versus H1: μ ≠ μ0. Let y be the sample mean. H0 is a simple 
hypothesis with a point mass at μ0, so σ| ~y H N n( , / )0 0

2µ . Under H1, y H N n, ( , / )1
2σ| ~µ µ   

and assuming μ|H1~N(μ0, τ2) with τ2 fixed, then yp y H p H p H( ) ( , ) ( )d1 1 1µ µ µ∫| = | |  reduces to 
y H N n( , / )1 0

2 2µ τ σ| ~ + . Thus, the Bayes factor in favour of H1 is:
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For example, for n = 20, y 5 8= . , μ0 = 5, σ2 = 1 and τ2 = 1, the Bayes factor is BF10 = 96.83, 
which provides strong evidence that the mean μ is not 5.

Prior predictive checking
The process of checking 
whether the priors make sense 
by generating data according 
to the prior in order to assess 
whether the results are within 
the plausible parameter space.

Prior predictive distribution
All possible samples that  
could occur if the model is true 
based on the priors.
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An alternative criterion has been developed67 that com-
putes whether the distance between the prior and the 
data is unexpected. For a comparison of both criteria, we 
direct the reader to Lek and van de Schoot68.

Empirical example 1 continued. Prior predictive check-
ing can help prevent mistakes in the formalization of 
the priors. For instance, various software packages can 
notate the same distribution differently. The normal 
distribution of the prior can be specified by the hyper-
parameters mean and variance, mean and standard 
deviation or mean and precision (the inverse of the var-
iance). To illustrate the impact of a data input error, for 
the informative prior with a mean of 2.5 and variance of 
5 shown in Fig. 2, we also show a prior for which we have 

intentionally mis-specified the variance as the precision 
value (0.2), shown as βage ~ N(2.5, 0.2). If a user is not 
aware of differences between variance and precision, a 
prior that was intended to be weakly informative can 
easily turn into an informative prior distribution. Note 
that in this example the prior predictive distribution 
and the data are compared on the mean and standard 
deviation of the data, as these are commonly used to 
check prior predictive performance. The comparison 
statistics can, however, be chosen to reflect important 
characteristics of the data, such as skewness.

The prior predictive checks shown in Fig. 3 help to 
avoid mis-specification, for instance, when comparing 
the prior predictive distribution when precision is mis-
takenly used instead of variance (Fig. 3a) with the distri-
bution based on the correct hyperparameters (Fig. 3b). 
We also show the kernel density estimate57, or the esti-
mate of the probability density function, of the observed 
data versus simulated data (Fig. 3c). Because of the com-
binations of uncertainty in the priors, the prior predic-
tive kernel density estimates can be quite different from 
the observed data, and so it is also important to check 
that the prior predictive kernel distributions are not 
orders of magnitude different from the observed data.

Determining the likelihood function
The likelihood is used in both Bayesian and frequentist 
inference69. In both inference paradigms, its role is to 
quantify the strength of support the observed data lends 
to possible value(s) for the unknown parameter(s). The 
key difference between Bayesian and frequentist infer-
ence is that frequentists do not consider probability 
statements about the unknown parameters to be useful. 
Instead, the unknown parameters are considered to be 
fixed; the likelihood is the conditional probability distri-
bution p(y|θ) of the data (y), given fixed parameters (θ).  
In Bayesian inference, unknown parameters are referred 
to as random variables in order to make probability state-
ments about them. The (observed) data are treated as 
fixed, whereas the parameter values are varied; the like-
lihood is a function of θ for the fixed data y. Therefore, 
the likelihood function summarizes the following ele-
ments: a statistical model that stochastically generates 
all of the data, a range of possible values for θ and the 
observed data y.

Because the concept of likelihood is not specific to 
Bayesian methods, we do not provide a more elaborate 
introduction of the statistical concept here. Instead, we 
direct the interested reader to a recent tutorial70 describ-
ing likelihood in common frequentist and Bayesian 
statistical methods. For a complete mathematical expla-
nation on this topic, see ref.71. Much of the discussion 
surrounding Bayesian inference focuses on the choice of 
priors, and there is a vast literature on potential default 
priors72,73. The inclusion of available knowledge into  
a prior is the most noticeable difference between fre-
quentist and Bayesian methods, and a source of contro-
versy. The importance of the likelihood is often omitted 
from the discussion, even though the specified model 
for the data — represented by the likelihood function —  
is the foundation for the analysis74. The posterior distri-
bution is the result of the prior distribution in interaction 
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Fig. 3 | Prior predictive checking for the PhD delay example. a | In this scenario, 
precision is mistakenly used instead of variance (0.2 versus 5) for the linear effect of  
age (years), βage, and the prior predictive distribution displays an unexpected pattern.  
The test statistic, T, of interest is the combination of the mean and standard deviation 
(s.d.): T(mean, s.d.). The observed combination of the mean and s.d., T(y) (green), is shown 
along with the same combination but now obtained from samples of the prior predictive 
distribution, T(yrep) (blue). b | In this scenario, the prior predictive distribution is shown 
using the correct implementation of variance. The prior predictive checks for the  
correct implementation of the priors seem reasonable given the data. c | A kernel density 
estimate of the observed data is displayed (y; green), and kernel density estimates for  
the samples of the prior predictive distribution (yrep; blue)57,58. The priors cover the  
entire plausible parameter space with the observed data in the centre. Computed via 
Stan98 — the scripts are available at the Open Science Framework141.

Kernel density estimation
A non-parametric approach 
used to estimate a probability 
density function for the 
observed data.

Prior predictive p-value
An estimate to indicate how 
unlikely the observed data are 
to be generated by the model 
based on the prior predictive 
distribution
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with the assumed probability model for the data in the 
context of the observed data72. Without the context of 
the likelihood in which it will be paired, the prior is often 
impossible to interpret.

In some cases, specifying a likelihood function can 
be very straightforward (Box 3). However, in practice, the 
underlying data-generating model is not always known. 
Researchers often naively choose a certain data-generating 
model out of habit or because they cannot easily change 
it in the software. Although based on background 
knowledge, the choice of the statistical data-generating 
model is subjective and should therefore be well under-
stood, clearly documented and available to the reader. 
Robustness checks should be performed on the selected 
likelihood function to verify its influence on the posterior 
estimates73. Although most research on Bayesian robust-
ness focuses on the sensitivity of the posterior results to 
the specification of the prior, a few contributions have 
focused on the sensitivity of the posterior results to the 
specification of the likelihood function75–77.

Results
After specifying the prior and the likelihood, and collect-
ing the data, the posterior distribution can be obtained. 
Here, we explain how a model can be fitted to data to 
obtain a posterior distribution, how to select variables 
and why posterior predictive checking is needed. Model 
building is an iterative process; any Bayesian model can 
be viewed as a placeholder that can be improved in 
response to new data or lack of fit to existing data, or 
simply through a process of model refinement. Box56, 
Rubin78 and Gelman et  al.74 discuss the fluidity of 
Bayesian model building, inference, diagnostics and 
model improvement.

Model fitting
Once the statistical model has been defined and the 
associated likelihood function derived, the next step 
is to fit the model to the observed data to estimate the 
unknown parameters of the model. Although statistical 
models are a simplification of reality, they aim to capture 

the primary factors of the underlying system that we 
wish to improve our understanding of and which lead 
to the data that we observe. Models may differ substan-
tially in their complexity, taking into account the many 
different possible factors or mechanisms that act on the 
underlying system, and sources of stochasticity and vari-
ability resulting in the given data that we observe. Fitting 
the models to the observed data permits the estimation 
of the model parameters, or functions of these, leading to 
an improved understanding of the system and associated 
underlying factors.

The frequentist framework for model fitting focuses 
on the expected long-term outcomes of an experiment 
with the intent of producing a single point estimate for 
model parameters such as the maximum likelihood 
estimate and associated confidence interval. Within the 
Bayesian framework for model fitting, probabilities are 
assigned to the model parameters, describing the asso-
ciated uncertainties. In Bayesian statistics, the focus is 
on estimating the entire posterior distribution of the 
model parameters. This posterior distribution is often 
summarized with associated point estimates, such as the 
posterior mean or median, and a credible interval. Direct 
inference on the posterior distribution is typically not 
possible, as the mathematical equation describing the 
posterior distribution is usually both very complicated 
and high-dimensional, with the number of dimensions 
equal to the number of parameters. The expression 
for the posterior distribution is typically only known 
up to a constant of proportionality, a constant term in 
the posterior distribution that is not a function of the 
parameters and, in general, cannot be explicitly calcu-
lated. In particular, the denominator of the expression 
for the posterior distribution is a function of only the 
data, where this function is not available in closed form 
but expressible only as an analytically intractable inte-
gral. This means that we cannot evaluate the posterior 
distribution exactly, and so cannot calculate, for exam-
ple, associated summary statistics of interest directly. 
Further, the high dimensionality exacerbates these prob-
lems, so that calculating the marginal posterior distribution 
may also not be tractable, and expressible only in integral 
form. We note that this intractability of the posterior dis-
tribution was the primary practical reason why Bayesian 
statistics was discarded by many scientists in favour of 
frequentist statistics. The seminal article by Gelfand 
and Smith79 described how Markov chain Monte Carlo 
(MCMC), a technique for sampling from a probability 
distribution, can be used to fit models to data within 
the Bayesian paradigm80. In particular, the MCMC algo-
rithm only requires the probability distribution of inter-
est to be specified up to a constant of proportionality and 
is scalable to high dimensions.

