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SOCIAL LEARNING IN MODELS AND MINDS 

 

Abstract  

After more than a century in which social learning was blackboxed by evolutionary 

biologists, psychologists and economists, there is now a thriving industry in 

cognitive neuroscience producing computational models of learning from and 

about other agents.  This is a hugely positive development.  The tools of 

computational cognitive neuroscience are rigorous and precise.  They have the 

potential to prise open the black box.  However, we argue that, from the 

perspective of a scientific realist, these tools are not yet being applied in an 

optimal way.  To fulfil their potential, the shiny new methods of cognitive 

neuroscience need to be better coordinated with old-fashioned, contrastive 

experimental designs.  Inferences from model complexity to cognitive complexity, 

of the kind made by those who favour lean interpretations of behaviour 

(‘associationists’), require social learning to be tested in challenging task 

environments.  Inferences from cognitive complexity to social specificity, made by 

those who favour rich interpretations (‘mentalists’), call for non-social control 

experiments.  A parsimonious model that fits current data is a good start, but 

carefully designed experiments are needed to distinguish models that tell us how 

social learning could be done from those that tell us how it is really done.  

 

Keywords: cognitive neuroscience; contrastive testing; domain-specificity; model 

complexity; scientific realism; social learning 
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Social learning is everywhere – in the animal kingdom, in human lives, and now in 

computational cognitive neuroscience.  Social learning happens whenever one 

agent learns something from or about another agent.  Snails do it when they follow 

the slime trails of other snails to food, and you, dear reader, are doing it right now 

as you learn about snails and trails from the words on this page.   

For decades, the motley, bulging sack of social learning was stuffed with 

examples and carried to explanatory tasks by scientists interested in the 

consequences of learning from others.  Behavioural ecologists, ethologists, 

comparative psychologists, and cultural evolutionists asked how social learning 

contributes to behavioural adaptation – how learning from others enables the 

behaviour of agents to meet and change the demands of their environments. 

Similarly, but with a focus on human social learning, developmental and 

educational psychologists asked how learning from others contributes to the 

growth of technical and social skills – learning to cook, speak, and defer to elders – 

while social psychologists and economists studied the roles of social learning in 

generating political, market, and consumer behaviour.  These groups of highly 

productive scientists were and are concerned about evolutionary, developmental, 

and societal processes that shape and are shaped by social learning. But, until 

recently, social learning was a black box. Almost no one was asking about the 

psychological and neurobiological processes of social learning – about what goes 

on between an agent’s ears when they learn from another agent (Heyes 1994; 2016; 

2018).   

Now, there is a thriving industry in cognitive neuroscience asking exactly 

this question and using sophisticated computational and neurobiological methods 

to tackle it.  We regard this as a hugely positive development.  The tools of 

computational cognitive neuroscience are rigorous and precise.  They have the 

potential to prise open the black box.  However, we argue that, from the 

perspective of a scientific realist – a scientist who wants their work to yield true, or 

as-true-as-possible, descriptions of cognitive processes - these tools are not yet 

being applied in an optimal way.  To fulfil their potential, the shiny new methods 

of cognitive neuroscience need to be better coordinated with old-fashioned 

experimental design. To be clear, experiments have not been edged out by 
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modelling in this field. Animated by a spirit of methodological pluralism (Heesen, 

Bright & Zucker 2019), and naturally given that cognitive neuroscience is rooted in 

experimental psychology, most articles in the cognitive neuroscience of social 

learning report experimental work as well as their models.  However, we will argue 

that these experiments are not of the right kinds to test the researchers’ 

hypotheses about the mechanisms of social learning. 

We begin with some background on the questions asked and methods used 

by scientists interested in social learning.  We then suggest that recent work, using 

computational modelling, has two inferential problems – inferring cognitive 

complexity from model complexity, and social specificity from cognitive 

complexity.  In the two sections that follow, we present case studies illustrating 

these problems and indicating how they can be solved by contrastive experiments.  

Before closing, we suggest that the inferential problems we highlight, although 

pressing for a scientific realist, would dissolve under an instrumentalist or 

historicist gaze.  

 

Questions and methods 

What is special about social learning?  This question has dominated scientific work 

on social learning since it began more than a century ago (e.g., Thorndike 1898).  In 

the era before cognitive neuroscience, those advocating the specialness of social 

learning tended to contrast it with ‘individual’ or ‘asocial’ learning – learning 

without assistance from other agents – and to stress social learning’s distinctive 

potential to reduce the costs of learning for individuals; to change the selection 

pressures acting on a gene pool, and thereby the course of a population’s 

evolution; to produce ‘traditions’, systematic variation in behaviour across 

populations within a species; and, as an analogue of DNA replication, to 

underwrite a Darwinian process of cultural selection working sometimes in 

opposition and sometimes in concert with genetic evolution.  Enthusiasm for these 

well-founded hypotheses - and latterly for classical evolutionary psychology - 

sometimes spilled over into casual claims that social and asocial learning depend 

on different psychological processes; that social learning is an ‘evolved module’ or 

‘adaptive specialisation’; that minds use fundamentally different, domain-specific 
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algorithms to get information from others.  But the nature of the alternative 

processes was never specified; the black box of social learning remained firmly 

shut (Heyes & Galef 1996; Hoppitt & Laland 2013; Mobius & Rosenblat 2014; Zentall 

& Galef 1988). 

