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1.1 Introduction

Lack of replicability in computational studies is, at base, a problem of shortcomings in
record keeping. In laboratory-based experimental science, the tradition is to write down
all experimental details in a paper notebook. This approach is no longer viable for many
computational studies, as the number of details that could have an impact on the final result
is so large. Automated or semi-automated tools for keeping track of all the experimental
details – the scientist’s own code, input and output data, supporting software, the computer
hardware used, etc. – are therefore needed.

For the busy scientist, the time investment needed to learn to use these tools, or to
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adapt their workflow so as to make use of them, may be one they are reluctant to make,
especially since the problems of lack of reproducibility often take some time to manifest
themselves. To achieve wide uptake among computational scientists, therefore, tools to
support reproducible research should aim to minimise the e↵ort required to learn, adopt
and use them (see [1] for a more detailed version of this argument).

Sumatra is a software tool to support reproducible computational research, which
aims to make reproducible computational science as easy to achieve (or easier) than non-
reproducible research, largely by automating the process of capturing all the experimental
details. In practice, this means that using Sumatra should require minimal changes to exist-
ing workflows and, given the wide diversity in workflows for computational science, Sumatra
should be easy to adapt to di↵erent computational environments.

This chapter is intended for two groups of people:

• scientists who are interested in using Sumatra to track the details of their own research;

• developers who are interested in using Sumatra as a library in their own software for
reproducible research.

The first section is an extended case study, illustrating how Sumatra may be of use in
day-to-day research. This is followed by an in-depth explanation of Sumatra’s architecture,
including examples of how to use Sumatra as a Python library and how to extend and
customize Sumatra.

1.2 Using Sumatra

We will illustrate one way to use Sumatra, and why you might want to use Sumatra, with
a story about Alice and Bob. Bob is a graduate student in Alice’s lab. When Alice was a
graduate student herself, she kept track of the evolution of her code by giving each significant
version a di↵erent file name, and she included the file name as a label in every figure she
generated. Alice used to be quite confident she could, if it were ever necessary, go back
and recreate the results from her earlier papers, since she has the original data carefully
archived on CD-ROMs. However, after her recent experience with Charlie, she is not so
sure. Charlie was a postdoc in Alice’s lab, who got some great results, which they wrote up
and submitted to a high-profile journal. The reviews were quite positive, but the reviewers
asked for some new figures and a change to one of the existing figures. The problem was that
when they tried to generate the modified figure, they could not get the results to match: the
new graph looked significantly di↵erent, and no longer showed the e↵ect they had found.
Although Charlie had used the Subversion version control system for his code, he had not
been so careful about keeping track of which version of the code had been used for each
figure in the manuscript: several of the figures had originally been generated for a poster,
and in the rush to get the poster finished in time to send to the printers, Charlie had not
had time to keep such careful notes as usual, and had not always remembered to check-in
changes in his code to the Subversion repository. Now Charlie has left science for a job with
a major bank, and the manuscript is languishing in a drawer.

As a consequence of these experiences, Alice asked Bob, her new graduate student, to
try out Sumatra. Sumatra automates the necessary, but tedious and error-prone process of
keeping track of which code version was used to produce which output. Bob has his code
in a Mercurial version control repository (for the purposes of this chapter, we will use a
simplified version of Bob’s code. If you would like to follow along, the repository is available
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at http://bitbucket.org/apdavison/ircr2013). Bob downloaded and installed Sumatra
according to the instructions at http://neuralensemble.org/sumatra.

Bob normally runs his analysis (of scanning electron microscope images of glass samples)
as follows:
$ python glass_sem_analysis.py MV_HFV_012.jpg
1699.875 65.0

This analyses the image specified on the command line, generates some further images,
and prints out some statistics (see the SciPy tutorial at http://scipy-lectures.github.
com/ for more details). The output images are saved to a specific subdirectory labelled
according to the day on which the code is run, and the individual files are labelled with a
timestamp, e.g. “Data/20121025/MV_HFV_012_163953_phases.png”.

