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Abstract	
	
Aim.	Statistical	model	comparison	has	become	common	in	historical	
biogeography,	enabled	by	the	R	package	BioGeoBEARS,	which	implements	
several	models	in	a	common	framework,	allowing	models	to	be	compared	with	
standard	likelihood-based	methods	of	statistical	model	comparison.	Ree	and	
Sanmartín	(2018)	critiqued	the	comparison	of	Dispersal-Extinction-Cladogenesis	
(DEC)	and	a	modification	of	it,	DEC+J,	which	adds	the	process	of	jump	dispersal	
at	speciation.	DEC+J	provides	highly	significant	improvements	in	model	fit	on	
most	(although	not	all)	datasets.	They	claim	that	the	comparison	is	statistically	
invalid	for	a	variety	of	reasons.	I	analyze	the	key	claims	made	by	the	critique.		
Location.	Simulated	data.	
Taxon.	Simulated	data.	
Methods.	Likelihood	calculations	are	checked	by	comparison	between	programs	
and	by-hand	calculations,	and	by	summing	likelihoods	across	all	possible	
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datasets.	Model	adequacy	of	DEC	vs.	DEC+J	is	checked	by	a	simulation/inference	
experiment.		
Results.	Mistakes	in	the	critique’s	example	likelihood	calculations	are	
demonstrated.	DEC+J	fits	better	on	datasets	because	the	DEC	model	is	
statistically	inadequate	in	the	common	situation	when	most	species	have	
geographic	ranges	of	single	areas;	the	DEC	model	requires	long	residence	times	
of	multi-area	ranges,	and	when	these	are	not	observed,	a	model	that	does	
produce	such	data	patterns,	such	as	DEC+J,	prevails.	More	fundamentally,	
statistical	comparison	of	DEC	and	DEC+J	produces	identical	log-likelihood	
differences	to	statistical	comparison	of	two	submodels	of	ClaSSE	where	
extinction	rates	are	fixed	to	0.	
Main	conclusions.	DEC	fails	a	basic	model	adequacy	check	for	understandable	
reasons,	while	DEC+J	does	not.	As	Ree	and	Sanmartín	recommend	ClaSSE	models	
as	valid	for	comparison,	the	comparison	of	DEC	and	DEC+J	is	statistically	valid	
according	to	their	own	criteria.	
	
Keywords	
	
BioGeoBEARS,	dispersal,	Dispersal-Extinction-Cladogenesis,	extinction,	
Lagrange,	jump	speciation,	statistical	model	comparison	
	
Significance	Statement	
	
This	paper	shows	that	a	commonly-used	comparison	of	biogeographical	models	
is	statistically	valid,	using	validation	calculations	and	simulations.	
	
Introduction	
	
Probabilistic	models	of	geographic	range	evolution	have	become	key	tools	in	
historical	biogeography.	Hundreds	of	published	analyses	have	used	the	
Dispersal-Extinction-Cladogenesis	(DEC)	model	from	the	program	Lagrange	
(Ree,	R.	H.	&	Smith,	2008).	Matzke	(2013)	proposed	that,	rather	than	relying	on	
the	assumptions	of	a	single	model,	multiple	models	representing	different	
assumptions	should	have	their	fit	to	the	data	compared	with	standard	methods	
of	statistical	model	comparison,	such	as	AIC	(Burnham	&	Anderson,	2002).	
Matzke	(2014)	proposed	and	tested	DEC+J,	which	adds	a	free	parameter	j	to	DEC	
to	represent	the	relative	weight	of	jump	dispersal	events	during	cladogenesis.	
DEC+J	is	a	substantially	better	fit	than	DEC	on	many	(but	not	all)	datasets,	and	
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simulation	results	indicated	that	the	better	fit	model	will	result	in	more	accurate	
inference	of	parameters	and	ancestral	ranges.	Statistical	comparisons	of	DEC,	
DEC+J,	and	other	models	have	become	common	in	the	literature.	However,	a	
Critique	of	this	procedure	by	Ree	and	Sanmartín	(2018;	henceforth	R&S)	alleges	
that	these	statistical	results	should	be	ignored,	reporting	unintuitive	inferences	
in	two	cases,	and	claiming	that	DEC+J	is	a	“degenerate”	model	where	dispersal	is	
not	a	product	of	a	continuous-time	process,	leading	to	an	“unfair”	advantage	for	
DEC+J.		
	
The	Critique	is	now	often	cited	in	biogeographical	studies,	and	researchers	often	
opt	to	run	only	DEC,	or	run	both	models	but	ignore	the	likelihood-based	
comparison	of	model	fit,	leaving	the	choice	of	model	to	subjective	decision.	
Unfortunately,	the	Critique	is	marred	by	errors	large	and	small,	several	of	them	
obvious,	and	several	of	them	technical	but	revealing	of	the	fundamental	
principles	involved	in	discrete	models	of	range	evolution,	and	the	use	of	
statistical	model	comparison	in	general.	
	
The	most	obvious	error	in	the	Critique	has	been	briefly	noted	by	Matzke	&	Klaus	
(2020),	namely,	its	total	failure	to	address	(or	even	mention)	the	extensive	
simulation	results	validating	the	DEC/DEC+J	model	comparison,	published	in	
Matzke	(2014).	The	Critique	instead	relies	on	two	examples	of	unintuitive	
inference	observed	in	two	tiny	datasets	(2-	and	4-taxa),	but	there	is	no	reason	to	
expect	that	statistical	models	with	2	or	3	inferred	parameters	will	exhibit	
reliable	or	intuitive	inference	on	such	small	datasets.	Simulation-based	testing	
has	long	been	the	industry	standard	for	methods	in	phylogenetics,	and	it	should	
be	considered	surprising	that	a	critique	which	relies	on	tiny	example	datasets,	
and	fails	to	conduct	simulations,	or	engage	with	simulations	already	published,	
has	gained	traction.	
	
However,	there	are	a	number	of	less	obvious	errors	in	the	Critique	which	
deserve	detailed	exploration,	in	order	to	clarify	the	assumptions	behind	the	
likelihood	calculations	in	the	DEC	and	DEC+J	models,	the	principles	of	likelihood-
based	statistical	model	comparison,	and	the	relationship	between	DEC,	DEC+J,	
and	ClaSSE,	the	model	that	the	authors	endorse	as	valid	for	statistical	model	
comparison.	I	summarize	these	errors	below,	and	then	explore	each	in	detail:	
	
(Part	1)	The	likelihoods	in	the	Critique’s	two	worked	examples	(with	2-species	
and	4-species	phylogenies)	are	not	replicated	by	Lagrange	or	BioGeoBEARS,	
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which	agree	with	each	other	but	disagree	with	R&S’s	claimed	likelihoods,	
suggesting	the	Critique	relies	on	an	incomplete	understanding	of	how	the	
likelihood	calculation	in	these	models	works.		
	
(Part	2)	Although	the	peculiar	behaviour	of	DEC+J	in	the	2-area	case	is	confirmed	
(j	maximizing	near	3,	resulting	in	jumps	at	every	node	being	the	preferred	
inference),	the	example	is	brittle.	The	odd	“maximum	jumps”	behaviour	breaks	
down	with	more	areas,	more	taxa,	or	other	data	configurations.	This	shows	the	
dangers	of	using	specific	human-constructed	data	patterns	to	make	general	
judgments	about	models	that	have	already	been	tested	by	extensive	simulation-
inference	experiments.	In	addition,	using	AICc	to	compare	the	models,	as	is	
recommended	for	such	small	datasets,	actually	shows	that	DEC+J	would	not	be	
favoured	over	DEC	unless	the	dataset	has	9	or	more	species.	Finally,	inferences	
of	j	approaching	3	are	extremely	rare	in	empirical	datasets.		
	
(Part	3)	There	is	nothing	unfair	about	the	DEC/DEC+J	comparison,	as	both	
models	make	use	of	valid	conditional	likelihoods,	as	proven	when	likelihoods	are	
summed	across	all	possible	datasets.	Any	particular	model/parameter	
combination	favours	some	data	patterns	and	not	others,	but	that	is	precisely	the	
point	of	probabilistic	models.	The	interesting	question	is	which	data	patterns	we	
tend	to	observe	empirically,	and	if	those	patterns	tend	to	be	better	fit	by	a	
particular	model,	that	is	a	scientific	result,	not	an	unfair	advantage.		
	
(Part	4)	I	demonstrate	the	true	source	of	the	common	advantage	of	DEC+J	over	
DEC,	namely	that	typical	DEC	inferences	imply	long	residence	times	for	
widespread	ranges,	which	predicts	many	widespread	ranges	will	be	observed	at	
the	tips.	Such	models	fail	model	adequacy	tests	in	cases	(common	in	empirical	
datasets)	where	most	or	all	species	occupy	single	areas.		
	