With the advent of computational cognitive neuroscience, the question of 

what is special about social learning continues to dominate but it has become 

more focussed.  Cognitive neuroscientists want to know what is special about 

human social learning – how it differs from social learning in other animals, and 

how those differences contribute to making human lives so peculiar compared 

with the lives of other species (Gweon 2021).  Theories draw on evidence from 

neurobiological studies of rats and monkeys (e.g., Lockwood, Apps & Chang 2020; 

Roumazeilles et al 2021), and behavioural research with children (e.g., Gweon 2021; 

Ho, MacGlashan, Littman & Cushman 2017; Ho, Cushman, Littman & Austerweil 

2019), but most studies involve adult human participants performing social 

learning tasks online or in the laboratory.  In the latter case, participants are often 

tested in a scanner, using functional magnetic resonance imaging (fMRI).  The 

tasks typically require people to make a simple choice (e.g., between two cards) on 

many successive occasions (in repeated ‘trials’), with ‘advice’ from another agent.   

In addition to human-specificity, cognitive neuroscientists are interested in 

social-specificity at both psychological and neurobiological levels of explanation 

(Lockwood et al. 2020).  Does social learning, not only draw information from 

distinctive sources – other agents as well as the inanimate environment – but also 

use special kinds of representation or algorithm to process and encode that 

information?  Which brain regions, circuits, and neurochemicals are recruited for 

social but not asocial learning, or more for one than the other?1  

 
1 These questions are major drivers of research but it is striking that, compared with 
evolutionary psychologists, cognitive neuroscientists working on social learning lean 
towards domain-generalism.  Even those who believe that social learning involves 
representations with highly distinctive content (e.g., representations of the minds of other 
agents) – and that social information is processed in dedicated circuits (e.g., in ACC gyrus), 
assume that the heavy lifting of social learning is done by the same psychological 
processes that, for example, track causal relationships among inanimate events (Velez & 
Gweon 2021). 
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Cross-cutting questions about social-specificity, in a cryptic way, are 

questions about the complexity or richness of social learning.  In the most 

prominent contemporary debate, one group – we will call them associationists - 

advances the view that human social learning often depends on the same, simple 

processes that mediate asocial learning in humans and other animals. Much of 

what we know about these processes originated in research on rats and pigeons in 

the behaviourist era, and in some instances modern associationists make their 

case by revealing similarities between humans and other animals. For example, 

recent work has found that precisely the same computational model can be used 

to capture paranoid beliefs about the social world in human volunteers and the 

patterns of behaviour rats show as they learn to poke their noses in different ports 

to earn satisfying squirts of sugar (Reed et al, 2020).   

  The other group – let’s call them mentalists – challenge this view, saying 

that, in humans at least, the processes of social learning are rarely so ‘lean’; they 

typically involve ‘rich’ representations and ‘inferences’ about the minds of other 

agents (Velez & Gweon 2021).  Note that the richness debate is about what is 

common or typical of human social learning.  Rhetoric aside, it is unlikely that any 

associationist would deny that social learning in adult humans sometimes involves 

what is known as mentalising (or mindreading, or theory of mind).  Similarly, it is 

unlikely that any mentalist would deny that social learning sometimes – in snails if 

not in humans – involves associative processes of the kind found in rats pressing 

levers for food. 

However, when defining what makes a given cognitive process ‘rich’ or 

‘lean’, researchers on both sides of the debate have tended to focus on the 

complexity or simplicity of the computational models deployed to explain 

behaviour. Here, ‘complexity’ is to be understood in terms of the number of 

moving parts an agent tracks when learning about their environment. On one side 

of the debate, associationists suppose that social learners deploy algorithms in 

their heads that only track a single variable – like the history of reward.  In the 

same way that a rat can learn through trial and error which spout will yield the 

most sugar just by integrating the history of rewards, social learners might simply 

integrate the trials and errors of other agents to determine which options are best 
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too.  This scheme doesn’t require representing anything about the minds of other 

agents, only some equivalence between rewards generated by our own actions and 

those generated by others (Olsson, Knapska & Lindstrom, 2020).   On the other side 

of the debate, the mentalists suppose that social learners track a whole host of 

variables – such as the intentions, character or affiliations of the agents we are 

learning from. The complexities of social world, it is argued, necessitate more 

complex algorithms that track more than simply the probability of reward (Olsson, 

Knapska & Lindstrom, 2020). Set up in this way, the debate between associationists 

and mentalists is operationalised as a debate about complexity. If it can be shown 

that social learning can be captured by simpler mathematical models tracking only 

a single variable (e.g., reward history), this is taken as evidence that social learning 

depends on domain-general associative processes unfolding in the learner’s mind.  