He creates a new Sumatra project in the same directory, using the smt command-line
tool:
$ smt init ProjectGlass
$ smt configure -e python -m glass_sem_analysis.py -i . -d Data

This creates a new project, and sets “python” as the default executable to be used,
“glass_sem_analysis.py” as the default script file, the current directory (“.”) as the place
to look for input data, and a subdirectory “Data” as the place to start looking for output
files. (If Bob could not remember the various options to the “smt configure” command,
“smt help configure” would tell him).

“smt info” shows the current configuration of Bob’s project. Note that it is using the
already-existing Mercurial repository in his working directory:
$ smt info
Project name : ProjectGlass
Default executable : Python (version: 2.6.7) at /usr/bin/python
Default repository : MercurialRepository at /home/bob/Projects/Glass
Default main file : glass_sem_analysis.py
Default launch mode : serial
Data store (output) : ./Data
. (input) : .
Record store : Django record store at

/home/bob/Projects/Glass/.smt/records
Code change policy : error
Append label to : None

Now to run the analysis using Sumatra:
$ smt run MV_HFV_012.jpg
1699.875 65.0

Since Bob has already specified the executable and script file, all he has to provide is
the name of the input data file. The program runs as before and gives the same results,
but in addition, Sumatra has captured a great deal of information about the context of the
computation – exactly which version of the code was used, what the input and output data
files were, what operating system and processor architecture were used, etc. Some of this
information can be viewed in the console:
$ smt list -l
Label : 20121025 -170718
Timestamp : 2012 -10 -25 17:07:18
Reason :
Outcome :
Duration : 3.73256802559
Repository : MercurialRepository at /home/bob/Projects/Glass
Main_File : glass_sem_analysis.py
Version : 9d24b099b5f3
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Script_Arguments : MV_HFV_012.jpg
Executable : Python (version: 2.6.5) at /usr/bin/python
Parameters :
Input_Data : MV_HFV_012.jpg(5 d789282b10a0da7a91560f33f8baf7272f7543d)
Launch_Mode : serial
Output_Data : 20121025/ MV_HFV_012_170722_phases.png(c9955f84ca3c1912 ...

: 20121025/ MV_HFV_012_170722_sand.png (20 bd5420d37ee589f3 ...
: 20121025/ MV_HFV_012_170722_histogram.png(e7884dc5f3e9c ...

Tags :

but in general it is better to use the built-in web browser-based interface, launched with
the smtweb command – see Figure 1.1.

Two things in particular should be noted from this figure. The first is that the versions
of not only the Python interpreter and Bob’s own code, but also the libraries on which Bob’s
code depends (NumPy, etc.), are captured. The second is that the path of each input and
output data file is accompanied by a long hexadecimal string. This is the SHA1 digest, or
hash, of the file contents (as used in crypographic applications, and also in version control
systems such as Git and Mercurial). If the file contents are changed even slightly, the hash
will change, which allows us to check for files being corrupted or accidentally over-written.

Now Bob would like to investigate how his image analysis method is a↵ected by changing
its parameters. He thinks this will be easier to keep track of if the parameters are separated
out into a separate file, so he modifies his script and adds a new file default_parameters.
The script now expects two arguments, first the parameter file, second the input data, and
would normally be run using
$ python glass_sem_analysis.py default_parameters MV_HFV_012.jpg

but Bob wants to run it with Sumatra:
$ smt run default_parameters MV_HFV_012.jpg
Code has changed , please commit your changes.

Bob has forgotten to commit his changes to the version control repository. Sumatra
detects this, and will then either refuse to run (the default, seen here) or will store the
di↵erences since the last commit. Bob commits and tries again.
$ hg commit -m ’Separated out parameters into separate file ’
$ smt run -r ’test separate parameter file ’ default_parameters MV_HFV_012.jpg
1699.875 65.0

Note that he has also used the “-r” flag to note the reason for running this analysis, in
case he forgets in future. Have Bob’s modifications had any e↵ect on his results? The output
statistics are the same, and an inspection of the output data hashes in the web interface
shows they have not changed either, so no, the results are unchanged.