(Part	5)	The	claim	that	it	is	problematic	for	DEC+J	to	model	dispersal	as	
cladogenetic	without	including	the	continuous-time	probability	of	speciation	is	
falsified	by	adding	to	the	likelihood	calculation	the	probability	of	the	
phylogenetic	tree	under	a	Yule	process;	as	the	Yule	tree	likelihood	is	constant	
between	DEC	and	DEC+J	models,	it	makes	no	difference	for	model	comparison.	
The	Critique	recommends	ClaSSE	for	modelling	jump	dispersal,	but	I	
demonstrate	that	statistical	comparison	of	DEC	and	DEC+J	is	identical	to	
statistical	comparison	between	two	special	cases	of	ClaSSE;	the	resultant	
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likelihood	differences	are	identical.	Thus,	on	the	Critique’s	own	premises,	
statistical	comparison	of	DEC	and	DEC+J	is	valid.		
	
I	conclude	by	pointing	out	the	real	flaws	in	DEC	and	DEC+J,	namely	that	the	Yule-
process	assumption	means	that	both	models	ignore	lineage	extinction.	I	discuss	
the	prospects,	and	substantial	computational	challenges,	for	using	ClaSSE-like	
models	to	overcome	these	flaws	in	the	future.	Even	if	ClaSSE	becomes	
computationally	feasible	for	routine	use	in	biogeography,	the	issues	raised	in	the	
DEC/DEC+J	debate	regarding	state	spaces	and	residence	times	will	remain	
crucial	considerations	that	are	ignored	at	modellers’	peril.	However,	any	such	
discussions	must	be	premised	on	the	notion	that	one	of	the	purposes	of	science	
is	to	test	our	models	by	statistically	comparing	how	well	they	fit	data,	rather	than	
accepting	a	model	based	on	intuition,	popularity,	or	authority.	The	methods	of	
statistical	model	comparison,	which	have	become	routine	in	dozens	of	other	
fields,	are	valid	in	biogeography	as	well,	and	should	become	routine.		
	
	
Part	1.	Untangling	the	Critique’s	likelihood	calculations		
	
The	Critique’s	first	quantitative	claims	involve	a	worked	example:	a	2-taxon	tree	
with	one	species	occupying	area	A,	and	the	second	occupying	area	B.	R&S	
maximize	the	likelihood	of	this	dataset	under	DEC	and	DEC+J.	The	Critique’s	
depiction	of	the	weights	used	in	DEC	and	DEC+J	is	given	in	their	Table	1,	
replicated	here	as	Table	1a.	For	DEC,	the	ML	parameter	estimates	for	d	and	e	are	
0,	and	the	log-likelihood	is	-2.890.	For	DEC+J,	the	ML	occurs	with	d=0,	e=0,	and	
j=3,	with	a	log-likelihood	-0.693.	The	authors	note	that	the	difference	in	log-
likelihood	provided	by	the	two	models	is	greater	than	2	units,	approximate	the	
p<0.05	significance	cutoff	for	a	LRT,	with	one	degree	of	freedom	for	adding	one	
free	parameter.	They	ask,	“should	the	mere	observation	of	2	sister	species	in	
different	areas	be	interpreted	as	evidence	in	favour	of	ancestral	jump	dispersal	
over	vicariance?”	
	
Failure	to	replicate	reported	log-likelihoods	with	available	programs.	The	
problems	begin	here,	as	the	claimed	log-likelihoods	are	easily	tested	by	running	
a	2-taxon	tree	in	Lagrange	(for	DEC)	or	BioGeoBEARS	(for	DEC	or	DEC+J).	I	
implemented	the	authors’	worked	example	in	Python	Lagrange	(version	
20130526),	C++	Lagrange	(Smith	2010),	and	BioGeoBEARS	(version	1.1.1,	
https://github.com/nmatzke/BioGeoBEARS	).	I	assumed	that	two	branches	had	
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lengths	of	1.0,	although	the	absolute	timescale	is	irrelevant	in	this	example.	The	
Newick	string	used	was:	“(sp1:1,sp2:1);”.		For	DEC,	all	three	programs	report	a	
maximized	log-likelihood	of	-1.792,	with	d	and	e	approximately	0.	For	DEC+J,	the	
BioGeoBEARS	ML	inference	is	d=0,	e=0,	with	j=2.9999,	and	with	a	log-likelihood	
of	0.154.	These	disagree	with	what	the	Critique	reports.		
	
In	the	case	of	DEC,	the	reason	for	the	difference	is	that,	as	programmed	in	
Lagrange	and	BioGeoBEARS,	DEC	does	not	include	state	frequencies	(SFs)	at	the	
root	in	the	likelihood	calculation	(Matzke	2014;	for	further	explanation,	see	
Supp.	Text).	With	2	areas	(A	and	B),	there	are	k=4	states	(null,	A,	B,	and	AB),	but	
the	null	state	is	an	impossible	ancestor.	Therefore,	the	log-likelihood	under	

DEC+SFs	is	−1.792+ log !
!!!

= −1.792+ log !
!
= −2.890.	
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Table	1.	The	depiction	of	DEC	and	DEC+J	weights	in	Table	1	of	Ree	&	Sanmartin	(2018),	compared	to	the	actual	weights	
used	in	Lagrange	(for	DEC)	and	BioGeoBEARS	(for	DEC	and	DEC+J).	Later	columns	show	the	translation	of	the	weights	
into	conditional	probabilities,	and	the	subsequent	calculation	of	the	total	log-likelihood	of	the	data	for	a	2-taxon	tree	
with	ranges	of	A	on	the	left	tip,	and	B	on	the	right	tip.	Finally,	the	ancestral	range	probability	calculation	(valid	for	the	
root	only)	is	shown.	
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1b.	DEC	calculations	in	BioGeoBEARS,	2-taxon	tree	with	d=e=0,	data=(left:A,	right:B).	
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1c.	DEC+J	calculations	in	BioGeoBEARS,	2-taxon	tree	with	d=e=0,	j=0.3,	data=(left:A,	right:B).	
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For	the	difference	in	the	DEC+J	results,	the	situation	is	more	complex.	First,	
BioGeoBEARS	+J	models	limit	j	to	a	maximum	of	2.99999	rather	than	literally	3.0,	
because	the	conversion	of	cladogenetic	event	weights	to	cladogenetic	event	
probabilities	involves	dividing	the	weight	of	an	individual	cladogenetic	event	by	
the	summed	weight	of	all	possible	events.	When	the	ancestor	is	AB,	having	j=3.0	
creates	a	0/0	error	in	this	calculation.	Second,	the	authors	apply	SFs	differently	
between	their	DEC	and	DEC+J	worked	examples.	See	Supplemental	Text	for	a	
detailed	explanation.	
	
Problems	with	the	likelihood	formulae	in	the	Critique.	In	Lagrange	and	
BioGeoBEARS,	for	DEC	and	DEC+J,	the	conditional	probability	of	any	particular	
range-inheritance	scenario	at	a	cladogenesis	event	is	just	the	weight	of	that	
individual	event,	divided	by	the	summed	weight	of	all	possible	events	in	that	
particular	row	of	the	cladogenetic	transition	matrix	(Table	1;	Table	2AB;	for	the	
3-area	case,	see	Supplemental	Table	1).	However,	R&S	provide	formulae	(Table	
1)	for	the	weights	that	do	not	correspond	to	either	program;	an	additional	issue	
is	mixing	the	likelihood	calculation	with	the	calculation	of	ancestral	range	
probabilities.	See	Supp.	Text	for	detailed	discussion,	and	Table	1	for	a	
comparison	of	the	incorrect	and	correct	calculations.	It	is	easy	to	run	small	
example	datasets	in	Lagrange	and	BioGeoBEARS	(the	scripts	and	datasets	are	
provided	in	Supp.	Data),	so	it	is	surprising	R&S	did	not	check	their	likelihood	
calculations	against	the	relevant	programs.		
	