In contrast, if social learning is better captured by more complex mathematical 

models tracking a larger number of variables – combining say, reward history, with 

the intentions and characters of our social partners – this is taken as evidence that 

social learning depends on specific inferential processes that are only deployed 

when dealing with the social world.  

 

 

Model complexity > Cognitive complexity > Social specificity 

Examined more closely then, computational cognitive scientists who are interested 

in social learning use models to find out about minds in a three-step process:   

1. Model complexity. A modeller establishes whether behaviour (or neural) 

data from a task are best fit by a simple or complex model. 

2. Cognitive complexity. The results of Step 1 licenses a conclusion that the 

cognitive processes engaged by the task are either simple or complex. 

3. Social specificity. The result of Step 2 licenses a conclusion that these same 

processes are domain-general (if simple) or socially specific (if complex). 

For this method to work, each step must be valid.  In the associationist case, it 

must be valid to infer simple cognitive processes from the fit of a simple model 

(Step 1 > Step 2) and to infer domain-generality from cognitive simplicity (Step 2 > 
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Step 3).  In the mentalist case, it must be valid to infer complex cognitive processes 

from the fit of a complex model (Step 1 > Step 2) and to infer social specificity from 

cognitive complexity.   

In our view, each camp has a problem.  The problem for the associationist 

relates to the first inference, from Step 1 to Step 2.  Model comparison favouring a 

‘simple’ model in two different conditions cannot rule out the possibility that 

different kinds of cognitive process support the same algorithm in the two 

conditions.  For example, if the same prediction-error algorithm fits the data when 

participants are using direct feedback and advice, it does not necessarily mean that 

the ‘predictions’ or ‘errors’ were generated by lean, domain-general cognitive 

processes in both conditions.   

The problem for the mentalist is different. Model comparison logic means 

that, if we have a simple model and a more complex model, and the more complex 

model wins, we are justified in preferring not only the more complex model but 

also a theory that hypothesises a more complex cognitive process; Step 1 > Step 2 

is valid.  The problem for the mentalist is in the second inference from Step 2 > 

Step 3, cognitive complexity to social specificity.  Behaviour in a task may depend 

on a more complex cognitive process without the process being socially specific.  

For example, I might create a model-based algorithm, where I, the modeller, 

designate the state the agent is learning about as an internal state of another agent 

– a state, such as a belief or competence, of a kind that is only possessed by other 

agents.  If this model then beats a simple learning algorithm, I have reason to 

believe the modelled behaviour depended on a more complex cognitive process, 

but not that my designation of the states was the correct one. The learner might 

have been tracking an external, observable state of another agent and/or of the 

context – states of a kind that characterise the inanimate world as well as other 

agents.  

In other words, both camps have problems of contrastive 

underdetermination of theory by evidence (Duhem 1991; Quine 1958; Stanford 

2006).  In the associationist case, the success of a simple model is compatible with 

a theory suggesting that the same, simple psychological processes mediate social 

and asocial learning.  But it is also compatible with a theory suggesting that 

different psychological processes mediate social and asocial learning. In the 
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mentalist case, the success of a complex model is compatible with a theory 

suggesting that the modelled example of social learning is mediated by a complex, 

socially specific psychological process. But it is also compatible with a theory 

suggesting that the example depends on a complex, domain-general psychological 

process.  

Scientists can respond to problems of contrastive underdetermination by 

invoking a general principle to justify their theory choice, or by doing further 

experimental work to discover which of the ‘tied’ theories is more empirically 

adequate.  Taking the first option, associationists and mentalists could – and 

sometimes do – appeal to a principle of parsimony or simplicity.  This is 

unsatisfactory for many reasons unearthed in debate about Morgan’s Canon 

(Dacey 2016, 2021; Fitzpatrick 2008, 2017).  For example, there are a variety of 

different kinds of explanatory simplicity (ontological, iterative, phylogenetic, 

uniformity, ease of use), they are not highly correlated, and there is no well-

established epistemic basis for prioritising one kind over another.  Similarly, 

mentalists could – but do not - argue that there is a compelling body of evidence 

that, as claimed by evolutionary psychologists, complex cognitive processes tend 

to be domain-specific rather than domain-general.  Any argument of this kind is 

unlikely to be convincing given widespread concern about the empirical bases and 

conceptual coherence of evolutionary psychology’s version of the modularity of 

mind thesis (Pietraszewski & Wertz 2021; Robbins 2013).  