We have seen already that Bob has less typing to do when running his analyses with
Sumatra, as he has already specified the executable and script file as defaults. This is an
example of how Sumatra tries to make it easier to use a tool for reproducible research than
not to use one. Another example is the ability to specify parameters on the command line,
rather than having to edit the parameter file each time:
$ smt run -r ’No filtering ’ default_parameters MV_HFV_012.jpg filter_size =1
$ smt run -r ’Trying a different colourmap ’ default_parameters

MV_HFV_012.jpg phases_colourmap=hot
$ smt comment ’The default colourmap is nicer ’

So far, Bob has been using Charlie’s old computer, running Ubuntu Linux 10.04. The
next day, he is excited to find that the new computer Alice ordered for him has arrived. He
installs Ubuntu 12.04, together with all the latest versions of the Python scientific libraries.
He also copies over his glass analysis data, and migrates the Sumatra project. He tries
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FIGURE 1.1
Record of a computation captured with Sumatra, displayed in the web browser interface.
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to run the analysis script, but gets an error: in the latest version of NumPy, the return
format of the histogram() function has changed. This is straightforward to fix (see https:

//bitbucket.org/apdavison/ircr2013/changeset/924a39a), so now Bob can commit
and try again:
$ smt run -r ’Fixed to work with new histogram () function ’

default_parameters MV_HFV_012.jpg

Has the upgrade a↵ected Bob’s results?
$ smt diff 20121025 -172833 20121026 -174545
Record 1 : 20121025 -172833
Record 2 : 20121026 -174545
Executable differs : no
Code differs : yes

Repository differs : no
Main file differs : no
Version differs : yes
Non checked -in code : no
Dependencies differ : yes

Launch mode differs : no
Input data differ : no
Script arguments differ : no
Parameters differ : no
Data differ : yes

OK, Bob knew he had changed the code because of the new histogram() function, and
he knew the dependencies had changed, because of the operating system upgrade, but it
was a bit disappointing to see the output data are di↵erent. Using the web browser, we
can look at the results from the two simulations (one from Ubuntu 10.04, one from Ubuntu
12.04) side by side (Figure 1.2) – visually there is no di↵erence, just a tiny change in the
margins, probably due to the upgraded matplotlib package.

Alice puts her head round the door to ask how Bob is getting on with Sumatra. So far,
Bob is happy. His productive workflow has hardly changed – in fact he has a little bit less
to type, since Sumatra stores the names of the default executable and default script for
him, and he can modify parameters quickly on the command line rather than having to
open up the parameter file in his editor. The web browser interface lets him quickly browse
and search through his results (Figure 1.3), and compare di↵erent runs side-by-side. And
he feels much more confident that he will be able to replicate his results in the future.

Alice tries Sumatra out for herself the following week. Alice wants to use one of Bob’s
figures in a grant application, but Bob is on vacation, and she wants to make a few small
changes to the figure. She copies Bob’s Sumatra record store (which by default was created
as the file .smt/records in a subdirectory of Bob’s working directory) to the lab network file
server, so that she can access Bob’s records and Bob in turn will be able to see her results
when he returns, and sets up a new project on her MacBook:
$ smt init -s /Volumes/shared/glass/smt_records ProjectGlass
$ smt configure -e python -m glass_sem_analysis.py -i . -d Data

Before starting her own modifications, she re-runs Bob’s last analysis:
$ smt repeat 20121026 -174545
The new record does not match the original. It differs as follows.
Record 1 : 20121026 -174545
Record 2 : 20121026 -174545 _repeat
Executable differs : no
Code differs : yes

Repository differs : no
Main file differs : no
Version differs : no
Non checked -in code : no
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FIGURE 1.2
Excerpts from a side-by-side comparison of two computation records, one run on Ubuntu
10.04, the other on Ubuntu 12.04.

Dependencies differ : yes
Launch mode differs : no
Input data differ : no
Script arguments differ : no
Parameters differ : no
Data differ : no

She has slightly di↵erent versions of the dependencies on her MacBook, but the results
are unchanged. Alice can now proceed to reformat the figures, confident that her computing
environment is consistent with that of her graduate student. Since the grant application is
being written in LATEX, Alice can also use the sumatra LATEX package to automatically pull
images from the Sumatra record store into her document, with automatic cross-checking of
SHA1 hashes to ensure the image is indeed the correct one and has not been accidentally
over-written.
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FIGURE 1.3
List of computation records in the Sumatra web browser interface.