Failure	to	replicate	the	4-taxon	worked	example	likelihoods.	The	critique’s	
reported	likelihoods	for	the	4-taxon	example	were	checked	against	Lagrange	
(for	DEC)	and	BioGeoBEARS	(for	DEC	and	DEC+J),	and	did	not	match	(Table	3).	
The	complete	set	of	input	files	and	scripts	for	all	runs	are	given	in	Supplemental	
Data	(FigShare:	10.6084/m9.figshare.19166393).	The	Critique	reports	a	
maximized	logL	under	DEC	of	-8.50.	However,	Python	Lagrange,	C++	Lagrange,	
and	BioGeoBEARS	all	report	a	logL	of	-4.481.	For	DEC+J,	the	Critique	reports	-
3.47,	while	BioGeoBEARS	DEC+J	reports	-1.171.	Given	the	several	difficulties	
encountered	in	trying	to	match	up	the	Critique’s	2-taxon	worked	example	with	
the	actual	likelihood	calculations	done	by	Lagrange	and	BioGeoBEARS,	I	did	not	
attempt	to	reverse-engineer	the	calculation	of	the	Critique’s	incorrect	
likelihoods.			
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Table	2.	Parameterization	of	the	weights	of	cladogenetic	range-change	events	for	various	biogeographical	models	in	
BioGeoBEARS.	Here,	2	areas	are	assumed,	meaning	there	are	3	possible	ranges	just	before	speciation,	and	9	possible	
(left,	right)	pairs	of	descendants	just	after	speciation.	The	conditional	probability	of	each	pair	of	ranges	is	calculated	by	
taking	the	individual	weight	of	the	specific	event,	divided	by	sum	of	weights	for	all	events	in	that	that	row.	Blank	cells	
indicate	0	weight/conditional	probability.	
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2B.	Parameterization	of	the	DEC+J	cladogenesis	
model	for	3	areas.	The	added	letter,	j,	gives	the	
weight	of	jump-dispersal	events.	As	j	increases,	y,	
s,	and	v	take	the	value	1-(j/3).
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2A.	Parameterization	of	the	DEC	cladogenesis	
model	for	2	areas.	The	letters	specify	the	weights	
of	the	range-inheritance	events	of	narrow-range	
sympatry	(y),	subset	sympatry	(s),	and	vicariance	
(v).	Under	DEC,	each	of	these	events	has	a	
weight	of	1,	that	is,	y=s=v=1.

2C.	Parameterization	of	the	DIVALIKE	
cladogenesis	model	for	3	areas.		In	DIVALIKE,	
following	the	assumptions	of	the	parsimony	DIVA	
program	of	Ronquist	(1997),	subset	speciation	(s)	
is	given	0	weight,	and	widespread	vicariance	is	
allowed	(unlike	DEC),	although	only	becomes	
relevant	with	4	or	more	areas	(and	thus	a	
scenario	like	ABCD->AB,CD	becomes	possible).	
The	j	parameter	can	be	added,	in	the	same	
locations	in	the	table	as	DEC+J,	to	create	
DIVALIKE+J	(not	shown).	In	DIVALIKE+J,	j	ranges	
from	0	to	2,	and	y	and	v	are	reduced	by	j/2.
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2D.	Parameterization	of	the	BAYAREALIKE	
cladogenesis	model	for	3	areas.		In	BAYAREALIKE,	
following	the	assumptions	of	the	Bayesian	
BayArea	program	of	Landis	et	al.	(2013),	both	
subset	speciation	(s)	and	vicariance	(v)	are	given	
0	weight,	and	widespread	sympatry	is	allowed	
(unlike	DEC).	The	j	parameter	can	be	added,	in	
the	same	locations	in	the	table	as	DEC+J,	to	
create	BAYAREALIKE+J	(not	shown).	In	
BAYAREALIKE+J,	j	ranges	from	0	to	1,	and	y	is	
reduced	by	j.
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2E.	For	completeness,	the	implied	
parameterization	of	the	cladogenesis	process	for	
an	Mk	model	(Markov	model	with	k=2	states)	for	
2	areas	is	shown	below.	The	anagenetic	rate	
matrix	for	Mk	is,	of	course,	different	from	the	
above	models,	as	it	allows	"range-switching"	
along	branches	(e.g.	sudden	transitions	from	A	to	
B),	rather	than	relying	on	range	expansion	and	
range	contraction	as	in	the	models	above).	The	
Mk	model	also	disallows	ranges	with	a	range	size	
greater	than	1	area.	For	Mk	(and	any	similar	
purely-anagenetic	model),	the	only	allowed	
cladogenetic	"events"	are	those	that	copy	the	
ancestral	value	to	both	descendants,	e.g.	A->A,A;	
B->B,B.

Ranges	of	descendant	pairs
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Table	3.	Lagrange	and	BioGeoBEARS	results	of	running	DEC	and	DEC+J	on	ultrametric,	pectinate	trees,	range	"A"	in	the	most	derived	position,	and	range	"B"	at	all	other	tips.
Root	state	probabilities

Program	and	model Number	of	
species

Number	of	
free	

parameters
maximized	lnL d e j A B AB AICc

AICc	
model	
weight

"DEC",	R&S	2-taxon	example 2 2 -2.890 0 0 0 1
DEC,	Python	Lagrange 2 2 -1.792 4.29E-09 3.29E-09 0 1
DEC,	C++	Lagrange 2 2 -1.79176 1.13E-06 0.0001389 0 1
DEC,	BioGeoBEARS 2 2 -1.791759 7.68E-09 6.40E-09 0 1.48E-16 1.48E-16 1
DEC+J,	BioGeoBEARS 2 3 0.1541502 1.00E-12 1.00E-12 2.99999 0.4285714 0.4285714 0.1428572
"DEC+J",	R&S	2-taxon	example 2 3 -0.693 0 0 3 0.5 0.5 0
DEC,	Python	Lagrange 3 2 -3.472 1.79E-01 5.05E-07 0 0 0.3216 0.6784
DEC,	C++	Lagrange 3 2 -3.47196 0.08971 7.07E-08 0 0 0.321649 0.678351
DEC,	BioGeoBEARS 3 2 -3.471964 0.08959 1.00E-12 0 6.12E-14 0.3213795 0.6786205
DEC+J,	BioGeoBEARS 3 3 -0.492477 1.00E-12 1.00E-12 2.99999 0.4090907 4.09E-01 0.1818182
"DEC",	R&S	4-taxon	example 4 2 -8.50 0.060 0 0
DEC,	Python	Lagrange 4 2 -4.481 0.1011 4.29E-09 0 0 0.7578 0.2209
DEC,	C++	Lagrange 4 2 -4.48106 0.10183 8.14E-06 0 0 0.758828 0.241172
DEC,	BioGeoBEARS 4 2 -4.481012 0.10106 1.00E-12 0 6.43E-14 0.757828 0.2421718
DEC+J,	BioGeoBEARS 4 3 -1.170587 1.00E-12 1.00E-12 2.99999 0.4029848 0.402985 0.1940299
"DEC+J",	R&S	4-taxon	example 4 3 -3.47 0.00 0.00 3
DEC,	Python	Lagrange 5 2 -5.11514 0.07287 3.40E-07 0 0.929327
DEC,	C++	Lagrange 5 2 -5.11514 0.07287 3.40E-07 0 0.929327
DEC,	BioGeoBEARS 5 2 -5.115132 0.07286 1.00E-12 0 1.79E-14 0.9293209 0.0706791 20.2 99.88%
DEC+J,	BioGeoBEARS2 5 3 -1.858772 1.00E-12 1.00E-12 2.99999 0.4009899 0.4009903 0.1980198 33.7 0.12%
DEC,	Python	Lagrange 6 2 -5.542 0.05183 4.29E-09 0 0.9826
DEC,	C++	Lagrange 6 2 -5.54188 0.05178 1.88E-06 0 0.98255
DEC,	BioGeoBEARS 6 2 -5.541854 0.05181 1.00E-12 0 3.56E-15 0.9825586 0.0174414 19.1 88.17%
DEC+J,	BioGeoBEARS2 6 3 -2.550271 1.00E-12 1.00E-12 2.99999 0.4003292 0.4003297 0.1993411 23.1 11.83%
DEC,	Python	Lagrange 7 2 -5.867 0.03825 4.29E-09 0 0.9961
DEC,	C++	Lagrange 7 2 -5.86716 0.03829 4.97E-07 0 0.996078
DEC,	BioGeoBEARS 7 2 -5.86715 0.03825 1.00E-12 0 6.34E-16 0.9960760 0.0039240 18.7 70.59%
DEC+J,	BioGeoBEARS2 7 3 -3.242869 1.00E-12 1.00E-12 2.99999 0.4001095 0.4001100 0.1997805 20.5 29.41%
DEC,	Python	Lagrange 8 2 -6.138 0.02933 4.29E-09 0 0.9992
DEC,	C++	Lagrange 8 2 -6.13769 0.02935 1.70E-06 0 0.999159
DEC,	BioGeoBEARS 8 2 -6.137646 0.02933 1.00E-12 0 1.09E-16 9.99E-01 0.0008382 18.7 53.34%
DEC+J,	BioGeoBEARS 8 3 -3.471416 1.00E-12 1.00E-12 0.090724 6.08E-07 0.9997825 0.0002169 18.9 46.66%
DEC,	Python	Lagrange 9 2 -6.373 0.02321 4.29E-09 0 0.9998
DEC,	C++	Lagrange 9 2 -6.37269 0.02342 7.77E-07 0 0.999826
DEC,	BioGeoBEARS 9 2 -6.372617 0.0232 1.00E-12 0 1.84E-17 0.9998268 0.0001732 18.7 41.51%
DEC+J,	BioGeoBEARS 9 3 -3.62951 1.00E-12 1.00E-12 0.076489 1.69E-08 0.9999622 3.78E-05 18.1 58.49%

1AICc	is	not	defined	unless	the	number	of	data	exceeds	the	number	of	free	parameters	by	2	or	more.