Given the weakness of parsimony and modularity arguments, we 

recommend that computational cognitive scientists working on social learning 

take the second option – run more experiments of specific kinds.  If our diagnosis 

of the problems is correct, they can be remedied by backing up the computational 

modelling with better (and more old-fashioned) experimental manipulations.  

Associationists who want to secure claims about domain-general simplicity need 

to test their models in challenging conditions where complex cognitive processes 

have an opportunity to shine.  Mentalists who want to secure claims about 

domain-specific complexity need to show their complex algorithms are only 

deployed in social settings. This will mean crafting non-social control conditions 

that avoid a social-asocial / simple-complex confound.  
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The associationist case  

The problem for those who favour a simple, associationist view of social learning 

can be illustrated by a seminal study by Behrens, Hunt, Woolrich & Rushworth 

(2008). In this experiment, volunteers performed a simultaneously social and 

asocial learning task. On each trial, participants had to choose between two 

coloured rectangles presented on screen – one of which would tend to yield a 

monetary reward, and one of which would tend not to. To line their pockets as 

much as possible, each participant could exploit two sources of information about 

where the rewards would be. First, the volunteers could use their own direct 

experience of reward history – tracking which rectangle had yielded the most 

rewards in the past. Alongside this direct route (asocial), participants could also 

use advice provided by another agent. On each trial, this social advice from the 

other agent was represented by a red frame that appeared around the 

recommended rectangle before the participant made their decision. 

Behrens and colleagues showed that participants’ learning about both 

sources of information – direct experience and social advice – can be modelled 

using a Bayesian reinforcement learning algorithm.  Moreover, recording the brain 

activity of volunteers as they learn about both types of information reveals a 

signature of the prediction error computations hypothesised by the algorithm. 

Since this kind of prediction error-based learning is at the heart of associationist 

accounts of reward learning in creatures like pigeons and rats, the authors 

conclude that social learning ‘can be realised by means of the same associative 

processes previously established for learning other, simpler, features of the 

environment’ (p. 245). 

This is a seductive conclusion, but it might not be a sound one. This is 

because it depends on a kind of reverse inference. The terms forward inference and 

reverse inference have been used for over a decade in cognitive neuroscience to 

characterise different claims researchers can make about the relationship between 

brain structures and cognitive functions (Poldrack, 2006).  A forward inference 

involves mapping from function-to-structure. For instance, a researcher might 

design a brain imaging experiment where one condition involves reasoning about 
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mental states, and another condition does not. By contrasting brain activity in the 

first condition and the second, the scientist can identify which brain regions are 

involved in mentalising – say, the medial prefrontal cortex (mPFC). In contrast, a 

reverse inference involves mapping from structure-to-function. Here, a researcher 

might look at brain activity they have recorded in another experiment and notice 

that they have found activity in the mPFC. Since previous studies have implicated 

the mPFC in reasoning about mental states, they conclude that their participants 

were mentalising in this study too – a reverse inference.  These reverse inferences 

are not deductively valid and can lead neuroscientists astray when brain regions 

show little selectivity in the tasks that engage them (Poldrack, 2011).  

Here, we can see an analogous kind of computational reverse inference, with 

researchers mapping algorithms rather than brain regions onto hidden cognitive 

processes.  First, the researchers establish that a particular learning algorithm can 

account for behaviour and brain activity in a simple reward learning task (Behrens, 

Woolrich, Walton & Rushworth 2007) – a forward inference. Then, the authors show 

that the same algorithm can also effectively model behaviour and brain activity 

during a social learning task. The success of the algorithm in the second instance 

is taken to imply that the same kind of simple cognitive processes are involved in 

the social case too – a reverse inference. 

The issue with the shape of this inference is that rich, complex social 

cognitive processes could also yield patterns of behaviour and neural activity that 

can be successfully captured by simple algorithms.  

This can be made clearer if we consider the details of the study by Behrens 

et al (2008) in full.  At the beginning of the experiment, participants are introduced 

to a confederate who they believe will be providing the advice during the main test 

phase. The experimenter explains to them both that while the learner’s job is to 

earn as much as possible, the confederate’s task is to keep the learner’s winnings 

within a particular unknown range – not too high or too low. This means that 

while the advisor always knows for certain which rectangle will be rewarded, they 

will sometimes be incentivised to provide accurate advice, and other times 

incentivised to mislead. 
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Now, against this backdrop, it is perfectly plausible that the associationist 

story is true. Participants might learn about the value of the red frame simply by 

tracking its reward history from trial to trial, without deploying any rich, 

mentalistic processes. This is the interpretation that Behrens et al (2008) favour. 

However, it is also possible that participants in this task do deploy a specialised 

suite of mentalising processes to solve the social learning element of the task. For 

example, a learner might construct a mentalistic model of the unobserved advisor, 

constructing rich representations of what they intend, desire and believe. For 

instance, such a model might attribute to the advisor a desire to limit the learner’s 

earnings, and thus an intention to deceive with their next recommendation.  