In conclusion, we hope to have demonstrated that by using Sumatra, Alice and Bob have
improved the reproducibility of their computational experiments, enhanced communication
within their lab, and increased the manageability of their projects, with minimal e↵ort and
minimal change to their existing workflow.

1.3 Design criteria

In introducing the architecture of Sumatra so that others can build upon and extend it,
we begin by describing the constraints we wish Sumatra to satisfy, before describing, in the
following section, its current architecture.

The design of Sumatra is driven by two principles:

1. there is a huge diversity in computational science workflows;

2. software to assist reproducibility must be very easy to use, or only the very conscientious
will use it.

To elaborate on the first issue, of workflow diversity, di↵erent scientists may launch
computations from the command-line, in interactive notebooks, in graphical interfaces, in
web-based tools. Computations may be launched serially, as batch jobs, as distributed com-
putations, for immediate execution or queued for deferred execution, on local machines,
small clusters, supercomputers, grids, or in the cloud. Projects may be solo or collaborative
e↵orts. Di↵erent workflows may be used for di↵erent components of a project or during
di↵erent phases of a project (e.g. exploration vs preparation of final published figures).

Given this diversity, it is unlikely there is a single software tool to support reproducible
research which will be optimal for all possible workflows. At the same time, there is a con-
siderable amount of functionality that is required whatever the workflow, e.g. unambiguous
identification of exactly which code has been run. Sumatra is therefore designed as a core
library of loosely-coupled components for common functionality, easily extensible and cus-
tomizable, so people can adapt Sumatra to their own use cases, and so other people can
built other tools on top of Sumatra.



Sumatra: a toolkit for reproducible research 9

Such a library is potentially useful to tool developers, but will not on its own promote
reproducibility: it must be integrated into scientists’ existing workflows, so that the barrier
to adoption is as low as possible. Sumatra also, therefore, provides tools, built on top of
the core library, that wrap around or work alongside widely-used types of workflow. Three
such tools are available at the time of writing: smt, which supports workflows built around
running individual computations on the command line; smtweb, which provides a browser-
based tool for browsing and querying the results of previous computations; and a LaTeX
package which allows the automated inclusion of figures generated by a Sumatra-tracked
computation in documents, with hyperlinks to the provenance information. The use of these
tools was demonstrated in the previous section. In the future, further tools may be developed
to support more interactive workflows.

Given the above constraints, Sumatra must enable a scientist to easily respond to the
following questions:

• what code was run?
– which executable?

⇤ name, location, version, compilation options
– which script?

⇤ name, location, version
⇤ options, parameters
⇤ dependencies (name, location, version)

• what were the input data?
– name, location, content

• what were the outputs?
– data, logs, stdout/stderr

• who launched the computation?
• when was it launched/when did it run? (queueing systems)
• where did it run?

– machine name(s), other identifiers (e.g. IP addresses)
– processor architecture
– available memory
– operating system

• why was it run?
• what was the outcome? (interpreted in terms of the ongoing project)
• which project was it part of?

1.4 Architecture

This section gives an overview of Sumatra’s architecture, intended for readers who may
be interested in extending or building upon Sumatra, or applying some of its methods in
their own approaches to replicability. More fine-grained detail is available in the online
documentation at http://neuralensemble.org/sumatra. Sumatra has a modular design,
with the coupling between modules made as loose as possible. Within modules, a common
motif to provide flexibility and configurability is to use abstract base classes to define a
common interface, which are then subclassed to provide di↵erent implementations of a
given type of functionality (e.g. version control, data storage). The principal classes in the
core Sumatra library, and their composition, are shown in Figure 1.4. More detail about
the individual modules, classes and their interactions is given in the following sections.
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FIGURE 1.4
The principal classes in Sumatra with their attributes and methods. The arrows denote the
relationship “contains an instance or instances of”. Not shown, for reasons of space, are
the classes DataKey, DataItem, RecordDifference, PlatformInformation, Formatter. Not all
sub-classes are shown.