Markov chain Monte Carlo. MCMC is able to indirectly 
obtain inference on the posterior distribution using 
computer simulations80. MCMC permits a set of sampled 
parameter values of arbitrary size to be obtained from 
the posterior distribution, despite the posterior distri-
bution being high-dimensional and only known up to 
a constant of proportionality. These sampled parame-
ter values are used to obtain empirical estimates of the 

Box 3 | The likelihood function for a coin experiment

Consider the following textbook example: we are given a coin and want to know the 
probability of obtaining heads (θ). To examine this, we toss the coin several times and 
count the number of heads. Let the outcome of the ith flip be denoted by hi, specifically 
hi = 1 for heads and hi = 0 for tails. The total experiment yields a sample of n independent 
binary observations {h1, …, hn} = h with y as the total number of heads, calculated by 
summing hi over n flips: y hi

n
i1= ∑ = . We can assume that the probability of obtaining 

heads remains constant over the experiment, so p(hi = 1) = θ, (i = 1, …, n). Therefore the 
probability of the observed number of heads is expressed by the binomial distribution, 
where y = 0, 1, ..., n:

θ θ θ θ| = − ≤ ≤−( )( )p y
n
y (1 ) , 0 1 (10)y n y

When y is kept fixed and θ is varied, p(y|θ) becomes a continuous function of θ, called 
the binomial likelihood function254.

Suppose we flipped the coin 10 times and observed 4 heads, then the likelihood 
function of θ is defined by:

( )( )p y 10
4

(1 ) , 0 1 (11)4 6θ θ θ θ| = − ≤ ≤ .

Bayes factor
The ratio of the posterior  
odds to the prior odds of  
two competing hypotheses, 
also calculated as the ratio  
of the marginal likelihoods 
under the two hypotheses.  
It can be used, for example,  
to compare candidate models, 
where each model would 
correspond to a hypothesis.

Credible interval
An interval that contains a 
parameter with a specified 
probability. The bounds of  
the interval are the upper  
and lower percentiles of  
the parameter’s posterior 
distribution. For example,  
a 95% credible interval  
has the upper and lower 2.5% 
percentiles of the posterior 
distribution as its bounds.

Closed form
A mathematical expression 
that can be written using a 
finite number of standard 
operations.

Marginal posterior 
distribution
Probability distribution  
of a parameter or subset of 
parameters within the 
posterior distribution, 
irrespective of the values of 
other model parameters. It is 
obtained by integrating out the 
other model parameters from 
the joint posterior distribution.
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posterior distribution of interest. This posterior distri-
bution, and associated summary statistics of interest, can 
be estimated up to the desired accuracy by increasing 
the number of sampled parameter values, if necessary. 
We note that owing to the high dimensionality of the 
posterior distribution, it is often useful to focus on 
the marginal posterior distribution of each parameter,  
defined by integrating out over the other parame-
ters. Marginal distributions are useful for focusing on 
individual parameters but, by definition, do not pro-
vide any information on the relationship between the  
parameters.

Here, we focus on MCMC for posterior inference. 
MCMC combines two concepts: obtaining a set of 
parameter values from the posterior distribution using 
the Markov chain; and obtaining a distributional estimate 
of the posterior and associated statistics with sampled 
parameters using Monte Carlo integration. Although 
MCMC is the most common class of algorithm used 
in Bayesian analyses, there are other model-fitting 
algorithms (Table 1). Other available estimators can be 
found elsewhere81,82.

In general, Monte Carlo integration is a technique 
for estimating integrals using computer simulations of 
sampled values from a given distribution. Given these 

sampled parameter values, Monte Carlo integration 
permits estimation of this distribution using associ-
ated empirical estimates83. For example, for distribu-
tional summary statistics, such as the mean, variance 
or symmetric 95% credible interval of a parameter, 
we estimate these summary statistics using the corre-
sponding sample mean, sample variance, and 2.5% and 
97.5% quantile parameter values, respectively. Similarly, 
probability statements — such as the probability that 
a parameter is positive or negative, or that it lies in a 
range [a,b] — can be estimated as the proportion of  
the sampled values that satisfy the given statement. The 
marginal posterior distribution of any given parameter 
can be obtained by kernel density estimation, which 
uses a non-parametric approach for estimating the 
associated density from which sampled values have been  
drawn58.

It is not possible to directly and independently sam-
ple parameter values from the posterior distribution. 
This leads to the use of the Markov chain. The idea is to 
obtain a set of sampled parameter values from the pos-
terior distribution of interest by constructing a Markov 
chain with a specified first-order transition kernel, such 
that the resulting stationary distribution of the Markov 
chain is equal to this posterior distribution of interest. 

Table 1 | An overview of MCMC-based and non-MCMC-based sampling techniques

Approach Short description

MCMC-based methods

Metropolis–Hastings An algorithm used for obtaining random samples from a probability distribution. Uses 
a general proposal distribution, with an associated accept/reject step for the proposed 
parameter value(s)85,86

Reversible jump MCMC An extension of the Metropolis–Hastings algorithm. Permits simulation of trans-dimensional 
moves within parameter space35,225

Hamiltonian Monte 
Carlo

A Metropolis–Hastings algorithm based on Hamiltonian dynamics87. This algorithm is useful 
if direct sampling is difficult, if the sample size is small or when autocorrelation is high.  
The algorithm avoids the random walk of Metropolis–Hastings and sensitivity by taking  
a series of steps informed by first-order gradient information. The No-U-Turn Sampler226 is 
an extension and is often faster because it often avoids the need for tuning the model

Gibbs sampler A Metropolis–Hastings algorithm where the proposal distribution is the corresponding 
posterior conditional distribution, with an associated acceptance probability of 1 (ref.84)

Particle MCMC A combined sequential Monte Carlo algorithm and MCMC used when the likelihood is 
analytically intractable177

Evolutionary Monte 
Carlo

An MCMC algorithm that incorporates features of genetic algorithms and simulated 
annealing227. It allows the Markov chain to effectively and efficiently explore the parameter 
space and avoid getting trapped at local modes of the posterior distribution. It is particularly 
useful when the target distribution function is high-dimensional or multimodal

Non-MCMC-based methods

Sequential Monte Carlo An algorithm based on multiple importance sampling steps for each observed data point. 
Often used for online or real-time processing of data arrivals228

Approximate Bayesian 
computation

An approximate approach, typically used when the likelihood function is analytically 
intractable or very computationally expensive229

Integrated nested 
Laplace approximations

An approximate approach developed for the large class of latent Gaussian models, which 
includes generalized additive spline models, Gaussian Markov processes and random fields230

Variational Bayes Variational inference describes a technique to approximate posterior distributions via 
simpler approximating distributions. The popular mean-field approximation assigns an 
approximating variational distribution to each parameter independently. Gradient descent 
is then used to optimize the variational parameters to minimize a loss function known as  
the evidence lower bound99

MCMC, Markov chain Monte Carlo.

Markov chain Monte Carlo
(MCMC). A method to 
indirectly obtain inference on 
the posterior distribution by 
simulation. The Markov chain 
is constructed such that its 
corresponding stationary 
distribution is the 
posterior distribution of interest. 
Once the chain has reached 
the stationary distribution, 
realizations can be regarded  
as a dependent set of sampled 
parameter values from the 
posterior distribution. These 
sampled parameter values  
can then be used to obtain 
empirical estimates of the 
posterior distribution, and 
associated summary statistics 
of interest, using Monte Carlo 
integration.

Markov chain
An iterative process whereby 
the values of the Markov  
chain at time t + 1 are only 
dependent on the values  
of the chain at time t.

Monte Carlo
A stochastic algorithm for 
approximating integrals  
using the simulation of  
random numbers from a  
given distribution. In particular, 
for sampled values from a 
distribution, the associated 
empirical value of a given 
statistic is an estimate of  
the corresponding summary 
statistic of the distribution.

Transition kernel
The updating procedure  
of the parameter values  
within a Markov chain.

	  9NATURE REVIEWS | METhoDS PrImErS | Article citation ID:             (2021) 1:1 

P r i m e r

0123456789();



If the Markov chain is run sufficiently long to reach 
its stationary distribution, subsequent realizations of  
the chain can be regarded as a dependent sample from the  
posterior distribution, and can be used to obtain the cor-
responding Monte Carlo estimates (Fig. 4a). We empha-
size that the sampled parameter values obtained from the 
Markov chain are autocorrelated — they are dependent 
on their previous values in the chain — and are gener-
ated by the first-order Markov chain. The Markov chain 
is defined by the specification of the initial parameter 
values and transition kernel. The Gibbs sampler84, the 
Metropolis–Hastings algorithm85,86 and Hamiltonian 
Monte Carlo87 are standard approaches for defining the 
transition kernel so that the corresponding stationary 
distribution is the correct posterior distribution.

MCMC technical aspects. Obtaining posterior inference 
by fitting models to observed data can be complicated 
owing to model complexities or data collection pro-
cesses. For example, for random effect models or in the 
presence of latent variables, the likelihood may not be 
available in closed form but only expressible as an ana-
lytically intractable integral of the random effect terms 
or latent variables. Alternatively, the likelihood may be 
available in closed form, but may be multimodal — for 
example, for a finite mixture model or a discrete latent 
variable model. This, in turn, can lead to poor perfor-
mance of the algorithm with one (or more) mode(s) 
not explored by the algorithm. In such circumstances, 
data augmentation is often used88, where we define 
additional variables, or auxiliary variables, such that the 
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Fig. 4 | Posterior estimation using MCMC for the PhD-delays example. a | Trace plots showing the iteration number 
against the parameter value for the PhD delay data of four independent chains of the Markov chain Monte Carlo (MCMC) 
algorithms for exploring the posterior distribution of an intercept, βintercept. The shaded section represents the warm-up 
phase and was omitted for constructing the posterior distribution. b | The associated R̂ statistic for βintercept, which appears 
to converge on 1 after approximately 2,000 iterations (shaded). c–e | The prior and posterior distributions for βintercept 
(part c), the linear effect of age (years), βage (part d) and β

age2
 (part e) are shown. For each chain, the first 2,000 iterations  

are discarded as warm-up. f | To illustrate the interrelation between two parameters, the prior (blue) and posterior (green) 
marginal densities for βage and β

age2 are shown. All results are computed in Stan98 — the scripts are available at the Open 
Science Framework141.