2For	these	runs,	because	the	likelihood	profile	for	j	had	2	peaks,	the	optimizer	had	to	be	changed	from	the	default	BioGeoBEARS_run_object$use_optimx	=TRUE,	to	
BioGeoBEARS_run_object$use_optimx	=	"GenSA",	in	order	to	find	the	ML	solution	at	j=2.99999	during	optimization.	

N/A1

N/A1

N/A1

Part	2.	The	“all	jump”	inferences	on	tiny	datasets	are	not	that	surprising,	
and	they	disappear	with	larger	example	datasets	
	
Degeneracy	and	all-jump	(or	mostly-jump)	inferences.	Despite	the	several	
problems	with	the	Critique’s	calculation	of	likelihoods,	I	can	verify	that	running	
the	two-taxon	and	four-taxon	examples	in	the	BioGeoBEARS	DEC+J	model	
produces	ML	estimates	of	d=0,	e=0,	and	j=2.99999	(Table	3).	This	parameter	
inference	results	in	scenarios	where	jump	dispersal	is	the	most	probable	
scenario	at	each	node	(but	not	the	only	scenario,	due	to	the	difference	between	
DEC+J	and	DEC+Jmod1,	discussed	in	Supp.	Text).		
	

	

	
The	result	is	indeed	surprising	to	intuition,	and	the	Critique’s	central	arguments	
hang	on	this	result,	the	claim	that	it	is	“degenerate,”	the	claim	that	such	
“degenerate”	results	are	problematic,	and	the	claim	that	similarly	“degenerate”	
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results	are	common	on	bigger,	real-world	datasets.	The	reason	for	R&S’s	choice	
of	the	word	“degenerate”	is	obscure;	it	does	not	correspond	to	standard	usages	
of	the	term;	this	relatively	unimportant	terminological	issue	is	discussed	in	Supp.	
Text.		
	
Is	the	4-taxon	DEC+J	result	“pathological”?	The	differences	in	log-likelihoods	
between	DEC	and	DEC+J	(Δ	logL)	produced	by	the	two	models	are	not	as	large	as	
the	Critique	alleges	--	the	Critique	reports	ΔlogLs	of	2.197	and	5.030	for	the	2-
taxon	and	4-taxon	case,	but	they	are	actually	1.946	and	3.310	(as	can	be	
calculated	from	Table	3).	Nevertheless,	it	does	surprise	an	intuition	that	many	
phylogeneticists	and	biogeographers	would	probably	share,	namely	that	a	4-
taxon,	rooted	tree	with	the	range	pattern	(((A,B),B),B)	should	infer	the	most	
probable	root	state	as	B,	with	a	single	transition	to	A	happening	high	up	in	the	
tree.	Whether	or	not	the	observed	result	should	surprise	a	well-informed	
common	sense	is	another	matter.	
	
I	suspect	that	the	intuition	is	derived	from	biologists’	extensive	experience	with	
parsimony	reconstructions	(typically	“Fitch”	parsimony,	Clark	et	al.,	2009)	and,	
within	model-based	frameworks,	Markov-k	and	DNA	substitution	models.	
However,	intuitions	are	not	always	reliable,	especially	when	they	are	being	
transferred	from	a	simple	model	to	a	more	complex	one	with	additional	
processes	that	are	not	included	in	the	simple	model.	This	is	the	case	with	
biogeographical	models,	where	the	anagenetic	process	involves	range	
expansions	and	range	contractions	rather	than	direct	transitions	between	A	and	
B,	and	a	cladogenetic	process	has	also	been	added.	
	
In	the	case	of	the	4-taxon	example	with	j=2.99999,	the	jump	dispersal	process	is	
contributing	most	of	the	likelihood.	There	are	3	internal	nodes,	one	of	them	
being	the	root.		If	the	root	is	A,	then	the	tip	data	are	explained	by	3	jumps	to	B	(3	

jump	dispersals	of	the	form	A->A,B),	each	having	a	conditional	probability	of	!
!
	of	

being	appropriate	to	explain	the	data.	The	likelihood	of	the	data	under	this	

scenario	is	 !
!

!
= !

!
.	If	the	root	is	B,	three	jump	dispersals	can	also	explain	the	

data	(B->A,B	at	the	root,	A->A,B	at	the	higher	nodes),	contributing	!
!
	to	the	

likelihood.		If	the	root	state	is	AB,	there	are	three	scenarios	that	can	explain	the	
tip	data.	First,	vicariance	at	the	root	(AB->A,B)	followed	by	two	jump	dispersals	

(A->A,B),	with	a	probability	of	!
!
∙ !
!
∙ !
!
= !

!"
.	Second,	subset	sympatry	at	the	root	
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(AB->AB,B),	followed	by	another	subset	sympatry	(AB->AB,B),	followed	by	

vicariance	(AB->A,B),	with	a	probability	of	!
!
∙ !
!
∙ !
!
= !

!"#
.	Third,	subset	sympatry	

at	the	root	(AB->AB,B),	followed	by	vicariance	at	the	middle	node	(AB->A,B),	

followed	by	jump	dispersal	(A->A,B),	with	a	probability	of	!
!
∙ !
!
∙ !
!
= !

!"
.	The	total	

likelihood	across	all	possible	ancestral	ranges	A,	B,	and	AB	is	therefore	!
!
+ !

!
+

!
!"
∙ !
!"#

∙ !
!"
= 0.3102,	logL=-1.1706	(Table	3).	Note	that	4-taxon	datasets	where	A	

and	B	alternate	at	the	tips	have	identical	log-likelihood	(=-1.1706)	under	the	
d=e=0,	j=2.99999	model	(see	example	
“4species_ABalternate_ML_DECvDECj_BGB”	in	Supplemental	Data),	suggesting	
that	all	that	is	happening	is	that	coincidence	is	a	relatively	good	explanation	of	
the	data	when	there	are	only	2	areas	and	4	tips.			
	
Our	intuition	against	jump	dispersals	in	the	Critique’s	4-taxon	example	stems	
from	the	assumption	that	within-area	speciation,	e.g.	B->B,B,	should	be	a	more	
probable	explanation	when	several	sister	species	have	ranges	in	B.	It	turns	out	
that	this	intuition	is	true	in	likelihood	terms	as	well,	but	only	if	there	are	a	
sufficient	number	of	internal	nodes	to	make	a	series	of	high-probability	jump	

dispersals	conferring	likelihood	!
!
	a	lower	likelihood	contribution	than	a	series	of	

high-probability	within-area	speciation	events	followed	by	a	single,	lower	
probability	jump	dispersal	event.	While	our	intuition	can	easily	propose	a	
scenario	like	B->B,B	at	the	root,	followed	by	B->B,B	and	then	B->A,B,	a	
probabilistic	model	has	to	assign	the	same	set	of	conditional	probabilities	across	
all	of	the	nodes.	Raising	the	probability	of	within-area	scenarios	like	B->B,B	thus	
necessarily	lowers	the	probability	of	jump	dispersal	scenarios	like	B->A,B,	and	
vice	versa.	The	parameter	j	describes	this	tradeoff.		In	the	2-area,	4-taxon	

example,	if	j=!
!
=0.4286,	then	the	probabilities	of	the	three	possible	scenarios	at	a	

particular	node	with	range	B	are	B->B,B=0.5,	B->A,B=0.25,	B->B,A=0.25	
(Supplemental	Excel	File	1).	This	model	might	more	closely	reflect	our	intuition	
for	what	we	think	the	best-fit	process	“should”	be	in	the	4-taxon	case.	However,	
the	history	that	contributes	the	highest	likelihood	to	the	data	in	this	case	is	B-
>B,B	at	the	root	and	at	the	middle	node,	followed	by	B->A,B	at	the	top	node,	for	a	

total	probability	of	!
!
∙ !
!
∙ !
!
= !

!"
,	less	than	the	!