1.4.1 Code versioning and dependency tracking

To ensure replication, we need to capture identifying information about all of the code that
was run. Where code is modular, this means capturing the local file system path of each
library/module/package that is included/imported by the “main” file (its “dependencies”),
together with, if possible, the version of the module, so that (i) the environment could be
recreated in future, (ii) if failing to replicate with more up-to-date versions of libraries in
future, we can investigate what has changed. This must be done recursively, of course, if a
dependency itself has dependencies.

Finding the dependencies requires, in general, being able to parse the programming lan-
guage used (although in future it may be possible to use a tool such as CDE [5, 6] to deter-
mine which dependencies are loaded at run-time). Sumatra therefore requires a “dependency
finder” module to be provided for each programming language used. At the time of writing,
such modules are all distributed within Sumatra, i.e. as modules dependency_finder.python,
dependency_finder.matlab, etc., but a plugin architecture is planned, so that users can easily
extend Sumatra where the language they are using is not supported.

Version information may be provided in many ways, some of which are dependent on
the programming language used, others independent. As an example of the former, Python
modules often define a variable called __version__, VERSION or version, or a function called
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get_version(). Two examples of the latter are: obtaining the version from a VCS; ob-
taining the version from a package management system (such as apt, on Debian). Suma-
tra’s strategy, therefore, is that each dependency_finder module provide a list of functions,
each implementing one heuristic for finding versions, e.g. find_versions_by_attribute(), or
find_versions_by_version_control(). Each of these is tried in turn, and the first version
found is the one used (the order is important: generally a version obtained from a VCS is
more reliable/precise than a version obtained from a variable defined within the code).

It may happen that some of the code under version control has been modified since the
last commit. In this scenario, it is usually best to abort the computation and to commit the
changes before proceeding. However, there may be good reasons for not wanting to commit,
and so Sumatra also provides the option of storing the “di↵” between the VCS working
copy and the last commit.

Given the variety of VCSs in use, Sumatra’s strategy is to wrap each VCS so as to provide
a uniform interface. For each VCS supported by Sumatra, the versioncontrol module con-
tains a sub-module containing two classes - a subclass of versioncontrol.base.Repository
and a subclass of versioncontrol.base.WorkingCopy. Sumatra does not require all the func-
tionality of VCSs, and is not intended to replace the normal methods of interacting with a
VCS for code development. The Repository subclass has two roles: storing the repository
URL, and obtaining a fresh checkout/clone of the code base from a remote server (even
the latter is not strictly necessary). The functionality required of the WorkingCopy subclass
is more extensive: determine the current version; determine whether any of the code has
been modified; determine the di↵ between the working code and the last commit; determine
whether a given file is under version control; change the working copy to an older or newer
version (for replicating previous computations and then returning to the most recent state
of the code base).

In general, the di↵erence between distributed and centralized version control systems is
not important for Sumatra. The only di↵erence is that, for distributed VCSs, the reposi-
tory used is always a local one, and it is therefore often useful, for the purposes of future
replication and open science, to store the URL of the “upstream” repository, often a public
repository on a remote server.

1.4.2 Data handling

Replicability of a computational result requires knowing what the input data (if any) were,
and it requires storing the output data so that future replication attempts can be checked
against the original results. Inputs to a program can be subdivided into data, and config-
uration/parameters. These can generally be distinguished in that data could be processed
by a di↵erent program, while parameters are tightly tied to the code. Sumatra attempts to
distinguish parameter/configuration files from input data files by the structure of the data;
as a fall-back, parameters will be treated as input data. Parameter file handling is described
below.

Data may be stored in many ways: in individual files on a local or remote file system, in
a relational database, in a remote resource accessed over the internet by some API. However
it is stored, the most important thing to know about data is its content. However, it would
be redundant for Sumatra to store a separate copy of each input and output data item,
especially given the potentially enormous size of data items in many scientific disciplines.
Sumatra therefore stores an identifier for each data item, which enables retrieval of the item
from whichever data store – the file system, a relational database, etc. – is used. In the case
of the file system, for example, the identifier consists of the file system path relative to a
user-defined root directory together with the SHA1 hash of the file contents. The latter is
needed to catch overwriting or corruption of files.
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To handle di↵erent ways of storing data, Sumatra defines an abstract DataStore class,
which is then subclassed: for example, the FileSystemDataStore which is used to work with
data stored on a local file system. The minimal functionality required of a DataStore subclass
is: find new content, given a time stamp (used to link output data to a given computation);
return a data item object, given the item’s identifier (“key”); return the contents of a data
item; delete a data item. DataItem objects support obtaining the data contents, and may
also contain additional metadata, such as the mimetype.