Auxiliary variables
Additional variables entered  
in a model such that the joint 
distribution is available in 
closed form and quick to 
evaluate.
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joint distribution of the data and auxiliary variables — 
often referred to as the ‘complete data’ likelihood — is 
now available in closed form and quick to evaluate. For 
example, in a random effects model, auxiliary variables 
correspond to the individual random effect terms that 
would previously have been integrated out; for a finite 
mixture model, the auxiliary variables correspond to 
the mixture component to which each observation 
belongs. A new joint posterior distribution is then con-
structed over both the model parameters and the auxil-
iary variables; this posterior distribution is defined to be 
proportional to the complete data likelihood and asso-
ciated prior distributions specified on the parameters. 
A standard MCMC algorithm can then be applied that 
obtains a set of sampled parameter values over both the 
model parameters and auxiliary variables. Discarding 
the auxiliary variables and considering only the values 
of the model parameters of interest within the Markov 
chain provides a sample from the original posterior dis-
tribution of the model parameters conditional on the 
observed data. Auxiliary variables may themselves be of 
interest in some cases, for example where they repre-
sent missing data values or some tangible concept such 
as a homogeneous subgroup (for a mixture model) or 
true underlying state (as for a state space model), and 
inference on these can be easily obtained using the 
sampled values.

The transition kernel determines the MCMC algo-
rithm, describing how the parameter values and any 
other additional auxiliary variables are updated at each 
iteration of the Markov chain. In order for the station-
ary distribution of the Markov chain to be the posterior 
distribution of interest, the transition kernel is specified 
such that it satisfies some straightforward rules. The tran-
sition kernel is typically defined using some predefined 
proposal distribution: a set of new parameter values is 
proposed from this proposal distribution, and these val-
ues are subsequently either accepted or rejected based on 
a given acceptance probability, which is a function of the 
proposal distribution. If the proposed values are accepted, 
the Markov chain moves to this new state; whereas if the 
values are rejected, the Markov chain remains in the same 
state at the next iteration. We note that the transition ker-
nel is non-unique, in that there are many possible choices 
for this proposal distribution that will lead to the correct 
stationary distribution. Common proposal distributions 
include: the posterior conditional distribution, leading to 
the Gibbs sampler where the acceptance probability in the 
updating step is equal to one; the Metropolis–Hastings 
random walk sampler, which randomly perturbs the 
parameter values from their current values; the slice 
sampler; and the No-U-Turn Sampler, among many oth-
ers. We do not focus further on the internal mechanics 
of the MCMC algorithm here as there is a wealth of lit-
erature on this topic and, also, associated computational 
tools and programs for performing a Bayesian analysis 
using an MCMC approach. For further discussion, see, 
for example, refs74,89,90.

Assessing performance. The choice of transition kernel 
defines the performance of the MCMC algorithm by 
determining how long the Markov chain needs to be run 

to obtain reliable inference on the posterior distribution. 
Trace plots can display the values of the parameters over 
many iterations. One-dimensional trace plots are most 
commonly used; they describe the value of a parame-
ter at each iteration of the Markov chain on the y axis 
against the iteration number on the x axis and are often a 
useful exploratory tool (Fig. 4a). In particular, trace plots 
provide a visualization of the chain in terms of how each 
parameter is exploring the parameter space — referred 
to as mixing. If this mixing is poor, in that the chain 
takes a long time to explore the posterior parameter 
space, changes to the specified transition kernel may be 
required. For example, poor mixing may be due to only 
very small parameter value changes between successive 
iterations or if there is a high rejection rate of the pro-
posed parameter values, so that the parameter values 
remain the same across many successive iterations of the 
MCMC algorithm. These plots are also informally used 
for identifying when the Markov chain has reached its 
stationary distribution. Realizations of the chain prior to 
convergence to its stationary distribution are discarded; 
this process is commonly known as burn-in, although 
we prefer the term warm-up and refer to this process 
thus in this Primer91.

The most common technique for assessing the con-
vergence of a Markov chain to its stationary distribu-
tion is the R̂ statistic, which is defined as the ratio of 
within-chain to between-chain variability92,93. In order 
to apply this approach, multiple independent runs of the 
MCMC algorithm need to be run (Fig. 4b). Ideally, each 
of the Markov chains should start from different start-
ing values and using different random seeds in order 
to provide greater initial variability across the Markov 
chains, and to make it more likely that non-convergence 
of the chain to the stationary distribution will be identi-
fied. This non-convergence could happen, for example, 
if different sub-modes of the posterior distribution are 
being explored. Values close to one for all parameters 
and quantities of interest suggest that the chain has suf-
ficiently converged to the stationary distribution, so that 
future realizations can be regarded as a sample from the 
posterior distribution (Fig. 4b). When the stationary dis-
tribution is reached, the number of iterations needed to 
obtain reliable, low-error Monte Carlo estimates can be 
determined. To assess the required number of iterations, 
the sampled values are often batched, which involves 
subdividing the sampled values into non-overlapping 
batches of consecutive iterations and considering the 
variability of the estimated statistic using the sampled 
values in each batch94.

The effective sample size of the sampled parameter 
values may be obtained to provide an indication of the 
efficiency of the algorithm. The effective sample size 
roughly expresses how many independent sampled 
parameter values contain the same information as the 
autocorrelated MCMC samples; recall that the sam-
pled MCMC values are not independent as they are 
generated using a first-order Markov chain. Here, the 
effective sample size does not refer to the sample size of 
the data; rather, it is the effective length of the MCMC 
chain. Low sampling efficiency is related to high auto-
correlation (and poor mixing) — so that the variability 

Trace plots
Plots describing the posterior 
parameter value at each 
iteration of the Markov  
chain (on the y axis) against  
the iteration number  
(on the x axis).

R̂ statistic
The ratio of within-chain and 
between-chain variability. 
Values close to one for all 
parameters and quantities of 
interest suggest the Markov 
chain Monte Carlo algorithm 
has sufficiently converged to 
the stationary distribution.
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of the parameter values is small over successive itera-
tions — and non-smooth histograms of posteriors. In 
these circumstances, longer simulations are typically 
required to obtain reliable estimates of the posterior 
distribution and sufficiently small Monte Carlo error in 
the estimated posterior summary statistics. The latter 
issue of a small effective sample size, in turn, could point 
towards potential problems in the model estimation or 
weak identifiability of the parameters21. Therefore, when 
problems occur in obtaining reliable Monte Carlo esti-
mates, a good starting point is to sort all variables based 
on effective sample size and investigate those with the 
lowest effective sample size first. Effective sample size is 
also useful for diagnosing the sampling efficiency for a 
large number of variables95.

Computer software. There are now many standard com-
putational packages for implementing Bayesian analyses 
(Table 2), which have subsequently led to the growth of 
Bayesian inference across many scientific fields. Many 
of the available packages perform the MCMC algorithm 
as a black box — although often with options to change 
the default settings — permitting the analyst to focus 
on the prior and model specification, and avoid any 
technical coding. There are many additional packages 
that make it easier to work with the sometimes heavily 
code-based software, such as the packages BRMS96 and 
Blavaan97 in R for simplifying the use of the probabilistic 
programming language Stan98.

Empirical example 1 continued. The priors for the PhD 
delay example were updated with the data, and poste-
riors were computed in Stan98. The trace plot of four 
independent runs of the MCMC algorithms for βintercept is 
shown in Fig. 4a, displaying stability post warm-up. The 
associated R̂ statistic stabilizes after approximately 2,000 
iterations (Fig. 4b). The prior and posterior distributions 
are displayed in Fig. 4c–e. As can be seen, the priors and 
posteriors are very close to each other, indicating that 
our prior knowledge is ‘confirmed’ by the newly col-
lected data. Also, it can be seen that the uncertainty 
has decreased (for example, the posterior variances are 
smaller compared with the prior variances), indicat-
ing that we have updated our knowledge. To illustrate 
how easy it is to compute parameter interrelations, we 
also plotted the prior and posterior marginal densities 
between βage and βage2 (Fig. 4f).

Variational inference. As we have outlined, Bayesian 
analysis consists of numerous stages including detailed 
model development, specifying the prior and data mod-
els, the derivation of exact inference approaches based 
on MCMC, and model checking and refinement. Each 
of these stages is ideally treated independently, separat-
ing model construction from its computational imple-
mentation. The focus on exact inference techniques has 
spurned considerable activity in developing Monte Carlo 
methods, which are considered the gold standard for 
Bayesian inference. Monte Carlo methods for Bayesian 

Table 2 | A non-exhaustive summary of commonly used and open Bayesian software programs

Software package Summary

General-purpose Bayesian inference software

 BUGS231,232 The original general-purpose Bayesian inference engine, in different incarnations. 
These use Gibbs and Metropolis sampling. Windows-based software (WinBUGS233) with 
a user-specified model and a black-box MCMC algorithm. Developments include an 
open-source version (OpenBUGS234) also available on Linux and Mac

 JAGS235 An open-source variation of BUGS that can run cross-platform and can run from R via rjags236

 PyMC3237 An open-source framework for Bayesian modelling and inference entirely within Python; 
includes Gibbs sampling and Hamiltonian Monte Carlo

 Stan98 An open-source, general-purpose Bayesian inference engine using Hamiltonian  
Monte Carlo; can be run from R, Python, Julia, MATLAB and Stata

 NIMBLE238 Generalization of the BUGS language in R; includes sequential Monte Carlo as well  
as MCMC. Open-source R package using BUGS/JAGS-model language to develop a 
model; different algorithms for model fitting including MCMC and sequential Monte 
Carlo approaches. Includes the ability to write novel algorithms

Programming languages that can be used for Bayesian inference

 TensorFlow Probability239,240 A Python library for probabilistic modelling built on Tensorflow203 from Google

 Pyro241 A probabilistic programming language built on Python and PyTorch204

 Julia242 A general-purpose language for mathematical computation. In addition to Stan, numerous 
other probabilistic programming libraries are available for the Julia programming language, 
including Turing.jl243 and Mamba.jl244

Specialized software doing Bayesian inference for particular classes of models

 JASP245 A user-friendly. higher-level interface offering Bayesian analysis. Open source and relies 
on a collection of open-source R packages

 R-INLA230 An open-source R package for implementing INLA246. Fast inference in R for a certain set 
of hierarchical models using nested Laplace approximations

 GPstuff247 Fast approximate Bayesian inference for Gaussian processes using expectation 
propagation; runs in MATLAB, Octave and R

MCMC, Markov chain Monte Carlo.
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inference adopt a simulation-based strategy for approx-
imating posterior distributions. An alternative approach 
is to produce functional approximations of the poste-
rior using techniques including variational inference99 or 
expectation propagation100. Here, we describe variational 
inference, also known as variational methods or varia-
tional Bayes, owing to its popularity and prevalence of 
use in machine learning.