!
	conferred	by	each	of	the	two	all-

jump-dispersal	scenarios	when	j=2.99999.	Numerous	other	scenarios	are	

possible	under	DEC+J	when	d=0,	e=0,	j=!
!
,	but	all	scenarios	together	add	up	to	a	

total	likelihood	of	only	0.147	(Supplemental	Excel	File	1).	
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The	(almost)	“all	jumps”	result	breaks	down	with	increasing	dataset	size.	How	
many	internal	nodes	would	it	take,	in	the	case	of	a	2-area	system,	with	one	area	
found	only	in	the	most	derived	position,	to	successfully	inform	a	DEC+J	model	
that	the	probability	of	within-area	speciation	is	greater	than	0,	and	thus	the	ML	
estimate	of	j	cannot	be	2.99999?	I	investigated	this	by	creating	datasets	with	taxa	
numbers	ranging	from	2	to	10,	as	well	as	15	and	20	species.	Following	the	
Critique’s	two-taxon	example,	the	trees	had	minimum	branch	lengths	of	1	unit,	
and	each	additional	sister	branch	was	added	with	a	common	ancestor	1	unit	
below	the	previous	node.		All	other	branchlengths	extend	up	to	the	present,	to	
produce	an	ultrametric	tree.	For	each	dataset,	I	ran	ML	analyses	under	DEC	and	
DEC+J.	I	also	constructed	curves	describing	how	the	log-likelihood	varies	with	j	
(with	d	and	e	fixed	to	0)	by	calculating	the	log-likelihood	of	each	dataset	at	each	
value	of	j	from	0	to	2.99999	at	increments	of	0.01.	These	calculations	were	done	
with	the	function	bears_optim_run	with	skip_optim	set	to	TRUE.	
	
The	ML	results	for	<10	species	are	in	Table	3,	and	the	likelihood	profile	curves	
are	in	Figure	1A.	Dashed	lines	indicate	cases	where	the	likelihood	is	maximized	
at	j=2.99999,	and	solid	lines	indicate	ML	solutions	at	some	other	value.	At	n=4	
taxa,	confirming	R&S’s	observation,	the	likelihood	rises	monotonically	with	j.	
However,	at	n=5	taxa,	a	second	likelihood	peak	begins	to	be	seen,	representing	
scenarios	where	most	nodes	experience	within-area	speciation	events,	followed	
by	a	jump	dispersal	at	the	highest	node.	At	n=6	or	7,	the	peak	becomes	more	
distinct,	and	at	n=8,	the	likelihood	peak	at	j=0.091	becomes	the	ML	solution.	As	
the	number	of	taxa	increases	further,	the	peak	at	small	j	soon	dominates.	These	
results	suggest	that	the	jumps-at-every-node	result	observed	in	the	Critique,	
while	counterintuitive,	is	partially	a	product	of	tiny	dataset	size.	Maximum	
likelihood	inference,	and	many	of	the	key	results	used	in	ML	inference	(for	
example,	the	Likelihood	Ratio	Test	and	AIC)	rely	on	asymptotic	results	that	
describe	the	expected	behaviour	of	the	inference	(consistency,	unbiasedness,	
etc.)	as	the	size	of	the	sample	becomes	large	(Anisimova	et	al.,	2001;	Burnham	&	
Anderson,	2002).	There	is	no	guarantee	that	ML	will	perform	well	on	very	small	
datasets.	We	should,	however,	be	reassured	by	the	fact	that	intuitively	
reasonable	inference	begins	to	occur	as	the	dataset	size	increases	--	keeping	in	
mind	that,	as	we	are	inferring	3	free	parameters,	even	n=8	is	a	small	dataset.	
Judging	an	inference	method	with	3	free	parameters	on	a	dataset	of	size	n=2	or	
n=4	is	not	a	reliable	strategy.	
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Human-constructed	datasets	are	not	simulation	results.	Although	judging	methods	
from	small	datasets	is	problematic,	it	is	even	more	problematic	to	make	
judgments	about	a	model’s	performance	in	general,	across	thousands	of	
observed	and	simulated	datasets,	on	the	basis	of	one	particular	data	
configuration	and	problem	setup.	The	problem	with	a	human-constructed	data	
pattern	is	that	it	is	not	actually	the	product	of	a	probabilistic	process	–	that	is,	
there	is	no	sense	of	how	commonly	the	human-constructed	pattern	would	

Figures	for	Matzke	2018	
	
Figure	1:	

	 	
Figure	1A.	Likelihood	profiles	for	datasets	following	the	
pattern	in	the	Critique’s	worked	examples,	namely,	pectinate,	
ultrametric	trees,	with	all	tips	inhabiting	single	areas,	and	
with	only	one	tip	in	the	most-nested	clade	inhabiting	a	
different	area.		

Figure	1B.	As	in	1A,	but	with	the	maximum	number	of	areas	
set	to	3	instead	of	2.	
	

	 	
Figure	1C.	As	in	1A,	but	with	the	unique	tip	range	being	sister	
to	the	most-derived	group.	

Figure	1D.	As	in	1A,	but	with	the	unique	tip	range	moved	to	
the	outgroup.	
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actually	emerge	from	whatever	intuitive	process	is	being	assumed.	For	example,	
in	the	case	of	the	4-taxon	example	and	its	derivatives,	consider	the	intuitive	
model,	where	it	is	assumed	that	within-area	speciation	is	high	probability,	and	
jump-dispersal	is	low	probability.	A	simulation	under	such	a	model	would	not	
usually	produce	a	pectinate	tree	with	a	single	tip	in	the	most-derived	position	
inhabiting	a	different	area	than	the	other	tips.	The	most	common	result	on	a	
small	tree	would	be	to	have	all	tips	in	the	same	area	(within-area	speciation	at	
each	node).	Less	common,	but	not	rare,	would	be	tips	other	than	the	most-
derived	position	inhabiting	the	different	area.	A	likelihood	analysis	is	taking	all	of	
these	possibilities	into	consideration,	and	if	a	human-constructed	data	pattern	is	
actually	rare	under	the	model	that	human	intuition	infers,	it	opens	up	the	
possibility	that	some	non-intuitive	model	will	be	a	better	fit.		
	
The	(almost)	“all	jumps”	result	is	only	preferred	if	standard	practices	in	statistical	
model	comparison	are	ignored.	Above,	we	have	been	relying	purely	on	the	
likelihoods	returned	by	DEC	and	DEC+J	when	applied	to	various	constructed	
datasets.	The	argument	has	been	about	whether	or	not	the	inferred	values	of	j	
and	the	observed	likelihood	improvements	are	reasonable	or	unreasonable.	
However,	the	entire	discussion	thus	far	has	ignored	basic	principles	of	statistical	
model	comparison	that	should	be	applied	especially	in	the	case	of	small	datasets.	
As	noted	above,	the	theory	behind	the	Likelihood	Ratio	Test	uses	approximations	
that	are	reliable	only	asymptotically	as	dataset	size	becomes	large.	The	Akaike	
Information	Criterion	(AIC;	Akaike,	1974;	Burnham	&	Anderson,	2002)	is	
another	approach	to	correct	for	the	bias	in	comparing	models	via	the	log-
likelihood	only,	penalizing	models	by	the	number	of	free	parameters	they	have.	
However,	the	AIC	itself	is	known	to	be	biased	in	the	situation	where	the	dataset	
size	is	small	compared	to	the	number	of	free	parameters.	In	this	situation,	the	
sample-size	corrected	AIC,	or	AICc,	is	recommended	(Burnham	&	Anderson,	
2002).		
	
AICc	increases	the	penalty	for	free	parameters	when	the	dataset	size	is	small;	as	
dataset	size	increases,	AICc	converges	on	traditional	AIC.	For	comparing	models	
with	2	and	3	parameters,	AICc	is	likely	to	make	little	difference	in	model	
comparison	when	the	dataset	size	is	above	~20.	However,	it	can	make	a	large	
difference	for	small	datasets	(Van	Dam	&	Matzke,	2016).	I	calculated	AICc	and	
AICc	model	weight	(Franklin	et	al.,	2001)	for	all	of	the	DEC/DEC+J	model	
comparisons	in	Table	3.	Note	that	AICc	is	not	even	defined	when	the	dataset	size	
exceeds	the	number	of	free	parameters	by	less	than	2;	therefore,	the	Critique’s	
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worked	examples	are	too	small	to	even	apply	AICc.	However,	even	with	
phylogenies	of	5-8	species,	DEC+J	fails	to	obtain	higher	model	weight	than	DEC.	
Only	at	9	species	does	DEC+J	begin	to	outperform	DEC	(58.5%	to	41.5%).		
	