It is straightforward to add extra functionality to a DataStore subclass. For example, the
ArchivingFileSystemDataStore works the same as the plain FileSystemDataStore but in addi-
tion copies all the output data files to an archive format. The MirroredFileSystemDataStore

allows specifying a URL from which the data file can be retrieved (in addition to the local
version). This supports, for example, using Dropbox (https://www.dropbox.com) with a
public folder, or FTP, or FigShare (http://figshare.com) to make your data available
online.

1.4.3 Storing provenance information

Once Sumatra has captured the context of your computational experiment, it needs to store
all this information somewhere. For individual projects, a local database is probably the
best way to do this. For collaborative projects, or if you often work while travelling, it
may be necessary for this information to be stored in a remote database accessible over the
internet. To provide this flexibility, Sumatra defines an abstract RecordStore class, which is
then subclassed.

Sumatra currently provides three RecordStore subclasses: ShelveRecordStore, which pro-
vides only basic functionality, but has the advantage of requiring no external libraries to
be installed; DjangoRecordStore, which uses the Django web framework to store the prove-
nance information in a relational database (SQLite by default, but MySQL, PostgreSQL
and others are also supported) and adds the ability to browse the record store using a web
browser; and HttpRecordStore, which is a client for storing provenance information in a
remote database accessed over HTTP using JSON as the transport format. The server for
the HttpRecordStore is not distributed with Sumatra, but such a server is straightforward
to implement. Two implementations currently exist – a Django-based implementation at
https://bitbucket.org/apdavison/sumatra_server and a MongoDB-based version at
https://github.com/btel/Sumatra-MongoDB.

The functionality required of a RecordStore subclass is: support multiple Sumatra
projects; list all projects contained in the store; save a Sumatra Record object under a given
project; list all the records in a project; retrieve a Record given its identifier (project+label);
delete a Record given its identifier; delete all Records which have a given tag; return the most
recent record; export a record in JSON format; import a record in the same format; syn-
chronize with another record store so that they both contain the same records for a given
project.

1.4.4 Parameter handling

It is a common practice in scientific computing to run a simulation or analysis with di↵er-
ent parameters and to compare the results. Given this important use case, Sumatra allows
parameters to be handled di↵erently from other input data. If Sumatra is able to recognize
a particular parameter file format then (i) the parameters are available for future search-
ing/querying/comparison; (ii) Sumatra can add extra parameters. An important use case
of the latter is that Sumatra can add the label/identifier for the current record, for use by
the user’s code in constructing file names, etc. Sumatra currently supports four parameter
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file formats, including simple “key=value” files, JSON, and config/ini-style formats. Imple-
menting support for a new parameter file format is straightforward: define a MyParameterSet

class whose constructor accepts either a filename or a text string containing the file con-
tents. The class should also implement method as_dict() which returns parameter names
and values in a (possibly nested) Python dict, update(), which functions like dict.update(),
and save(), which writes the parameter set to file in the given format.

1.4.5 Launching computations

If your code is written in Python, then you can use Sumatra directly within your scripts,
and run your computation with Python as usual. If you are using other tools (or if using
Python and you do not want to modify your code) then Sumatra needs to launch your
computation in order to be able to capture the context. The challenge here is that there are
so many di↵erent workflows, so many di↵erent ways of launching a computation: from the
command line on the local machine, from the command line on a remote machine (using
ssh, for example), on a cluster, computing grid or supercomputer using a job manager, as
a parallel computation using MPI, or by clicking a button in a graphical interface

To handle this variety, Sumatra follows the usual pattern of defining an abstract base
class, LaunchMode, which is then subclassed to support di↵erent methods of launching com-
putations. A LaunchMode subclass needs to define a method generate_command() which should
return a string which will be executed on the command line. The LaunchMode is also respon-
sible for capturing information about the platform – the operating system, the processor
architecture, etc. For computations run on the local machine, the base class takes care
of this. For computations run on a remote machine or machines, the LaunchModel sub-
class must override the get_platform_information() method. Sumatra currently provides
SerialLaunchMode and DistributedLaunchMode subclasses.