The problem with distinguishing between these two accounts using 

algorithms is that both the rich and the lean accounts assume agents use the same 

information (the red frame) to generate and update a sequence of predictions. 

While the prediction error signals identified by Behrens et al (2008) could arise 

through a simple, domain-general associative process, the same trajectory of 

predictions and prediction errors would be generated by a richer mentalising 

process that uses the red frame to infer and attribute desires and beliefs. This 

means, in principle, that a complex mentalising agent may generate behaviours 

that can be easily described by a simple learning algorithm. 

A common response to this kind of theoretical dilemma is to invoke the 

principle of parsimony. Indeed, associationists have often suggested that simple 

learning processes should act as a ‘null hypothesis’ that psychologists need to 

reject before supplying richer alternatives (e.g., Haselgrove 2016; Macphail 1985). 

Parsimony may sometimes be a virtue, but as our sketch of Behrens et al (2008) 

shows, we may cut ourselves on Occam’s razor if we always plump for the leanest 

possible account (Heyes 2012; Sober 2009). Indeed, if we are scientific realists, we 

want our scientific processes to pick out theories that are likely to map onto 

genuine reality, rather than picking out the simplest possible theory that would 

account for our data.  

If we cannot rely on parsimony to adjudicate between competing theories, 

our only option is to bite the empirical bullet, and to run experiments aimed at 
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contrastive testing2. In this way of thinking, we can distinguish between 

associationist and mentalist accounts not by appealing to the simplest possible 

model, but by designing experiments where the two models make competing 

predictions. For example, a key prediction of the mentalistic alternative we offer 

above is that learners construct an internal model that attributes beliefs and 

desires to another agent. One way of ruling out this possibility more effectively 

would be to include experimental conditions where these more complex 

mentalistic inferences would lead to predictions that diverge from the simpler 

algorithm. 

For example, participants could be presented with a version of the task with 

a different regime of advice and slightly tweaked cover story. Imagine instead that 

participants are explicitly told that the advisor’s goal is not to keep participant 

earnings in some unknown range, but to make recommendations that ensure the 

participants get half of their choices rewarded, but half unrewarded. They will 

achieve this by adjusting the advice they give based on how the learner is behaving 

trial-by-trial: if your last trial was rewarded, the advisor will be more likely to make 

a deceptive, incorrect recommendation – but if your last trial was unsuccessful, the 

advisor will be more likely to make a cooperative, correct recommendation.  

In such a variant of the task, it would be possible to present participants 

with similar regimes of advice – but the ‘prediction errors’ generated by 

associationist and mentalist computations would dramatically diverge.  

The associationist account assumes that participants are simply learning 

about the reward history of the red frame, and thus any prediction error associated 

 
2 Following Currie (2021), we can think that ‘parsimony’ in cognitive science is related to 
our current knowledge of a creature’s cognitive capacities: if we know that a creature 
already possesses a certain cognitive capacity, and this capacity is enough to explain the 
behaviour at hand, we do not need to impute another capacity to explain it instead (e.g., 
Morgan’s Canon). Whatever the merits of this view, this kind of parsimonious thinking may 
be less useful when trying to distinguish between rich and lean cognitive processes in 
humans – as we already have good reason to think that humans are in possession of both 
rich and lean cognitive capacities. Thus, what the cognitive scientist needs is not a strategy 
which allows them to characterise the broader ontology of cognitive mechanisms in 
humans, but a strategy that allows us to determine which kind of cognitive process is 
deployed in which setting. Our strategy – based on experimental design and contrastive 
testing – can serve this role. 
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with the advice frame should simply reflect how surprising a correct (or incorrect) 

recommendation is, averaging over all the recommendations in the recent past 

(e.g. has the frame been reliable or not?). In contrast, if the mentalist alternative is 

true, prediction errors for the red frame should become state-dependent.  As 

participants, we will infer that if the last trial was successful, the advisor is likely 

to now be deceiving us (making a helpful recommendation improbable), while if 

the last trial was unrewarded they are likely to be cooperating (making an 

unhelpful recommendation more surprising).   

The reason this alternative experiment provides an effective contrastive test 

is that it has the potential to yield patterns of results that are uniquely diagnostic 

of simple and complex learning algorithms.  For instance, a diagnostic feature of 

prediction error learning algorithms of the kind deployed by Behrens et al. is ‘win 

stay’ behaviour. If a cue yields a reward, learners will be generally more likely to 

stick with that option than to switch – as experiencing reward increases the 

expected value of that option in future. But if agents mentalise, representing the 

advisor’s strategy of making unhelpful recommendations after useful ones, we 

would instead expect learners to show ‘win shift’ behaviour – ignoring the social 

advice in a state-dependent way.  