Variational inference begins by constructing an 
approximating distribution to estimate the desired — 
but intractable — posterior distribution. Typically, the 
approximating distribution chosen is from a family of 
standard probability distributions, for example multivar-
iate normal distributions, and further assumes that some 
of the dependencies between the variables in our model 
are broken to make subsequent computations tracta-
ble. In the case where the approximating distribution 
assumes all variables are independent, this gives us the 
mean-field approximation. The approximating distribu-
tion will be specified up to a set of variational parameters 
that we optimize to find the best posterior approximation 
by minimizing the Kullback–Leibler divergence from the 
true posterior. As a consequence, variational inference 
reframes Bayesian inference problems as optimization 
problems rather than as sampling problems, allow-
ing them to be solved using numerical optimization. 
When combined with subsampling-based optimization 
techniques such as stochastic gradient descent, varia-
tional inference makes approximate Bayesian inference 
possible for complex large-scale problems101–103.

Variable selection
Variable selection is the process of identifying the sub-
set of predictors to include in a model. It is a major 
component of model building along with determining 
the functional form of the model. Variable selection is 
especially important in situations where a large num-
ber of potential predictors are available. The inclusion 
of unnecessary variables in a model has several disad-
vantages, such as increasing the risk of multicollinearity, 
insufficient samples to estimate all model parameters, 
overfitting the current data leading to poor predictive 
performance on new data and making model interpre-
tation more difficult. For example, in genomic studies 
where high-throughput technologies are used to profile 
thousands of genetic markers, only a few of those mark-
ers are expected to be associated with the phenotype or 
outcome under investigation.

Methods for variable selection can be categorized into 
those based on hypothesis testing and those that per-
form penalized parameter estimation. In the Bayesian 
framework, hypothesis testing approaches use Bayes 
factors and posterior probabilities, whereas penalized 
parameter estimation approaches specify shrinkage priors 
that induce sparsity. Bayes factors are often used when 
dealing with a small number of potential predictors as 
they involve fitting all candidate models and choos-
ing between them. On the other hand, penalization 
methods fit a single model and are able to scale up to 
high-dimensional data.

We provide a brief review of these approaches in the 
context of a classical linear regression model, where 

the response variable from n independent observations, 
y, is related to p potential predictors defined in an n × p 
covariate matrix X via the model y = Xβ + ε. The regres-
sion coefficient β captures the effect of the covariates 
on the response variable and ε represents the residuals 
assumed to follow a normal distribution with mean zero 
and variance σ2.

Bayes factors and posterior model probabilities. Bayes 
factors64 (Box 2) can be used to compare and choose 
between candidate models, where each candidate 
model corresponds to a hypothesis. Unlike frequen-
tist hypothesis testing methods, Bayes factors do not 
require the models to be nested. In the context of var-
iable selection, each candidate model corresponds to a 
distinct subset of the p potential predictors104,105. These 
2p possible models can be indexed by a binary vector 
γ = (γ1, …, γp)', where γj = 1 if covariate Xj is included 
in the model, that is, βj ≠ 0, and γj = 0 otherwise. Let Mγ 
be the model that includes the Xj values with γj = 1. Prior 
distributions for each model, p(Mγ), and for the param-
eters under each model, p(βγ, σ2|Mγ), are specified, and 
Bayes factors BFγb are evaluated to compare each model 
Mγ with one of the models taken as a baseline, Mb. The 
posterior probability, p(Mγ|y), for each model can be 
expressed in terms of the Bayes factors as:

|
′ ′ ′

yp M
BF p M

BF p M
( ) =

( )

∑ ( )
(12)γ

γ γ

γ γ γ

b

b

where the denominator sums over all considered mod-
els Mγ′

. The models with the largest posterior proba-
bilities would correspond to models with the highest 
amount of evidence in their favour among those under 
consideration. When p is relatively small (for example, 
<20), all 2p variable subsets and their posterior proba-
bilities can be evaluated. The model with the highest 
posterior probability may be selected as the one most 
supported by the data. Alternatively, the covariates 
with high marginal posterior inclusion probabilities, 

y yp γ p M( = 1 ) = ∑ ( )j X M γj γ
| |∈ , may be selected. For a 

moderate to large p, this strategy is not practically feasi-
ble as an exhaustive evaluation of all 2p possible models 
becomes computationally expensive. Instead, shrinkage 
priors that induce sparsity, either by setting the regres-
sion coefficients of non-relevant covariates to zero or by 
shrinking them towards zero, are specified and MCMC 
techniques are used to sample from the posterior 
distribution.

Shrinkage priors. Various shrinkage priors have been 
proposed over the years. A widely used shrinkage prior 
is the spike-and-slab prior, which uses the latent binary 
indicator vector ⋯ ∈γ γ γ= ( , , ) {0, 1}p

p
1

 to induce a mix-
ture of two distributions on βj, one peaked around zero 
(spike) and the other a diffuse distribution (slab)106,107. 
The spike component identifies the zero elements 
whereas the slab component captures the non-zero 
coefficients. The discrete spike-and-slab formulation106 
uses a mixture of a point mass at zero and a diffuse 
prior (Fig. 5a), whereas the continuous spike-and-slab 

Variational inference
A technique to build 
approximations to the  
true Bayesian posterior 
distribution using combinations 
of simpler distributions whose 
parameters are optimized  
to make the approximation  
as close as possible to the  
actual posterior.

Approximating distribution
In the context of posterior 
inference, replacing a 
potentially complicated 
posterior distribution with a 
simpler distribution that is easy 
to evaluate and sample from. 
For example, in variational 
inference, it is common to 
approximate the true posterior 
with a Gaussian distribution.

Stochastic gradient descent
An algorithm that uses a 
randomly chosen subset of 
data points to estimate the 
gradient of a loss function  
with respect to parameters, 
providing computational 
savings in optimization 
problems involving many  
data points.

Multicollinearity
A situation that arises  
in a regression model when  
a predictor can be linearly 
predicted with high accuracy 
from the other predictors in  
the model. This causes 
numerical instability in the 
estimation of parameters.

Shrinkage priors
Prior distributions for a 
parameter that shrink its 
posterior estimate towards  
a particular value.

Sparsity
A situation where most 
parameter values are  
zero and only a few  
are non-zero.

Spike-and-slab prior
A shrinkage prior distribution 
used for variable selection 
specified as a mixture of  
two distributions, one  
peaked around zero (spike)  
and the other with a large 
variance (slab).
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prior107 uses a mixture of two continuous distributions 
(Fig. 5b). Another widely used formulation puts the 
spike-and-slab prior on the variance of the regression 
coefficients108. After specifying prior distributions for 
the other model parameters, MCMC algorithms are 
used to explore the large model space and yield a chain 
of visited models. Variable selection is then achieved 
through the marginal posterior inclusion probabilities 
P(γj = 1|y). Integrating out the parameters β and σ2 can 
accelerate the MCMC implementation, speeding up its 
convergence and mixing. Various computational meth-
ods have also been proposed to rapidly identify prom-
ising high posterior probability models, by combining 
variable selection methods with modern Monte Carlo 
sampling techniques109,110 (Table 1).

Another class of penalization priors that have received 
a lot of attention in recent years are continuous shrinkage  
priors111–113. These are unimodal distributions on βj that 
promote the shrinkage of small regression coefficients 
towards zero, similar to frequentist penalized regression 
methods that accomplish regularization by maximiz-
ing the log-likelihood function subject to a penalty114. 
The least absolute shrinkage and selection operator, or 
lasso114, uses the penalty function λ β∑ j

p
j=1 | |, with λ con-

trolling the level of sparsity. The lasso estimate of βj can 
be interpreted as a Bayesian estimate that maximizes 
the posterior distribution under independent Laplace 
distribution priors. Motivated by this connection, the 
Bayesian lasso111 specifies conditional Laplace priors 

on βj|σ2. Unlike the frequentist lasso method, Bayesian 
penalization methods do not shrink regression coef-
ficients to be exactly zero. Instead, the variable selec-
tion is carried out using credible intervals for βj or by 
defining a selection criterion on the posterior samples. 
Many continuous shrinkage priors can be parameter-
ized as a scale mixture of normal distributions, which 
facilitates their implementation in MCMC methods. For 
example, the Laplace prior in the Bayesian lasso can be 
formulated as a scale mixture of normal distributions 
with an exponential mixing density for the scale param-
eter. The exponential mixing distribution has a single 
hyperparameter, which limits its flexibility in differ-
entially shrinking small and large effects (Fig. 5c). This 
limitation can be overcome by using a class of shrinkage 
priors that introduce two shrinkage parameters, which 
respectively control the global sparsity and the amount 
of shrinkage for each regression coefficient. The result-
ing marginalized priors for βj are characterized by a 
tight peak around zero that shrinks small coefficients 
to zero, and heavy tails that prevent excessive shrink-
age of large coefficients. These priors are known as 
global–local shrinkage priors113. The horseshoe prior, an 
example of a global–local shrinkage prior, achieves the 
tight peak around zero and the heavy tails by specifying 
a normal distribution for the regression coefficient βj, 
conditional on its scale parameters, which themselves 
follow half-Cauchy distributions112 (Fig. 5d). A com-
prehensive review and thorough comparison of the 

Continuous shrinkage prior
A unimodal prior distribution 
for a parameter that promotes 
shrinkage of its posterior 
estimate towards zero.

Global–local shrinkage prior
A continuous shrinkage prior 
distribution characterized by  
a high concentration around 
zero to shrink small parameter 
values to zero and heavy tails 
to prevent excessive shrinkage 
of large parameter values.