To generate the launch command, Sumatra may need extra information about the
particular executable being used – particular arguments or flags that are needed in dif-
ferent circumstances. Similarly, there may be a build step or other preliminary that
is needed before launching the computation. If this is the case, a user may define
an Executable subclass which may define any of the attributes pre_run, mpi_options,
requires_script, and may optionally redefine the method _get_version(). The user then
calls the programs.register_executable() method to register the new subclass with Suma-
tra.

1.4.6 Putting it all together

Tying all of the foregoing together are the Record class and the Project class. The Record

class has two main roles: gathering provenance information when running a computation,
and acting as a container for provenance information. When launching a new computation,
as diagrammed in Figure 1.5, a new Record object stores the identifiers of any input data,
interacts with a WorkingCopy object to check that the code is at the requested version, uses
the dependency_finder module to find the list of dependencies (and their versions), and then
obtains platform information from the appropriate LaunchMode. It then runs any precursor
tasks, such as building the executable, writes a modified parameter file, if necessary, and
then passes control to the LaunchMode, which spawns a new process in which it runs the
requested computation while capturing the standard output and standard error streams.
Once this completes, the Record object calculates the time taken, stores stdout and stderr,
asks the DataStore object to find any new data generated by the computation, and stores
the identifiers of this output data.

The Project class has one main role: to simplify use of the Sumatra API by storing
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FIGURE 1.5
The flow of control between di↵erent Sumatra objects during a computation. Time flows
from top to bottom. Each dashed vertical line represents the life time of an object, labelled
at the top with the class and, in some cases, an instance name. Solid horizontal arrows
represent method calls or attribute access.

default values and providing shortcut functions for frequently-performed tasks. Thus, for
example, while creating a new Record object requires passing up to 16 arguments, the
Project.new_record() method will often be called with just two – the parameter set and
the list of input data items – since most of the others take default values stored by the
Project. The smt command accesses Sumatra’s functionality almost entirely through an
instance of the Project class.

The precise division of responsibilities between the Record and Project class is not crit-
ical, and could evolve in future versions of Sumatra to enhance usability of the API.

1.4.7 Search/query/reuse

So far we have talked about the API from the perspective of capturing provenance informa-
tion. We now consider the use cases of accessing, querying and using the stored provenance
information.

As described above, this information is stored in a “record store”, represented by a sub-
class of RecordStore, and whose backend may be a flat file, relational database, or web
service. The common record store interface allows querying based on record identifiers
(project + label) and on tags. Individual record store implementations may allow more
sophisticated queries: for example, the DjangoRecordStore allows queries based on Django’s
object-relational-mapper, or even using plain SQL.

The main use cases for accessing records of previous computations: (i) are comparing
the results of similar runs (e.g. examining the e↵ects of parameter changes); (ii) repeating
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a previous computation to check that the results are reproducible; (iii) further processing
of results, e.g. further analyses, visualization, inclusion in manuscripts.

The first two of these use cases are supported by the Project.compare() method, which
calls Record.difference(), which returns an instance of the RecordDifference class. This
class has assorted methods which allow a precise dissection of the di↵erences between two
computations.

1.5 Discussion

In this chapter we have presented Sumatra for two (albeit overlapping) audiences: the
working computational scientist, and the software developer or scientist-developer who may
wish to extend or build-upon Sumatra. In this book as a whole, a number of di↵erent tools
to support reproducible research have been presented. For a scientist interested in ensuring
their research is easily reproducible, when should you use Sumatra and when another tool?

Software for reproducible research can be divided into three general categories: tools for
literate programming, workflow management systems, and tools for environment capture.