Crucially, the process of model development and fitting - as applied by 

Behrens and colleagues - cannot be used to provide this kind of contrastive test on 

its own. There is no way, in their experimental design, to obtain evidence that 

uniquely favours one of these accounts over another. This is because the rich and 

lean accounts do not predict any different empirical signatures. Under both 

possible theories, one source of information – one cue, such as the red frame - is 

used to make predictions, compute errors, and revise subsequent beliefs – which is 

all the algorithm mandates.  To rule out the operation of more complex 

mentalising processes, it is necessary to create experimental conditions where 

these complex processes have the potential to yield different results.  
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The mentalist case 

Recall that, in our view, mentalists have a different problem.  They are on firm 

ground when they infer complex cognitive processes from the success of a 

complex over a simple model (Step 1 > Step 2), but there are difficulties when they 

infer social specificity from cognitive complexity (Step 2 > Step 3).   

The mentalist’s problem can be illustrated by a recent study by Velez and 

Gweon (2019, Experiment 3).  In each trial in this experiment, two cards were 

randomly drawn from a set marked with values between 1 and 8.  Initially, the 

value of one card was visible and the value of the other was hidden.  Two groups of 

participants could choose to ‘stay’ and win the points on the visible card, or 

‘switch’ and win the points on the hidden card.  Before making this decision, they 

were advised to stay or switch by an agent, Alice, who had only seen the hidden 

card.  Alice’s advice was equally accurate for all participants – she recommended 

the correct action in more than 70% of trials - but Alice was ‘Conservative’ when 

advising one group, recommending ‘stay’ unless the hidden card had a very high 

value, and ‘Risky’ when advising the other group, recommending ‘switch’ unless 

the hidden card had a very low value.  Across both groups, a more complex model 

explained more variance in stay-switch behaviour than a simpler model.  The 

more complex model, called the ‘Mental-state Reasoning model’, calculated the 

value of the hidden card by combining the value of the visible card with Alice’s 

advice, along with estimates that tracked whether Alice’s recommendations were 

accurate or not, and whether her advice tended to be cautious or cavalier.  The 

simpler model, an ‘Accuracy Heuristic model’, assumed a high value for the hidden 

card when the advisor recommended switching, a low value when she 

recommended staying, and weighted this advice by an estimate of the advisor’s 

accuracy. 

It is very tempting to conclude from this result, not only that the volunteers’ 

stay-switch decisions were based on a cognitively complex process (Step 1 > Step 

2), but that the complex process was socially specific, mental state reasoning (Step 

2 > Step 3).  That is certainly what the creators of the more complex model 

intended the ‘Mental-state Reasoning model’ to model, and it is entirely plausible 

on an introspective basis.  We can imagine ourselves as one of the volunteers, 
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staring at the visible card, and wondering about Alice’s character or what she can 

see.  Is she a bit reckless?  And, of course, this tempting conclusion may well be 

correct.  But the purpose of experiments like this is to go beyond introspection, to 

check whether our hunches are right – or, more precisely, the range of conditions 

in which they are right.  We are not asking whether adult humans are capable of 

mental state reasoning.  We know they are. Rather, we are asking whether adult 

humans sometimes, routinely, or always use mental state reasoning when learning 

from others.   

The volunteers in Velez and Gweon’s experiment completed more than a 

hundred decision trials in rapid succession, online, and with minimal financial 

incentives (a potential maximum of $2 for points earned in the whole experiment).  

Under these conditions, it is plausible that their cognitive systems used a short cut.  

They may have used the cues specified by the more complex model (the number 

on the visible card, the rectangle around ‘stay’ or ‘switch’ in this trial, how 

common it had been for the rectangle to surround ‘stay’ or ‘switch’) to estimate the 

value of the hidden card without representing this value as the content of another 

agent’s mental state.  Specifically, they may have calculated, not only the reliability 

of the rectangle cue (success probability), but also its bias; in the terms of signal 

detection theory, they may have calculated the propensity of the rectangle to 

‘miss’ or register a ‘false alarm’.  This would explain the success of the complex 

model, but it does not guarantee that participants were mentalising the source of 

the rectangle.  If people used the kind of shortcut we have in mind, the complex 

model would fit just as well if the ‘Alice story’ was replaced by an ‘Alarm story’.  

The Alarm is programmed to tell you to switch when its camera detects a ‘high 

value’ card, but some alarms are triggered only by really high card values 

(Conservative), while others are sometimes triggered by relatively low card values 

(Risky).  We could track the sensitivity and bias of such an alarm without 

attributing mental states.  