Horseshoe prior
An example of a global–local 
shrinkage prior for variable 
selection that uses a 
half-Cauchy scale mixture  
of normal distributions.
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Fig. 5 | Examples of shrinkage priors for Bayesian variable selection. Prior density π(β) versus β values. a | The discrete 
spike-and-slab prior for β (solid line) is specified as a mixture of a point mass at zero (spike; dashed line) and a diffuse 
prior (slab; dotted line). b | The continuous spike-and-slab prior for β (solid line) is specified as a mixture of two normal 
distributions, one peaked around zero (dashed line) and the other with a large variance (dotted line). c | The Bayesian lasso 
specifies a conditional Laplace prior, which can be obtained as a scale mixture of normal distributions with an exponential 
mixing density. This prior does not offer enough flexibility to simultaneously allow a lot of probability mass around zero 
and heavy tails. d | The horseshoe prior falls in the class of global–local shrinkage priors, which are characterized by a high 
concentration around zero to shrink small coefficients and heavy tails to avoid excessive shrinkage of large coefficients.
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characteristics and performance of different shrinkage 
priors can be found in ref.115.

Bayesian variable selection methods have been 
extended to a wide variety of models. Extensions to 
multivariate regression models include spike-and-slab 
priors that select variables as relevant to either all or 
none of the response variables116, as well as multivariate 
constructions that allow each covariate to be relevant 
for subsets and/or individual response variables117. Other 
extensions include generalized linear models, random 
effect and time-varying coefficient models118,119, mixture 
models for unsupervised clustering120 and estimation of 
single and multiple Gaussian graphical models121,122.

Variable selection in biomedicine. Variable selection pri-
ors for linear models have found important applications 
in biomedical studies. The advent of high-throughput 
technologies has made it possible to measure thousands 
of genetic markers on individual samples. Linear models 
are routinely used to relate large sets of biomarkers to 
disease-related outcomes, and variable selection meth-
ods are employed to identify significant predictors. 
In Bayesian approaches, additional knowledge about 
correlations among the variables can be easily incorpo-
rated into the analysis. For example, in models with gene 
expression data, spike-and-slab variable selection priors 
incorporating knowledge of gene-to-gene interaction 
networks have been employed to aid the identification 
of predictive genes123, as well as the identification of both 
relevant pathways and subsets of genes124. Bayesian var-
iable selection priors have been successfully applied 
in genome-wide association studies, where hundreds 
of thousands of single-nucleotide polymorphisms are 
measured in thousands or tens of thousands of individ-
uals, with the goal of identifying genetic variants that 
are associated with a single phenotype or a group of 
correlated traits125,126.

Air pollution is a major environmental risk factor 
for morbidity and mortality. Small particles produced 
by traffic and industrial pollution can enter the respira-
tory tract and have adverse health effects. Particulate 
matter exposure and their health effects exhibit both 
spatial and temporal variability, which can be factored 
into Bayesian models of air pollution (for a resource on 
Bayesian hierarchical models for spatial data we refer 
readers to ref.127). Spatially varying coefficient models 
with spike-and-slab priors inducing spatial correla-
tion have been proposed to identify pollutants associ-
ated with adverse health outcomes, either over a whole 
region or within separate subregions128. Over the past 
couple of decades, numerous omics studies have been 
conducted to investigate the effects of exposure to air 
pollution on genomic markers and gain a better under-
standing of the mechanisms underlying lung injury from 
exposure to air pollutants. Multivariate response models 
with structured spike-and-slab priors that leverage the 
dependence between markers have been proposed to 
identify and estimate the effect of pollutants on DNA 
methylation outcomes117.

In neuroscience, neuroimaging studies often 
employ functional MRI, a non-invasive technique that 
provides an indirect measure of neuronal activity by 

detecting blood flow changes. These studies produce 
massive collections of time-series data, arising from 
spatially distinct locations of the brain across multi-
ple subjects. Task-based experiments use functional 
MRI to scan the brain dynamically while the subject 
is presented to different external stimuli. The data are 
analysed with the goal of identifying brain regions that 
are activated by these stimuli. Bayesian general linear 
models with spatial priors, which allow flexible mod-
elling of the correlation structure in these data, have 
been successfully applied129. Spike-and-slab variable 
selection priors that incorporate structural information 
on the brain have been investigated within a wide class 
of spatio-temporal hierarchical models for the detec-
tion of activation patterns130,131. Another application of 
functional MRI is in brain connectivity studies, where 
data are measured on subjects at rest with the aim of 
understanding how brain regions interact with each 
other. Among other approaches, multivariate vector 
autoregressive linear models have been investigated 
as a way to infer effective connectivity. Continuous 
shrinkage priors and structured spike-and-slab prior 
constructions have been employed for the selection of 
the active connections132,133. Bayesian variable selection 
methods have been successfully applied to numer-
ous other biomedical data sets, including longitudi-
nal data, functional data, survival outcome data and 
case–control studies.

Posterior predictive checking
Once a posterior distribution for a particular model 
is obtained, it can be used to simulate new data con-
ditional on this distribution that might be helpful to 
assess whether the model provides valid predictions so 
that these can be used for extrapolating to future events. 
Those simulations can be used for several purposes. 
They can be used to check whether the simulated data 
from the model resemble the observed data by compar-
ing kernel density estimates of the observed data with 
density estimates for the simulated data57. A more formal 
posterior predictive checking approach can be taken to 
evaluate whether the model can be considered a good 
fit with the data-generating mechanism57,78,134–136. Any 
parameter-dependent statistic or discrepancy can be 
used for posterior predictive checking135. This is similar 
to how prior predictive checking can be used, but much 
more stringent in the comparison between the observed 
and simulated data57. The sensitivity of the posterior 
predictive checks is useful because if realistic models 
are used, the expectation is that the results are well cal-
ibrated in the long-term average78. These two uses of 
posterior predictive checking should be used with care; 
there is a risk of over-adjusting and over-refining models 
to the details of a specific data set. Posterior predictive 
distributions can further be used to extrapolate beyond 
the observed data and make predictions, for example 
extrapolating data from a time series. Based on the 
posterior distributions for a particular model of inter-
est, posterior predictive distributions can be simulated 
for observed and future data, naturally becoming more 
uncertain as they predict further into the future owing 
to accumulated uncertainty. It is important to be aware 
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that in temporal models there are some challenges in 
terms of posterior inference that are inherent to spatial 
and/or temporal dependencies, such as autocorrelation 
of parameters over time52,137–139.

Empirical example 2: Wikipedia page views. To illus-
trate the use of posterior predictive distributions, we 
present a second example. Suppose that it is of interest 
to know how many page views a webpage has, and what 
time-related factors might be relevant to page views. 
Consider the page views for the Wikipedia page on 
the English Premier League — the highest level of the 
English professional football league — obtained using 
the wikipediatrend140 R package. The scripts are available 
at the Open Science Framework141. The decomposable 
time-series model142, implemented in the prophet143 
R package, allows the estimation of trends with non- 
periodic changes, holiday effects, weekly seasonality and 
yearly seasonality effects (Fig. 6). Notable effects in this 
time series are the peaks of interest surrounding the start 
of the seasons in August, the end of the seasons in May 
and the dip on 29 September 2011 — the wedding day of 
Prince William and Catherine Middleton. Additionally, 
a decrease in page views occurs each Christmas day 
and notable increases occur on Boxing day and at the  
start of the year, when matches are played during  
the Christmas holiday season. The model is estimated 
using observed data in the period between 1 January 
2010 and 1 January 2018. Based on the posterior dis-
tributions for the particular model, posterior predictive 
distributions can be simulated for observed and future 
data (Fig. 6e,f). In general, the simulated data from the 
model resembles the observed data for the observed  
time frame. The posterior predictive distributions for 
future time points are more uncertain when they are 
further into the future owing to accumulated uncer-
tainty. Notice that increases and decreases in page views 
are accurately predicted for future page views, with the 
exception of increased interest in July 2018 that might 
relate to the final stage of the FIFA World Cup, which 
was played at that time.

Applications
Bayesian inference has been used across all fields of sci-
ence. We describe a few examples here, although there 
are many other areas of application, such as philosophy, 
pharmacology, economics, physics, political science 
and beyond.

Social and behavioural sciences
A recent systematic review examining the use of 
Bayesian statistics reported that the social and behav-
ioural sciences — psychology, sociology and political 
sciences — have experienced an increase in empirical 
Bayesian work4. Specifically, there have been two parallel 
uses of Bayesian methods that have been increasing in 
popularity within the social and behavioural sciences: 
theory development and as a tool for model estimation.

Bayes’ rule has been used as an underlying theory 
for understanding reasoning, decision-making, cogni-
tion and theories of mind, and has been particularly 
prevalent in developmental psychology and related 

fields. Bayes’ rule was used as a conceptual framework 
for cognitive development in young children, capturing 
how children develop an understanding of the world 
around them144. Bayesian methodology has also been 
discussed in terms of enhancing cognitive algorithms 
used for learning. Gigerenzer and Hoffrage145 discuss 
the use of frequencies, rather than probabilities, as a 
method to improve on Bayesian reasoning. In another 
seminal article, Slovic and Lichtenstein146 discuss how 
Bayesian methods can be used for judgement and 
decision-making processes. Within this area of the social 
and behavioural sciences, Bayes’ rule has been used as an 
important conceptual tool for developing theories and 
understanding developmental processes.

The social and behavioural sciences are a terrific set-
ting for implementing Bayesian inference. The literature 
is rich with information that can be used to derive prior 
distributions. Informative priors are useful in complex 
modelling situations, which are common in the social 
sciences, as well as in cases of small sample sizes. Certain 
models that are used to explore education outcomes and 
standardized tests, such as some multidimensional item 
response theory models, are intractable using frequentist 
statistics and require the use of Bayesian methods.