Literate programming1 and the closely related “interactive notebook” approach2 inex-
tricably bind together code and the results generated by that code, which is clearly hugely
beneficial for reproducible research. With some such systems, information about software
versions, input data and the computing environment can also be included in the final docu-
ment. If your literate programming environment or interactive notebook supports Python,
you could also use Sumatra via its API to provide this functionality. Scenarios that are
generally more di�cult to handle with the current generation of literate programming tools
and interactive notebooks are: (i) where computations take considerable time (hours or
days) to run; (ii) where computations are distributed on parallel hardware or are queued
for later execution; (iii) where code is split among many modules, so that the code included
in the literate document or notebook is only a small part of the whole.

Visual workflow management or pipeline tools, such as Kepler [8], Taverna [10] and
VisTrails [3, 4] are aimed at scientists with limited coding experience, or who prefer vi-
sual programming environments. They are particularly straightforward to use in domains
where there some standardization of data formats and analysis methods – for example in
bioinformatics and in fields that make extensive use of image processing. The main disad-
vantage is that where there are no pre-existing components for a given need, creating a new
component can require considerable e↵ort and a detailed knowledge of the workflow system
architecture. Most widely-used systems include provenance tracking either as an integral
part or as an optional module.

Environment capture systems, such as Sumatra, are generally the easiest to adopt for
an existing workflow. The simplest approach is to capture the entire operating system as
a virtual machine (VM) image – see the chapter by Howe [7] in the current volume. A
more lightweight alternative to this is CDE[5, 6], which archives only those executables and
libraries actually used by the computation. The main disadvantages with such approaches
are: (i) your results risk being highly sensitive to the particular configuration of your com-
puter; (ii) it is di�cult or impossible to index, search or analyse the provenance information.
Sumatra aims to overcome both of these disadvantages by capturing the information needed

1see for example ref [2], which explains the use of Sweave (http://www.statistik.lmu.de/~leisch/
Sweave/) and Org-mode (http://orgmode.org) for reproducible research, and ref[11] in the current volume.

2for example Mathematica (http://www.wolfram.com/mathematica/), Sage (http://www.sagemath.org)
and IPython (http://ipython.org)
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to recreate the experimental context, rather than the context itself in binary form. Some
combination of Sumatra and CDE would perhaps give the best of both worlds. Integration
of CDE is planned in a future version of Sumatra.

In summary, at the time of writing, Sumatra is most suitable for scientists who prefer
to write their own code and run it from the command line, especially when factors such as
computation time, parallelism, or remote execution make it di�cult to work interactively,
or where code is highly modular so that literate programming tools capture only the tip of
the code iceberg. In any case, Sumatra is fast to set up, easy to use and requires no changes
to existing code, so there is little to be lost in trying it out.

We have seen that Sumatra makes it much easier to replicate computational research, in
capturing the details of the software and hardware environment that was used. In particular,
Sumatra makes it much easier to identify, in the case of failure to reproduce a result,
what are the di↵erences between the original and current environments. However, Sumatra
cannot guarantee reproducibility, for two reasons. First, there are some details that are
not captured. For example, in Figure 1.1 you can see that for some of the dependencies
the version is unknown, either because the version information is genuinely not present or
because Sumatra does not yet have a heuristic for finding it. Similarly, the compilation
procedure and software library versions used to compile third-party programs, such as the
Python interpreter, are not currently captured, and it may sometimes be impossible to
capture this information. Second, with the passage of time, even if you know the particular
versions of the libraries used, these versions may no longer be available, or the particular
hardware architecture needed may not even be available. This problem is not restricted to
Sumatra, of course. The use of virtual machines and careful archiving of old hardware is
one partial solution, while for code that continues to be useful, a program of maintenance
and ongoing updates can avoid obsolescence.

In the future, we plan to add support for using Sumatra with interactive notebooks
(i.e. supporting a more granular unit of computation than an entire script), automated
re-creation of software environments using the captured information, support for pipelines
(where the output in one Sumatra record is the input in another), better support for com-
piled languages and software build systems, and interoperability with other provenance
tracking tools, probably using the Open Provenance Model [9].

Sumatra is open source software, and is developed as an open community – if you have
ideas or wish to contribute in any way, please join us at http://neuralensemble.org/

sumatra.
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