A common response to this social specificity problem is to add ‘neuro’ to the 

cognitive science.  Brain imaging can establish whether performance in a social 

learning task is correlated with, or causally influenced by, activity in areas of the 

brain associated with mental state reasoning – dorso-medial prefrontal cortex 
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(dmPFC) and temporoparietal junction (TPJ) (Hampton, Bossaerts & O’Doherty 2008, 

Hill, Suzuki, Polania, Moisa, O’Doherty & Ruff 2017).  If activity in these areas 

occurred always and only when people are engaged in mental state reasoning, or 

another socially specific cognitive process, this would be a good solution.  But that 

is not the case.  Current evidence leaves open the possibilities that processing in 

the dmPFC or TPJ is socially specialised, asocial (Lockwood, Wittmann, Apps, Klein-

Flugge, Crockett, Humphreys & Rushworth 2018), or reflects a processing 

mechanism that is engaged, not only by mental state reasoning, but also by self-

monitoring and metacognition (Frith 2012; Heyes, Bang, Shea, Frith & Fleming 2020; 

Lockwood et al. 2020). 

 A more reliable way of solving the social specificity problem is to use 

contrastive experiments with an ‘inanimate’ or ‘non-social’ control condition 

(Cook, den Ouden, Heyes & Cools 2014; Cook, Swart, Frobose, Diaconescu, Geurts, 

den Ouden & Cools 2018; Cook, Swart, Frobose, Diaconescu, Geurts, den Ouden & 

Cools 2019; Heyes 2014a, 2014b, Lockwood et al. 2020).  Cook and colleagues have 

pioneered this approach in studies of social learning.  Using an experimental task 

and modelling techniques like those of Behrens et al. (2008, see above), they told 

people that the red frame represented the most popular choice selected by a group 

of participants who had previously played the game (social group), or that it 

represented the outcome from a system of rigged virtual roulette wheels, which 

fluctuated between providing useful and less useful information (non-social 

group).  Their research with this non-social control has revealed domain-specific 

processing but not for the social domain.  They have shown that indirect learning 

differs from direct learning (Cook et al. 2018), and that meta-learning differs from 

first-order learning (Cook et al. 2019), but they have not found that different 

models fit the data when people believe they are getting information from other 

agents rather than rigged roulette wheels (Cook et al. 2018).  

In contrast, Devaine, Hollard & Daunizeau (2014) found evidence of social 

specificity when they used a non-social control in a competitive, rather than a 

cooperative, advisory task.  Confronting the same two-choice decision in every 

trial, participants were told that they were playing ‘hide and seek’ against a human 

opponent (social framing) or a ‘casino gambling task’ with two slot machines (non-
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social framing). In both cases, they were in fact playing against ‘artificial 

mentalising agents’ – programmes predicting the participant’s choice with varying 

degrees of sophistication.  The participants were better at predicting their 

opponent’s choices in the social framing condition, and a complex model – 

intended to represent mentalising – fit the data better than simpler models when 

participants believed their opponent was another person but not when they 

believed they were playing against slot machines.  These differences between the 

social and non-social conditions provide a strong indication, not only that the 

former recruited more complex cognitive processes, but that these processes were 

socially specific.  The conclusion that mentalising was the socially specific process 

is less secure because, even in the social condition, participants with high scores 

on independent tests of empathy and executive function did not perform any 

better than people with lower scores.  But this puzzle is not central to our current 

concerns.  The important point is that Devaine et al. (2014) used a non-social 

control to overcome the problem that afflicts so many mentalist studies of social 

learning – securing the inference from cognitive complexity to social specificity 

(Step 2 > Step 3).    

Can the results from Devaine et al. be used to shore up other work in the 

mentalist school?  For example, can we infer that, because processing is socially 

specific in a hide and seek game it is also likely to be socially specific in the card 

game used by Velez and Gweon (2019)?  This particular inference clearly would not 

be secure given that, using cooperative tasks similar to the card game, Cook et al. 

have tried and failed to find social specificity.  More generally, to use the results 

from Devaine et al. as convergent evidence of social specificity, we would need to 

use non-social controls to find out much more about the range of conditions in 

which social learning depends on socially specific processes.   

 

Scientific realism 

We have suggested that two inferential problems haunt the use of computational 

models to find out about the complexity and social specificity of the cognitive 

processes mediating social learning, and that these problems can be solved by 

contrastive experiments.  Our analysis assumes that computational cognitive 
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scientists interested in social learning are scientific realists – that they want their 

work to yield true, or as-true-as-possible, descriptions of cognitive processes.  

Perhaps that assumption is wrong.   

There are signs of an anti-realist historicism in research on social learning – 

of the view that associationist and mentalist theories are products of 

incommensurable paradigms (Kuhn 1970) and therefore cannot be tested against 

one another empirically.  These signs often appear in developmental and 

comparative psychology.  Mentalists who study social learning in children and 

nonhuman animals often imply that their view does not need to be tested against 

associative alternatives because associationism is a thing of the past; a view that 

went out of fashion with the behaviourist paradigm (Heyes 2012). In contrast, most 

computational cognitive scientists appear to be confident that empirical evidence 

can and should be used to compare associationist and mentalist theories of social 

learning.  This is one of the great strengths of the field, one of the reasons why it 

has so much potential to advance our understanding of social learning.   