The number of publications concerning Bayesian sta-
tistics has been steadily rising since 2004, with a more 
notable increase in the last decade. In part, this focus on 
Bayesian methods is owing to the development of more 
accessible software, as well as a focus on publishing tuto-
rials targeting applied social and behavioural scientists. 
A systematic review of Bayesian methods in the field 
of psychology uncovered 740 eligible regression-based 
articles using Bayesian methods. Of these, 100 articles 
(13.5%) were tutorials for implementing Bayesian meth-
ods, and an additional 225 articles (30.4%) were either 
technical papers or commentaries on Bayesian statistics 
(Box 4). Methodologists have been attempting to guide 
applied researchers towards using Bayesian methods 
within the social and behavioural sciences, although 
the implementation has been relatively slow to catch on.  
For example, the systematic review found that only 
167 regression-based Bayesian articles (22.6%) were 
applications using human samples. Nevertheless, some 
subfields are regularly publishing work implementing 
Bayesian methods.

The field has gained many interesting insights into 
psychological and social behaviour through Bayesian 
methods, and the substantive areas in which this work 
has been conducted are quite diverse. For example, 
Bayesian statistics has helped to uncover the role that 
craving suppression has in smoking cessation147, to 
make population forecasts based on expert opinions148, 
to examine the role that stress related to infant care has 
in divorce149, to examine the impact of the President of 
the USA’s ideology on US Supreme Court rulings150 and 
to predict behaviours that limit the intake of free sugars 
in one’s diet151. These examples all represent different 
ways in which Bayesian methodology is captured in the 
literature. It is common to find papers that highlight 
Bayes’ rule as a mechanism to explain theories of devel-
opment and critical thinking144, that are expository152,153, 
that focus on how Bayesian reasoning can inform 
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theory through use of Bayesian inference154 and that use 
Bayesian modelling to extract findings that would have 
been difficult to derive using frequentist methods147. 
Overall, there is broad use of Bayes’ rule within the social 
and behavioural sciences.

We argue that the increased use of Bayesian meth-
ods in the social and behavioural sciences is a great 
benefit to improving substantive knowledge. However, 
we also feel that the field needs to continue to develop 
strict implementation and reporting standards so that 
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Fig. 6 | Posterior predictive checking and predicted future page views based on current observations. a–d | Posterior 
means along with 95% credible intervals (CIs) for non-periodic changes (part a), holiday effects (part b), weekly seasonality 
(part c) and yearly seasonality effects (part d). Displayed as how date-specific characteristics contribute to expected 
log10(page views). e,f | Posterior predictive distributions at each time point. Posterior predictive distributions for the time 
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(part f). Page views for the Wikipedia page of the English Premier League as obtained using the wikipediatrend140 R package 
and analysed with the prophet143 R package — the scripts are available at the Open Science Framework251.
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results are replicable and transparent. We believe that 
there are important benefits to implementing Bayesian 
methods within the social sciences, and we are optimis-
tic that a strong focus on reporting standards can make 
the methods optimally useful for gaining substantive 
knowledge.

Ecology
The application of Bayesian analyses to answer ecologi-
cal questions has become increasingly widespread owing 
to both philosophical arguments, particularly in terms 
of subjective versus objective reasoning, and practical 
model-fitting advantages. This is combined with readily 
available software (Table 2) and numerous publications 
describing Bayesian ecological applications using these 
software packages (see refs155–161 for examples). The 
underlying Bayesian philosophy is attractive in many 
ways within ecology162 as it permits the incorporation 
of external, independent prior information either from 
previous studies on the same/similar species or inherent 
knowledge of the biological processes within a rigorous 
framework163,164. Further, the Bayesian approach also 
permits both direct probabilistic statements to be made 
on parameters of interest, such as survival probabilities, 
reproductive rates, population sizes and future predic-
tions157, and the calculation of relative probabilities of 
competing models — such as the presence or absence  
of density dependence or environmental factors in 
driving the dynamics of the ecosystem — that in turn 
permits model-averaged estimates incorporating both 
parameter and model uncertainty. The ability to provide 
probabilistic statements is particularly useful in relation 
to wildlife management and conservation. For example, 
King et al.165 provide probability statements in relation to 
the level of population decline over a given time period, 
which in turn provides probabilities associated with  
species’ conservation status.

A Bayesian approach is also often applied in ecolog-
ical research for pragmatic reasons. Many ecological  

models are complex — for example, they may be spatio- 
temporal in nature, high-dimensional and/or involving  
multiple interacting biological processes — leading  
to computationally expensive likelihoods that are slow to 
evaluate. Imperfect or limited data collection processes 
often lead to missing data and associated intractable 
likelihoods. In such circumstances, standard Bayesian 
model-fitting tools such as data augmentation may per-
mit the models to be fitted, whereas in the alternative 
frequentist framework additional model simplifications 
or approximations may be required. The application of 
Bayesian statistics in ecology is vast and encompasses 
a range of spatio-temporal scales from an individ-
ual organism level to an ecosystem level that includes 
understanding the population dynamics of the given 
system166, modelling spatial point pattern data167, inves-
tigating population genetics, estimating abundance168 
and assessing conservation management169.

Ecological data collection processes generally 
come from observational studies, where a sample is 
observed from the population of interest using some 
data survey protocol. The survey should be carefully 
designed, taking into account the ecological question(s) 
of interest and minimizing the complexity of the model 
required to fit the data to provide reliable inference. 
Nevertheless, associated model-fitting challenges may 
still arise owing to data collection problems, such as 
those resulting from equipment failure or poor weather 
conditions. There may also be inherent data collection 
problems in some data surveys, such as the inability to 
record individual-level information. Such model-fitting 
challenges may include — but are far from limited to — 
irregularly spaced observations in time owing to equip-
ment failure or experimental design, measurement error 
due to imperfect data observations, missing information 
at a range of different levels, from the individual level to 
the global environmental level, and challenges associated 
with multiscaled studies where different aspects of data 
are recorded at different temporal scales — for example, 
from hourly location data of individuals to daily and 
monthly collections of environmental data. The data 
complexities that arise, combined with the associated 
modelling choices, may lead to a range of model-fitting 
challenges that can often be addressed using standard 
techniques within the Bayesian paradigm.

For a given ecological study, separating out the indi-
vidual processes acting on the ecosystem is an attrac-
tive mechanism for simplifying model specification166. 
For example, state space models provide a general and 
flexible modelling framework that describes two distinct 
types of process: the system process and the observation 
process. The system process describes the true underly-
ing state of the system and how this changes over time. 
This state may be univariate or multivariate, such as 
population size or location data, respectively. The sys-
tem process may also describe multiple processes acting 
on the system, such as birth, reproduction, dispersal and 
death. We are typically not able to observe these true 
underlying system states without some associated error 
and the observation process describes how the observed 
data relate to the true unknown states. These general 
state space models span many applications, including 

Box 4 | Bayesian methods in the social and behavioural sciences

Hoijtink et al.255 discuss the use of Bayes factors for informative hypotheses within 
cognitive diagnostic assessment, illustrating how Bayesian evaluation of informative 
diagnostics hypotheses can be used as an alternative approach to traditional diagnostic 
methods. There is added flexibility with the Bayesian approach as informative 
diagnostic hypotheses can be evaluated using the Bayes factor utilizing only data from 
the individual being diagnosed. Lee154 present an overview of the application of Bayes’ 
theorem in the field of cognitive psychology, discussing how Bayesian methods can be 
used to develop more complete theories of cognitive psychology. Bayesian methods 
can also account for observed behaviour in terms of different cognitive processes, 
explain behaviour on a wide range of cognitive tasks and provide a conceptual 
unification of different cognitive models. Depaoli et al.152 show how Bayesian methods 
can benefit health-based research being conducted in psychology by highlighting how 
informative priors elicited with expert knowledge and previous research can be used to 
better understand the physiological impact of a health-based stressor. In this research 
scenario, frequentist methods would not have produced viable results because the 
sample size was relatively small for the model being estimated owing to the cost of 
data collection and the population being difficult to access for sampling. Finally, 
Kruschke153 present the simplest example using a t-test geared towards experimental 
psychologists, showing how Bayesian methods can benefit the interpretation of any 
model parameter. This paper highlights the Bayesian way of interpreting results, 
focusing on the interpretation of the entire posterior rather than a point estimate.
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animal movement170, population count data171, capture–
recapture-type data165, fisheries stock assessment172 and 
biodiversity173. For a review of these topics and further 
applications, we direct the reader elsewhere166,174,175. 
Bayesian model-fitting tools, such as MCMC with data 
augmentation176, sequential Monte Carlo or particle 
MCMC177–179, permit general state space models to be fit-
ted to the observed data without the need to specify fur-
ther restrictions — such as distributional assumptions 
— on the model specification, or to make additional 
likelihood approximations.

The process of collecting data continues to evolve 
with advances in technology. For example, the use of 
GPS geolocation tags and associated additional accel-
erometers, remote sensing, the use of drones for local-
ized aerial photographs, unmanned underwater vehicles 
and motion-sensor camera traps are increasingly used 
within ecological research. The use of these technologi-
cal devices and the growth of crowdsourced science have 
led to new forms of data collected in great quantities and 
associated model-fitting challenges, providing a fertile 
ground for Bayesian analyses.

Genetics
Genetics and genomics studies have made extensive 
use of Bayesian methods. In genome-wide association 
studies, Bayesian approaches have provided a power-
ful alternative to frequentist approaches for assessing 
associations between genetic variants and a pheno-
type of interest in a population180. These include sta-
tistical models for incorporating genetic admixture181, 
fine-mapping to identify causal genetic variants182, 
imputation of genetic markers not directly measured 
using reference populations183 and meta-analysis for 
combining information across studies. These applica-
tions further benefit from the use of marginalization 
to account for modelling uncertainties when drawing 
inferences. More recently, large cohort studies such as 
the UK Biobank184 have expanded the methodological 
requirements for identifying genetic associations with 
complex (sub)phenotypes by collating genetic infor-
mation alongside heterogeneous data sets including 
imaging, lifestyle and routinely collected health data. 
A Bayesian analysis framework known as TreeWAS185 
has extended genetic association methods to allow for 
the incorporation of tree-structured disease diagnosis 
classifications by modelling the correlation structure of 
genetic effects across observed clinical phenotypes. This 
approach incorporates prior knowledge of phenotype 
relationships that can be derived from a diagnosis classi-
fication tree, such as information from the latest version 
of the International Classification of Diseases (ICD-10).