The	brittleness	of	conclusions	from	narrow,	constructed	examples.	Another	
problem	with	making	general	judgments	based	on	narrow	constructed	examples	
is	that	slight	changes	to	the	problem	setup	might	reveal	that	the	unintuitive	
result	is	actually	quite	brittle	to	the	specific	setup	of	the	problem.	To	check	this,	I	
explored	a	few	variations	on	the	Critique’s	example	setup,	by	modifying	the	
likelihood-profile	analysis	described	above.	The	variations	were	(Figure	1B)	
setting	the	maximum	number	of	areas	to	3	instead	of	2,	but	not	otherwise	
changing	the	tree	or	data;	(1C)	moving	the	“unique”	single-area	range	from	a	
most-derived	position	to	the	branch	sister	to	the	most-derived	clade;	(1D)	
moving	the	unique	range	to	the	“outgroup”	position	in	the	tree;	and	(1E)	moving	
the	unique	range	to	a	branch	that	diverges	from	the	node	above	the	root	node.		
	
In	none	of	these	slightly-modified	example	datasets	does	the	phenomenon	of	ML	
optimizing	j	at	2.99999	occur	(Figures	1B-1E).	Instead,	j	is	estimated	to	have	
some	low	but	positive	value	in	all	cases,	agreeing	with	intuition.	
	
The	reason	for	this	radically	different	behaviour	has	to	do	with	the	likelihood	
conferred	on	the	data	by	the	all-jump-dispersal	scenarios	under	these	modified	
setups.	In	Figure	1B,	when	the	maximum	number	of	areas	is	3,	the	following	
jump-dispersal	scenarios	are	possible	at	a	node,	conditional	on	the	range	being	A	
just	before	speciation:	A,B;	B,A;	A,C;	C,A.	Each	of	these	has	a	conditional	
probability	of	0.25.	When	the	maximum	number	of	areas	was	2,	the	possible	
results	of	jump	dispersal	starting	from	A	were	only	A,B	and	B,A,	each	with	a	
probability	of	0.5.	Thus,	the	simple	change	from	2	areas	to	3	results	in	the	
likelihood	of	the	data	under	the	all-jumps	scenario	decreasing	by	half	at	each	
internal	node.	As	a	result,	the	all-jumps	scenarios	cease	to	have	the	highest	
probability,	even	for	small	datasets.		
	
For	Fig.	1C-1E,	merely	moving	the	location	of	the	unique	range	removes	the	
competitiveness	of	the	all-jumps	scenarios.	In	1C,	moving	the	unique	range	to	the	
branch	sister	to	the	most-derived	clade	results	in	the	derived	clade	having	a	
range	of	(B,B).	Such	a	data	pattern	cannot	be	explained	by	a	jump	dispersal	
event,	so	there	must	be	some	weight	on	y	to	explain	a	within-area	speciation	
event,	therefore	j	does	not	optimize	near	3.		



	 17	

	
In	Fig.	1D,	having	the	unique	range	in	the	outgroup	instead	of	the	most	derived	
position	produces	a	data	pattern	that	can	be	explained	by	vicariance	of	AB	at	the	
root,	followed	by	within-area	speciation	at	every	higher	node.	The	within-area	
speciation	events	will	be	more	probable	the	closer	j	is	to	0.	Therefore,	DEC+J	
never	achieves	a	log-likelihood	more	than	about	0.7	units	higher	than	DEC	on	
this	dataset,	and	the	advantage	rapidly	declines	to	0	(as	does	the	estimate	of	j)	as	
the	dataset	size	increases.	The	situation	is	similar	in	1E.	These	are	examples	of	
data	patterns	where	DEC+J	does	not	outperform	DEC.	(Many	such	patterns	are	
possible,	belying	any	claims	that	DEC+J	has	an	“unfair”	advantage.	Whether	or	
not	DEC-favouring	patterns	are	often	observed	in	real	empirical	data	is	a	
different	question.)		
	
In	summary,	the	surprising	behavior	noted	in	the	Critique’s	worked	examples,	
where	ML	inference	favoured	the	maximum	value	of	j	and	preferred	(almost)	all-
jump	dispersal	histories,	is	in	fact	the	result	of	the	specific	structure	of	that	
problem	setup.	The	decision	to	use	a	2-area	system	interacts	with	the	fact	that	
the	phylogenies	in	use	are	binary	trees	(all	nodes	have	2	descendant	lineages)	to	
create	a	situation	where	the	“right”	jumps	to	explain	the	dataset	have	high	
probability.		
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Some	constructed	dataset	patterns	always	prefer	DEC.	It	is	trivial	to	construct	
datasets	where	DEC+J	has	no	advantage	over	DEC.	For	example,	if	we	take	the	
pectinate	trees	from	the	previous	examples,	and	the	replace	the	range	“A”	with	
“AB”	at	the	tips,	then	DEC+J	has	no	log-likelihood	advantage,	despite	the	extra	
free	parameter	(Supplemental	Table	2),	no	matter	the	dataset	size.	Instead,	
DEC+J	infers	a	dominant	role	for	range-expansion	dispersal,	inferring	virtually	
identical	(and	large)	values	of	the	parameter	d,	and	the	same	ancestral	state	

	

Figure	1.	Likelihood	profiles	for	various	datasets	
under	DEC+J	with	d=0,	e=0,	and	j	varying	on	the	x-
axis.	The	likelihood	was	calculated	for	0 ≤ ! < 3,	
incrementing	j	by	0.01.	
	

Figure	1E.	As	in	1A,	but	with	the	unique	tip	range	moved	to	
the	first	tip	inside	the	outgroup.	
	
	
	

	 	
Figure	2.	An	example	data	pattern	where	DEC+J	(right)	has	no	advantage	over	DEC	(left).	
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probabilities	(Figure	2).	The	fact	that	a	particular	data	pattern	favours	a	
particular	model	is	not	evidence	of	unfairness;	instead,	it	reinforces	the	point	
that	inferences	made	on	individual	data	patterns	are	not	a	reliable	basis	on	
which	to	judge	the	general	behaviour	of	an	inference	model.	Instead,	different	
data	patterns	will	be	better	fit	by	different	models.		
	
	
	
Part	3.	Testing	for	fairness	
	
The	Critique	alleges	that	DEC+J	has	an	“unfair”	advantage	over	DEC	in	explaining	
datasets.	Of	course,	there	are	ways	that	an	unfair	advantage	could	exist	in	
likelihood-based	model	comparison.	For	example,	because	some	
implementations	of	models	include	or	exclude	constant	multipliers	to	the	
likelihood,	such	as	due	to	equal	state	frequencies	(see	Stadler,	2013	for	examples	
of	different	implementations	of	tree	models),	one	would	not	want	to	compare	a	
model	that	included	a	constant	multiplier	with	another	model	that	left	it	out.		
Another	way	that	a	likelihood-based	comparison	could	be	unfair	would	be	if	one	
of	the	likelihood	calculations	had	a	mistake	that	artificially	raised	or	lowered	the	
likelihood	difference	between	models.		
	
However,	there	is	a	way	to	check	for	fairness.	Likelihoods	are	conditional	
probabilities,	and	for	data	that	are	discrete,	the	conditional	probabilities	must	
add	up	to	1	when	summed	across	all	possible	datasets	(Felsenstein,	1992).	This	
condition	applies	as	long	as	no	constant	multipliers	to	the	likelihood	have	been	
left	out;	if	they	have	been	left	out,	then	the	likelihoods	will	add	up	to	1/(the	
constant).	
	
Summing	likelihoods	across	all	possible	datasets.	I	performed	this	experiment	for	
the	DEC	and	DEC+J	models,	for	two-taxon	trees	with	2-area	and	3-area	problems.	
For	the	2-area	problem,	there	are	4	possible	ranges	at	each	tip,	and	therefore	
4x4=16	possible	datasets	for	a	2-taxon	tree.	For	the	3-area	problem,	there	are	8	
possible	ranges,	and	therefore	8x8=64	possible	datasets	for	a	2-taxon	tree.	For	
each	dataset	collection,	I	calculated	the	likelihood	under	four	model/parameter	
combinations:	(1)	DEC,	with	cladogenetic	range-change	only	(d=e≅0);	(2)	DEC	
with	both	anagenetic	and	cladogenetic	range-change	processes	(d=0.2,	e=0.1);	
(3)	DEC+J,	using	the	same	d	and	e	as	for	combination	#2,	but	adding	j=0.15;	(4)	
DEC+J,	dominated	by	jump-dispersal	(d=e≅0,	j=2.9).	The	scripts	for	these	runs	
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are	included	in	Supplemental	Data,	so	that	researchers	may	repeat	the	
experiment	with	other	choices	of	the	parameter	values.		
	