Turning from historicism to instrumentalism, an anti-realist with logical 

positivist sympathies might argue that there is no problem inferring cognitive 

simplicity from model simplicity (Step 1 > Step 2) because computational models 

are merely instruments for predicting observable phenomena or categorising 

observations.  If a model predicts what people (and their brains) will do when they 

have an opportunity to learn from others, it is a good model in the only way that a 

model can be good.  There is no further question of whether the model maps onto 

or accurately describes unobservable cognitive processes.  Moreover, if a simpler 

and a more complex model both predict social learning behaviour and brain 

activity, we are justified in preferring the simpler model on pragmatic grounds; 

because it is easier to work with.  We need not argue that the simpler model is 

more likely to offer a true description of unobservable cognitive processes, or, 

therefore, to do contrastive experiments that give more complex processes an 

opportunity to shine. 

 Appeals to parsimony and the virtues of scientific unity could be signs of 

this kind of instrumentalism.  When cognitive neuroscientists hail a model of 

social learning as parsimonious, they may see parsimony as a pragmatic virtue 
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rather than an indicator that the model is likely to be true.  When they point out 

that acceptance of a simple model would connect social learning with other kinds 

of learning in humans and other animals or that acceptance of a complex model 

would link social learning with other kinds of human causal reasoning (e.g., Velez 

& Gweon 2021), they may be assuming that unity of science is a virtue in itself, 

regardless of whether we have reason to believe that diverse phenomena are likely 

to be due to common underlying processes.  As far as we are aware, these 

instrumentalist views, although apparent in research on social learning in artificial 

systems (Johanson, Hughes, Timbers & Leibo 2022; Leibo et al. 2022; Yaman, Leibo, 

Iacca & Lee 2022) have not been articulated in research on the cognitive 

neuroscience of social learning.  Nonetheless, it is worth noting that the move 

from model simplicity/complexity to cognitive simplicity/complexity is 

problematic only if one is a true believer in cognitive processes.  If talk about 

‘association’, ‘inference’, and ‘reasoning’ is just a way of glossing a computational 

model, the true function of which is to predict brain activity and overt behaviour, 

the inference from Step 1 to Step 2 disappears. We are left only with questions 

about the clearest and most persuasive way of communicating model 

characteristics without equations.  

 If, as we suspect, the computational cognitive science of social learning is 

committed to scientific realism, why is there a tendency to neglect the kinds of 

experiments that are, on a realist view, needed to answer questions about the 

complexity and specificity of social learning?  Some of the reasons are likely to be 

general.  It is possible that, across all topics in computational cognitive 

neuroscience, experimental design tends to be weaker than in (other) areas of 

experimental psychology because practitioners need to find time, skills and 

funding for modelling, and often brain imaging, in addition to resources for 

behavioural experiments.  Maybe, with so much to do, priority is given to the 

exciting new techniques involved in modelling and imaging, rather than the dull 

old ones that make a good behavioural experiment.  In addition, historical currents 

may be having specific effects on the computational cognitive science of social 

learning.  Although there is scant evidence of anti-realist historicism, 

associationists are part of a long tradition in which parsimony has been prized 
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(Thorndike 1898); a tradition that may incline them to overlook the need for 

experiments to distinguish simple and complex processes.  Mentalists, on the 

other hand, are influenced by research on “theory of mind” which, since its 

inception (Premack & Woodruff 1978), has tended to assume that, if social 

behaviour is not due to a very simple kind of associative learning, it must be due to 

reasoning about mental states (Heyes 1998).  With a blindspot around the 

possibility of domain-general reasoning about observable features of other agents, 

this tendency may obscure the need for experiments to find out whether complex 

processes are or are not socially-specific. 

 

Conclusion 

Computational cognitive neuroscience is opening the black box of social learning. 

After more than a century of research indicating that social learning has major 

evolutionary, developmental, and economic consequences, cognitive neuroscience 

is beginning to tell us how it works – what happens in an agent’s head when they 

are learning from others.  Progress has been excellent but, we argue, two 

inferential problems have not yet been cracked.  The problem of inferring cognitive 

complexity from model complexity calls for social learning to be tested in 

challenging task environments.  The problem of inferring social specificity from 

cognitive complexity calls for non-social controls.  More generally, cognitive 

neuroscientists need to combine their most distinctive and impressive tools – 

computational modelling and brain imaging – with subtle, contrastive 

experimental designs.   

A yet more general moral of our story is that scientific realists in cognitive 

neuroscience, whether they study social learning or other functions, should work 

harder to keep track of where their models are supposed to be.  Are they just 

scientific instruments, inferential tools in the heads and computers of the 

researchers? Or are they (also) natural phenomena, mental models in the heads of 

their participants?  It is easy to slip from one to the other, to confuse the explanans 

with the explanandum, but realists need to separate models from minds.   
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