The availability of multiple molecular data types in 
multi-omics data sets has also attracted Bayesian solu-
tions to the problem of multimodal data integration. 
Bayesian latent variable models can be used as an unsu-
pervised learning approach to identify latent structures 
that correspond to known or previously uncharacter-
ized biological processes across different molecular 
scales. Multi‐omics factor analysis186 uses a Bayesian 
linear factor model to disentangle sources of heteroge-
neity that are common across multiple data modalities 

from those patterns that are specific to only a single 
data modality.

In recent years, high-throughput molecular profil-
ing technologies have advanced to allow the routine 
multi-omics analysis of individual cells187. This has 
led to the development of many novel approaches for 
modelling single-cell measurement noise, cell-to-cell 
heterogeneity, high dimensionality, large sample sizes 
and interventional effects from, for example, genome 
editing188. Cellular heterogeneity lends itself naturally to 
Bayesian hierarchical modelling and formal uncertainty 
propagation and quantification owing to the layers of 
variability induced by tissue-specific activity, heteroge-
neous cellular phenotypes within a given tissue and sto-
chastic molecular expression at the level of the single cell. 
In the integrated Bayesian hierarchical model BASiCS189, 
this approach is used to account for cell-specific nor-
malization constants and technical variability to decom-
pose total gene expression variability into technical and 
biological components.

Deep neural networks (DNNs) have also been uti-
lized to specify flexible, non-linear conditional depend-
encies within hierarchical models for single-cell omics. 
SAVER-X190 couples a Bayesian hierarchical model with 
a pretrainable deep autoencoder to extract transferable 
gene–gene relationships across data sets from different 
laboratories, variable experimental conditions and diver-
gent species to de-noise novel target data sets. In scVI191, 
hierarchical modelling is used to pool information 
across similar cells and genes to learn models of the dis-
tribution of observed expression values. Both SAVER-X 
and scVI perform approximate Bayesian inference using 
mini-batch stochastic gradient descent, the latter within 
a variational setting — a standard technique in DNNs 
— that allow these models to be fitted to hundreds of 
thousands or even millions of cells.

Bayesian approaches have also been popular in 
large-scale cancer genomic data sets192 and have enabled 
a data-driven approach to identifying novel molecular 
changes that drive cancer initiation and progression. 
Bayesian network models193 have been developed to 
identify the interactions between mutated genes and 
capture mutational signatures that highlight key genetic 
interactions with the potential to allow for genomic-based 
patient stratification in both clinical trials and the person-
alized use of therapeutics. Bayesian methods have also 
been important in answering questions about evolution-
ary processes in cancer. Several Bayesian approaches for 
phylogenetic analysis of heterogeneous cancers enable the 
identification of the distinct subpopulations that can exist 
with tumours and their ancestral relationships through 
the analysis of single-cell and bulk tissue-sequencing 
data194. These models therefore consider the joint prob-
lem of learning a mixture model and graph inference 
through considering the number and identity of the 
subpopulations and deriving the phylogenetic tree.

Reproducibility and data deposition
Proper reporting on statistics, including sharing of data 
and scripts, is a crucial element in the verification and 
reproducibility of research195. A workflow incorporating 
good research practices that encourage reproducibility 

Autoencoder
A particular type of multilayer 
neural network used for 
unsupervised learning 
consisting of two components: 
an encoder and a decoder.  
The encoder compresses the 
input information into 
low-dimensional summaries  
of the inputs. The decoder 
takes these summaries and 
attempts to recreate the  
inputs from these. By training 
the encoder and decoder 
simultaneously, the hope is 
that the autoencoder learns 
low-dimensional, but highly 
informative, representations  
of the data.
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in the Bayesian research cycle is displayed in Fig. 7. We 
demonstrate where the Bayesian research cycle (Fig. 1) 
and the WAMBS (when to Worry and how to Avoid 
the Misuse of Bayesian Statistics) checklist48,81 fit in the 
wider context of transparency in research, and we offer 
an updated version of the WAMBS checklist (Box 5). 
In this section, we highlight some important aspects of 
reproducibility and the deposition of data and scripts.

Allowing others to assess the statistical methods and 
underlying data used in a study (by transparent report-
ing and making code and data available) can help with 
interpreting the study results, the assessment of the 
suitability of the parameters used and the detection and 
fixing of errors. Reporting practices are not yet consist-
ent across fields or even journals in individual fields. 
A systematic review on Bayesian statistics in psychol-
ogy4 found huge discrepancies in reporting practices 
and standards across the social sciences; for example, of 
the 167 regression-based Bayesian articles using human 
samples in psychology, 31% did not mention the priors 
that were implemented, 43.1% did not report on chain 
convergence and only 40% of those implementing 
informative priors conducted a sensitivity analysis. We 
view this as a major impediment to the implementation 
of Bayesian statistics within the social and behavioural 
sciences, as well as other fields of research.

Not reporting any information on the priors is prob-
lematic for any Bayesian paper. There are many dangers 
in naively using priors and, we argue, one might want 
to pre-register the specification of the priors and the 

likelihood when possible. Moreover, the impact of pri-
ors on final model estimates can be easily overlooked — 
a researcher may estimate a model with certain priors 
and be unaware that using different priors with the same 
model and data can result in substantively different 
results. In both cases, the results could look completely 
viable, with Markov chains that appear to be converged 
and posteriors that appear appropriate and informa-
tive. Without examining the impact of priors through 
a sensitivity analysis and prior predictive checking, the 
researcher would not be aware of how sensitive results 
are to changes in the priors. Consider the prior variance 
in the PhD delay example for βage that was mis-specified, 
using precision instead of variance (Fig. 3).

To enable reproducibility and allow others to run 
Bayesian statistics on the same data with different 
parameters, priors, models or likelihood functions for 
sensitivity analyses49, it is important that the underly-
ing data and code used are properly documented and 
shared following the FAIR principles196,197: findability, 
accessibility, interoperability and reusability. Preferably, 
data and code should be shared in a trusted repository 
(Registry of Research Data Repositories) with their 
own persistent identifier (such as a DOI), and tagged 
with metadata describing the data set or codebase. 
This also allows the data set and the code to be rec-
ognized as separate research outputs and allows oth-
ers to cite them accordingly198. Repositories can be 
general, such as Zenodo; language-specific, such as 
CRAN for R packages and PyPI for Python code; or 
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Fig. 7 | Elements of reproducibility in the research workflow. Good research practices across the research workflow 
that can contribute to reproducibility, demonstrating where the Bayesian research cycle (part a) and the WAMBS  
(when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist fit in the wider context of transparency in 
research252. Not all elements are applicable to all types of research — for example, pre-registration is typically used for 
hypothesis-driven research — but the specification of the prior and the likelihood may be pre-registered. There may be 
legitimate reasons why data cannot be shared openly, but all scripts for running the Bayesian models could be shared  
on a data repository. θ, unknown parameter; RRID, Research Resource Identifier; P(.), probability distribution; y, data.
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domain-specific198. As data and code require different 
licence options and metadata, data are generally best 
stored in dedicated data repositories, which can be 
general or discipline-specific199. Some journals, such as 
Scientific Data, have their own list of recommended data 
repositories. To make depositing data and code easier 
for researchers, two repositories (Zenodo and Dryad) 
are exploring collaboration to allow the deposition of 
code and data through one interface, with data stored 
in Dryad and code stored in Zenodo200. Many scientific 
journals adhere to transparency and openness promo-
tion guidelines201, which specify requirements for code 
and data sharing.

Verification and reproducibility require access to both 
the data and the code used in Bayesian modelling, ideally 
replicating the original environment in which the code 
was run, with all dependencies documented either in a 
dependency file accompanying the code or by creating 
a static container image that provides a virtual environ-
ment in which to run the code199. Open-source software 
should be used as much as possible, as open sources 
reduce the monetary and accessibility threshold to rep-
licating scientific results. Moreover, it can be argued 
that closed-source software keeps part of the academic 

process hidden, including from the researchers who use 
the software themselves. However, open-source soft-
ware is only truly accessible with proper documentation, 
which includes listing dependencies and configuration 
instructions in Readme files, commenting on code to 
explain functionality and including a comprehensive 
reference manual when releasing packages.

Limitations and optimizations
The optimization of Bayesian inference is conditional 
on the assumed model. Bayesian posterior probabilities 
are calibrated as long-term averages if parameters are 
drawn from the prior distribution and data are drawn 
from the model of the data given these parameters. 
Events with a stated probability occur at that frequency 
in the long term, when averaging over the generative 
model. In practice, our models are never correct. There 
are two ways we would like to overcome this limitation: 
by identifying and fixing problems with the model; 
and by demonstrating that certain inferences are robust 
to reasonable departures from the model.

Even the simplest and most accepted Bayesian infer-
ences can have serious limitations. For example, sup-
pose an experiment is conducted yielding an unbiased 
estimate z of a parameter θ that represents the effect of 
some treatment. If this estimate z is normally distributed 
with standard error s, we can write z ~ N(θ, s2), a nor-
mal distribution parameterized by its location and scale 
parameter. Suppose that θ has a flat uniform prior dis-
tribution, then the posterior distribution is θ ~ N(z, s2). 
Now suppose we observe z = s; that is, the estimate of θ is 
one standard error from zero. This would be considered 
statistically indistinguishable from noise, in the sense 
that such an estimate could occur by chance, even if the 
true parameter value was zero. But the Bayesian cal-
culation gives a posterior probability Pr(θ > 0|z) = 0.84. 
This makes the calibration of the probability question-
able (calibrated inferences or predictions are correct on 
average, conditional on the prediction).