The	results	for	the	3-area	problem	are	shown	in	Table	4.	It	can	be	seen	that,	
regardless	of	the	model	and	parameters,	the	likelihoods	under	a	particular	
model,	added	up	across	all	possible	data	patterns,	add	up	to	7.0	(ignoring	
rounding	errors).	If	state	frequencies	were	applied,	with	a	0	base	frequency	for	

the	null	range,	and	!
!
	for	the	other	ranges,	these	likelihoods	would	add	up	to	1.0.		

For	the	2-area	problem	(Supplemental	Table	3),	the	likelihoods	add	up	to	3.0	(or	
1.0,	if	SFs	of	(0,	1/3,	1/3,	1/3)	were	to	be	applied).	It	is	crucial	to	recognize	that	
this	result	is	not	just	luck	or	coincidence;	it	is	the	mathematical	consequence	of	
having	implemented	models	such	that	they	rely	on	valid	conditional	
probabilities.		
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Table	4.	Log-likelihoods	and	likelihoods	of	all	64	possible	data	patterns	for	a	2-taxon	tree	(unit	branchlengths)	with	
three	geographic	areas,	under	four	different	sets	of	DEC/DEC+J	parameters.	(a)	A	DEC	"cladogenesis-only"	model.	(b)	
A	DEC	model	with	both	anagenetic	and	cladogenetic	processes.	(c)	A	DEC+J	model	with	both	anagenetic	and	
cladogenetic	processes,	with	a	significant	weight	on	cladogenetic	jump	dispersal.	(d)	A	DEC+J	model	with	no	
anagenetic	processes,	and	with	jump	dispersal	dominanting	the	cladogenetic	process.	Summing	the	likelihoods	of	all	
possible	data	patterns	shows	that,	regardless	of	the	model	and	parameters,	the	total	of	all	likelihoods	is	7.	This	
demonstrates	that	no	models	have	"unfair"	advantages,	rather,	each	data	pattern	is	best	fit	(grey	shading)	by	one	of	
the	four	given	parameters	sets.	(Note	that	none	of	the	four	model-parameter	sets	given	here	is	likely	to	be	the	
maximum	likelihood	(ML)	inference	for	any	of	the	64	data	patterns;	the	purpose	is	just	to	demonstrate	that	any	
particular	model	&	parameters	will	prefer	some	data	patterns	over	others,	and	vice	versa.)Summing	the	likelihoods	
of	all	possible	data	patterns	shows	that,	regardless	of	the	model	and	parameters,	the	total	of	all	likelihoods	is	7.	This	
demonstrates	that	no	models	have	"unfair"	advantages,	rather,	each	data	pattern	is	best	fit	(grey	shading)	by	one	of	
the	four	given	parameters	sets.	(Note	that	none	of	the	four	model-parameter	sets	given	here	is	likely	to	be	the	
maximum	likelihood	(ML)	inference	for	any	of	the	64	data	patterns;	the	purpose	is	just	to	demonstrate	that	any	
particular	model	&	parameters	will	prefer	some	data	patterns	over	others,	and	vice	versa.)	
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Data
lnL

Data	
likelihood

Data
lnL

Data	
likelihood

Data
lnL

Data	
likelihood

Data
lnL

Data	
likelihood

000,000 -21.6396 0 -3.6198 0.027 -3.6307 0.026 -21.9162 0
000,100 -11.2253 0 -2.6187 0.073 -2.6286 0.072 -11.5019 0
000,010 -11.2253 0 -2.6187 0.073 -2.6286 0.072 -11.5019 0
000,001 -11.2253 0 -2.6187 0.073 -2.6286 0.072 -11.5019 0
000,110 -12.3884 0 -3.0451 0.048 -3.043 0.048 -12.0615 0
000,011 -12.3884 0 -3.0451 0.048 -3.043 0.048 -12.0615 0
000,101 -12.3884 0 -3.0451 0.048 -3.043 0.048 -12.0615 0
000,111 -12.8992 0 -2.837 0.059 -2.8313 0.059 -12.8991 0
100,000 -11.2253 0 -2.6187 0.073 -2.6286 0.072 -11.5019 0
100,100 -0.0001 1 -0.8903 0.411 -1.3316 0.264 -5.8551 0.003
100,010 -1.7918 0.167 -2.3853 0.092 -1.8164 0.163 -0.685 0.504
100,001 -1.7918 0.167 -2.3853 0.092 -1.8164 0.163 -0.685 0.504
100,110 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
100,011 -2.4849 0.083 -2.6711 0.069 -2.261 0.104 -0.568 0.567
100,101 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
100,111 -2.4849 0.083 -1.8572 0.156 -1.8514 0.157 -2.4848 0.083
010,000 -11.2253 0 -2.6187 0.073 -2.6286 0.072 -11.5019 0
010,100 -1.7918 0.167 -2.3853 0.092 -1.8164 0.163 -0.685 0.504
010,010 -0.0001 1 -0.8903 0.411 -1.3316 0.264 -5.8551 0.003
010,001 -1.7918 0.167 -2.3853 0.092 -1.8164 0.163 -0.685 0.504
010,110 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
010,011 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
010,101 -2.4849 0.083 -2.6711 0.069 -2.261 0.104 -0.568 0.567
010,111 -2.4849 0.083 -1.8572 0.156 -1.8514 0.157 -2.4848 0.083
001,000 -11.2253 0 -2.6187 0.073 -2.6286 0.072 -11.5019 0
001,100 -1.7918 0.167 -2.3853 0.092 -1.8164 0.163 -0.685 0.504
001,010 -1.7918 0.167 -2.3853 0.092 -1.8164 0.163 -0.685 0.504
001,001 -0.0001 1 -0.8903 0.411 -1.3316 0.264 -5.8551 0.003
001,110 -2.4849 0.083 -2.6711 0.069 -2.261 0.104 -0.568 0.567
001,011 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
001,101 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
001,111 -2.4849 0.083 -1.8572 0.156 -1.8514 0.157 -2.4848 0.083
110,000 -12.3884 0 -3.0451 0.048 -3.043 0.048 -12.0615 0
110,100 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
110,010 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
110,001 -2.4849 0.083 -2.6711 0.069 -2.261 0.104 -0.568 0.567
110,110 -11.9184 0 -2.4889 0.083 -2.5834 0.076 -15.3191 0
110,011 -12.2061 0 -2.795 0.061 -2.7243 0.066 -11.3781 0
110,101 -12.2061 0 -2.795 0.061 -2.7243 0.066 -11.3781 0
110,111 -13.3046 0 -2.6314 0.072 -2.6234 0.073 -13.3045 0
011,000 -12.3884 0 -3.0451 0.048 -3.043 0.048 -12.0615 0
011,100 -2.4849 0.083 -2.6711 0.069 -2.261 0.104 -0.568 0.567
011,010 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
011,001 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
011,110 -12.2061 0 -2.795 0.061 -2.7243 0.066 -11.3781 0
011,011 -11.9184 0 -2.4889 0.083 -2.5834 0.076 -15.3191 0
011,101 -12.2061 0 -2.795 0.061 -2.7243 0.066 -11.3781 0
011,111 -13.3046 0 -2.6314 0.072 -2.6234 0.073 -13.3045 0
101,000 -12.3884 0 -3.0451 0.048 -3.043 0.048 -12.0615 0
101,100 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
101,010 -2.4849 0.083 -2.6711 0.069 -2.261 0.104 -0.568 0.567
101,001 -1.7918 0.167 -1.8506 0.157 -1.9656 0.14 -5.192 0.006
101,110 -12.2061 0 -2.795 0.061 -2.7243 0.066 -11.3781 0
101,011 -12.2061 0 -2.795 0.061 -2.7243 0.066 -11.3781 0
101,101 -11.9184 0 -2.4889 0.083 -2.5834 0.076 -15.3191 0
101,111 -13.3046 0 -2.6314 0.072 -2.6234 0.073 -13.3045 0
111,000 -12.8992 0 -2.837 0.059 -2.8313 0.059 -12.8991 0
111,100 -2.4849 0.083 -1.8572 0.156 -1.8514 0.157 -2.4848 0.083
111,010 -2.4849 0.083 -1.8572 0.156 -1.8514 0.157 -2.4848 0.083
111,001 -2.4849 0.083 -1.8572 0.156 -1.8514 0.157 -2.4848 0.083
111,110 -13.3046 0 -2.6314 0.072 -2.6234 0.073 -13.3045 0
111,011 -13.3046 0 -2.6314 0.072 -2.6234 0.073 -13.3045 0
111,101 -13.3046 0 -2.6314 0.072 -2.6234 0.073 -13.3045 0
111,111 -23.0258 0 -2.7457 0.064 -2.7373 0.065 -23.0258 0

Totals 7.002 7.001 7.007 7.005

Note:	Deviations	from	integer	7	are	due	to	rounding	errors.