In this example, the probability is calibrated if you 
average over the prior. It is mathematically impossible 
to average over a uniform distribution on an infinite 
range, but we could consider a very diffuse prior, for 
example θ ~ N(0, 1,0002), where we are assuming that s is 
roughly on a unit scale, that is, is a dimensionless param-
eter that is expected to take on a value not far from one 
in absolute value. Under this model, when z is observed 
to equal s, the parameter θ will be positive approximately 
84% of the time. The reason why the 84% probability 
does not appear correct is that the uniform, or very dif-
fuse, prior does not generally seem appropriate. In prac-
tice, studies are designed to estimate treatment effects 
with a reasonable level of precision. True effects may be 
1 or 2 standard errors from 0, but they are rarely 5, 10 
or 100 standard errors away. In this example, Bayesian 
inference, if taken literally, would lead to over-certainty: 
an 84% posterior probability. However, a positive way to 
look at this is that the evident problem with the poste-
rior allowed us to recognize that prior information was 
available that we had not included in our model, in this 
case, prior information that it would be unlikely to see 
very large values of θ. Moreover, a weakly informative 

Box 5 | The ten checklist points of WAMBS-v2

WAMBS-v2, an updated version of the WAMBS (when to Worry and how to Avoid the 
Misuse of Bayesian Statistics) checklist.

•	Ensure the prior distributions and the model or likelihood are well understood  
and described in detail in the text. Prior-predictive checking can help identify any 
prior–data conflict.

•	Assess each parameter for convergence, using multiple convergence diagnostics  
if possible. This may involve examining trace plots or ensuring diagnostics (R̂ statistic 
or effective sample size) are being met for each parameter.

•	Sometimes convergence diagnostics such as the R̂ statistic can fail at detecting 
non-stationarity within a chain. Use a subsequent measure, such as the split-R̂ , to 
detect trends that are missed if parts of a chain are non-stationary but, on average, 
appear to have reached diagnostic thresholds.

•	Ensure that there were sufficient chain iterations to construct a meaningful posterior 
distribution. The posterior distribution should consist of enough samples to visually 
examine the shape, scale and central tendency of the distribution.

•	Examine the effective sample size for all parameters, checking for strong degrees  
of autocorrelation, which may be a sign of model or prior mis-specification.

•	Visually examine the marginal posterior distribution for each model parameter to 
ensure that they do not have irregularities that could have resulted from misfit or 
non-convergence. Posterior predictive distributions can be used to aid in examining 
the posteriors.

•	Fully examine multivariate priors through a sensitivity analysis. These priors can  
be particularly influential on the posterior, even with slight modifications to the 
hyperparameters.

•	To fully understand the impact of subjective priors, compare the posterior results with 
an analysis using diffuse priors. This comparison can facilitate a deeper understanding 
of the impact the subjective priors have on findings. Next, conduct a full sensitivity 
analysis of all priors to gain a clearer understanding of the robustness of the results  
to different prior settings.

•	Given the subjectivity of the model, it is also important to conduct a sensitivity 
analysis of the model (or likelihood) to help uncover how robust results are to 
deviations in the model.

•	Report findings, including Bayesian interpretations. Take advantage of explaining  
and capturing the entire posterior rather than simply a point estimate. It may be 
helpful to examine the density at different quantiles to fully capture and understand 
the posterior distribution.

Split-R̂
To detect non-stationarity 
within individual Markov  
chain Monte Carlo chains  
(for example, if the first part 
shows gradually increasing 
values whereas the second 
part involves gradually 
decreasing values), each chain 
is split into two parts for which 
the R̂ statistic is computed and 
compared.
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prior such as θ ~ N(0, s2) does not have a large impact 
on the posterior, as then the posterior becomes normal:

( )N ,s s
2 2

2

,

so Pr(θ > 0|z) = 0.76, compared with 0.84 from our previ-
ous example. Ultimately, only a strong prior will make a 
big difference. Bayesian probabilities are only calibrated 
when averaging over the true prior or population distri-
bution of the parameters. The important thing about this 
example is not the specific numbers, which will depend 
on the context, but the idea that any statistical method 
should be evaluated over the range of problems to which 
it will be applied.

More generally, Bayesian models can be checked by 
comparing posterior predictive simulations with data135 
and by estimating the out-of-sample predictive error202. 
There is a benefit to strong prior distributions that 
constrain parameters to reasonable values to allow the 
inclusion of more data while avoiding overfitting. More 
data can come from various sources, including addi-
tional data points, additional measurements on existing 
data and prior information summarizing other data or 
theories. All methods, Bayesian and otherwise, require 
subjective interpretation to tell a plausible story, and all 
models come from researcher decisions. Any choice of 
model has implications; the flat prior is weak, providing 
no shrinkage of the estimate, but can lead to a strong, 
possibly inappropriate, level of certainty about θ.

Outlook
The widespread adoption of Bayesian statistics across 
disciplines is a testament to the power of the Bayesian 
paradigm for the construction of powerful and flexi-
ble statistical models within a rigorous and coherent 
probability framework. Modern Bayesian practitioners 
have access to a wealth of knowledge and techniques 
that allow the creation of bespoke models and computa-
tional approaches for particular problems. Probabilistic 
programming languages, such as Stan, can take away 
much of the implementation details for many applica-
tions, allowing the focus to remain on the fundamentals 
of modelling and design.

An ongoing challenge for Bayesian statistics is the 
ever-growing demands posed by increasingly complex 
real-world applications, which are often associated with 
issues such as large data sets and uncertainties regard-
ing model specification. All of this occurs within the 
context of rapid advances in computing hardware,  
the emergence of novel software development appro
aches and the growth of data sciences, which has attracted 
a larger and more heterogeneous scientific audience 
than ever before. In recent years, the revision and  
popularization of the term artificial intelligence to 
encompass a broad range of ideas including statistics 
and computation has blurred the traditional bound-
aries between these disciplines. This has been hugely 
successful in popularizing probabilistic modelling and 
Bayesian concepts outside their traditional roots in 
statistics, but has also seen transformations in the way 
Bayesian inference is being carried out and new ques-
tions about how Bayesian approaches can continue to 

be at the innovative forefront of research in artificial 
intelligence.

Driven by the need to support large-scale applica-
tions involving data sets of increasing dimensionality 
and sample numbers, Bayesian concepts have exploited 
the growth of new technologies centred on deep learn-
ing. This includes deep learning programming frame-
works (TensorFlow203, PyTorch204), which simplify the 
use of DNNs, permitting the construction of more 
expressive, data-driven models that are immediately 
amenable to inference techniques using off-the-shelf 
optimization algorithms and state-of-the-art hardware. 
In addition to providing a powerful tool to specify flex-
ible and modular generative models, DNNs have been 
employed to develop new approaches for approximate 
inference and stimulated a new paradigm for Bayesian 
practice that sees the integration of statistical modelling 
and computation at its core.

An archetypal example is the variational autoen-
coder205, which has been successfully used in various 
applications, including single-cell genomics190,191, pro-
viding a general modelling framework that has led to 
numerous extensions including latent factor disentangle-
ment206–208. The underlying statistical model is a simple 
Bayesian hierarchical latent variable model, which maps 
high-dimensional observations to low-dimensional 
latent variables assumed to be normally distributed 
through functions defined by DNNs. Variational infer-
ence is used to approximate the posterior distribution 
over the latent variables. However, in standard var-
iational inference we would introduce a local varia-
tional parameter for each latent variable, in which case 
the computational requirements would scale linearly 
with the number of data samples. Variational auto
encoders use a further approximation process known 
as amortization to replace inference over the many indi-
vidual variational parameters with a single global set of 
parameters — known as a recognition network — that 
are used to parameterize a DNN that outputs the local 
variational parameters for each data point.

Remarkably, when the model and inference are 
combined and interpreted together, the variational 
autoencoder has an elegant interpretation as an 
encoding-decoding algorithm: it consists of a probabil-
istic encoder — a DNN that maps every observation to 
a distribution in the latent space — and a probabilis-
tic decoder — a complementary DNN that maps each 
point in the latent space to a distribution in the obser-
vation space. Thus, model specification and inference  
have become entangled within the variational auto
encoder, demonstrating the increasingly blurry boundary 
between principled Bayesian modelling and algorithmic 
deep learning techniques. Other recent examples include 
the use of DNNs to construct probabilistic models that 
define distributions over possible functions209–211, build 
complex probability distributions by applying a sequence 
of invertible transformations212,213 and define models for 
exchangeable sequence data214.

The expressive power of DNNs and their utility within 
model construction and inference algorithms come 
with compromises that will require Bayesian research. 
The trend towards entangling models and inference 

Amortization
A technique used in variational 
inference to reduce the 
number of free parameters to 
be estimated in a variational 
posterior approximation by 
replacing the free parameters 
with a trainable prediction 
function that can instead 
predict the values of these 
parameters.
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has popularized these techniques for large-scale data 
problems; however, fundamental Bayesian concepts 
remain to be fully incorporated within this paradigm. 
Integrating-out, model-averaging decision theoretic 
approaches rely on accurate posterior characterization, 
which remains elusive owing to the challenge posed by 
high-dimensional neural network parameter spaces215. 
Although Bayesian approaches to neural network learn-
ing have been around for decades216–219, further investiga-
tion into prior specifications for modern Bayesian deep 
learning models that involve complex network struc-
tures is required to understand how priors translate to 
specific functional properties220.

Recent debates within the field of artificial intelli-
gence have questioned the requirement for Bayesian 
approaches and highlighted potential alternatives. For 
instance, deep ensembles221 have been shown to be alter-
natives to Bayesian methods for dealing with model 
uncertainty. However, more recent work has shown 

that deep ensembles can actually be reinterpreted as 
approximate Bayesian model averaging222. Similarly, 
dropout is a regularization approach popularized for 
use in the training of DNNs to improve robustness by 
randomly dropping out nodes during the training of 
the network223. Dropout has been empirically shown 
to improve generalizability and reduce overfitting. 
Bayesian interpretations of dropout have emerged, 
linking it to forms of Bayesian approximation of prob-
abilistic deep Gaussian processes224. Although the full 
extent of Bayesian principles has not yet been general-
ized to all recent developments in artificial intelligence, 
it is nonetheless a success that Bayesian thinking is 
deeply embedded and crucial to numerous innovations 
that have arisen. The next decade is sure to bring a new 
wave of exciting innovative developments for Bayesian 
intelligence.
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