Table	5.	Log-likelihoods	and	likelihoods	of	all	64	possible	data	patterns	for	a	2-taxon	tree	(unit	
branchlengths)	with	three	geographic	areas,	under	four	different	sets	of	DEC/DEC+J	parameters.	(a)	A	
DEC	"cladogenesis-only"	model.	(b)	A	DEC	model	with	both	anagenetic	and	cladogenetic	processes.	(c)	
A	DEC+J	model	with	both	anagenetic	and	cladogenetic	processes,	with	a	significant	weight	on	
cladogenetic	jump	dispersal.	(d)	A	DEC+J	model	with	no	anagenetic	processes,	and	with	jump	dispersal	
dominanting	the	cladogenetic	process.	Summing	the	likelihoods	of	all	possible	data	patterns	shows	
that,	regardless	of	the	model	and	parameters,	the	total	of	all	likelihoods	is	7.	This	demonstrates	that	no	
models	have	"unfair"	advantages,	rather,	each	data	pattern	is	best	fit	(grey	shading)	by	one	of	the	four	
given	parameters	sets.	(Note	that	none	of	the	four	model-parameter	sets	given	here	is	likely	to	be	the	
maximum	likelihood	(ML)	inference	for	any	of	the	64	data	patterns;	the	purpose	is	just	to	demonstrate	
that	any	particular	model	&	parameters	will	prefer	some	data	patterns	over	others,	and	vice	versa.)

(a)	DEC,	cladogenetic	
range-change	only:	

d=0.00001,	
e=0.00001,	j=0Data	(left,	

right)

(b)	DEC,	mix	of	
anagenetic	and	

cladogenetic	range-
change:	d=0.2,	e=0.1,	

j=0

(c)	DEC+J,	mix	of	
anagenetic	and	

cladogenetic	range-
change,	with	jump	
dispersal	added:	

d=0.2,	e=0.1,	j=0.15

(c)	DEC+J,	only	
cladogenetic	range-
change,	dominated	
by	jump-dispersal:	
d=0.0001,	e=0.0001,	

j=2.9
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Particular	models	favour	particular	data	patterns;	this	is	not	“unfair.”	In	Table	4,	
for	each	data	pattern,	the	model	that	confers	the	highest	likelihood	on	that	data	
pattern	is	highlighted	in	grey.	From	this,	it	is	apparent	that	there	is	no	such	thing	
as	a	universal	or	“unfair”	advantage	for	one	model	over	another,	when	both	
models	rely	on	comparable	conditional	probabilities.	Instead,	each	model	
produces	some	data	patterns	with	higher	frequency	and	others	with	lower	
frequency.	It	may	well	be	the	case	that	certain	data	patterns	are	more	commonly	
observed	in	real-life	empirical	datasets,	and	it	may	be	that	the	kinds	of	data	
patterns	most	commonly	observed	in	real-life	happen	to	be	fit	better	by	one	
model	than	another.	But	this	is	not	bias	or	unfairness.	Instead,	this	is	reality	
impinging	on	our	models.	If	a	particular	model	tends	to	fit	empirical	datasets	
more	poorly	than	another,	this	is	important	information,	not	something	that	
should	ignored	or	explained	away	(for	discussion	of	the	issue	of	null	ranges	at	
tips,	see	Supp.	Text).	
	
Part	4.	Model	adequacy:	A	way	to	see	the	actual	advantage	of	DEC+J	on	
certain	datasets	
	
A	common	strategy	in	assessing	phylogenetic	comparative	methods	is	to	test	for	
model	adequacy	(Ripplinger	&	Sullivan,	2010;	Pennell	et	al.,	2015),	recently	
applied	in	biogeography	(Tejero-Cicuéndez	et	al.,	2021).	The	motivation	for	
model	adequacy	is	that	in	most	cases	we	know	that	the	available	inference	
models	are	much	simpler	than	the	“true”	model	operating	in	the	real	world.	
Methods	such	as	AIC	and	Bayes	factors	can	be	used	to	compare	the	relative	fit	of	
models	to	the	data,	but	showing	that	one	model	has	relatively	better	fit	than	
another	does	not	prove	that	the	better	model	is	capturing	key	features	of	the	
data.	The	basic	method	to	assess	model	adequacy	involves	(a)	running	inference	
under	each	model	of	interest,	and	inferring	parameters	(and	perhaps	ancestral	
state	probabilities);	(b)	taking	these	estimates	and	simulating	new	datasets	
under	them	(posterior	predictive	simulations);	(c)	describing	the	results	of	these	
simulations	graphically	or	statistically,	for	example	with	summary	statistics	that	
capture	key	features	of	the	data;	(d)	comparing	the	summary	statistics	to	the	
same	summary	statistics	for	the	original	dataset.	If	the	observed	data	fall	well	
within	the	distributions	produced	by	the	simulations,	the	model	can	be	judged	to	
be	“adequate”	in	that	respect.	If	not,	then	it	is	“inadequate”	at	modeling	that	
feature	of	the	data.	What	“key	features”	of	the	data	should	be	used	to	make	these	
judgments	is	admittedly	a	subjective	decision	by	the	researcher,	and	presumably	
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with	sufficient	data	and	effort	any	computationally	feasible	model	could	be	
judged	to	be	an	inadequate	description	of	ultra-complex	reality	to	some	degree,	
but	model	adequacy	at	least	provides	a	method	to	identify	large,	obvious	
discrepancies	between	inferred	models	and	the	data	they	are	trying	to	fit.	
	
Previous	publications	(Matzke,	2014;	Massana	et	al.,	2015)	have	suggested	the	
importance	of	“narrow”	ranges	(single-area	ranges)	versus	“widespread”	ranges	
(ranges	occupying	2	or	more	areas)	for	determining	the	relative	fit	of	DEC	and	
DEC+J	models,	taking	the	view	that	particular	data	patterns	favour	each	model.	
The	Critique,	on	the	other	hand,	alleges	that	the	key	advantage	of	DEC+J	is	an	
“unfair”	advantage	due	to	the	exclusion	of	time-dependent	probabilities	from	the	
jump-dispersal	process.	We	can	test	this	hypothesis	with	a	model	adequacy	
experiment.	
	
Model	adequacy	simulation	experiment.	I	took	the	phylogeny	and	range	data	from	
Hawaiian	Psychotria,	Ree	and	Smith’s	(2008)	example	dataset	used	in	Lagrange	
and	BioGeoBEARS.	First,	I	inferred	parameters	and	ancestral	ranges	under	DEC	
and	DEC+J,	as	done	in	the	example	BioGeoBEARS	script	at	
http://phylo.wikidot.com/biogeobears#script.		I	also	inferred	the	speciation	rate	
using	Maximum	Likelihood	with	the	APE	function	yule.	The	result	was	that	the	
birthrate	𝜆 = 0.3289132.	The	APE	function	birthdeath	returns	the	same	result,	
and	also	estimates	the	extinction	rate	as	0.0.	Then,	I	ran	8	sets	of	100	simulations	
each,	using	the	simulation	code	slightly	modified	from	Matzke	(2014)	(available	
in	Supplemental	Material),	using	the	inferred	d,	e,	and	j	parameters,	and	a	Yule	
process	for	the	phylogeny,	using	the	inferred	𝜆.	Each	simulation	records	the	
complete	simulated	history	of	ranges	along	branches,	as	well	as	the	states	at	
nodes,	so	I	calculated	the	proportion	of	branchlength	spent	in	widespread	
ranges.	Dividing	by	the	total	branchlength	in	each	tree	provides	the	fraction	of	
the	tree	occupied	by	widespread	ranges.	The	means	and	2.5-97.5%	percentiles	of	
this	statistic	across	each	batch	of	100	trees	are	shown	in	Table	5.	I	also	tabulated	
the	mean	fraction	of	tips	that	are	widespread	for	each	simulated	tree.		
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It	is	apparent	that	simulations	from	the	DEC	parameters,	even	though	they	were	
optimized	to	fit	the	empirical	Psychotria	dataset,	nevertheless	produce	simulated	
datasets	that	do	not	resemble	the	empirical	dataset	with	respect	to	range	size.	
Depending	on	the	simulation	conditions,	an	average	of	16-21%	of	tips	are	
widespread,	while	the	empirical	dataset	had	0	widespread	tips.	The	95%	
percentiles	describing	variation	within	a	group	of	simulations	also	exclude	0	for	
all	runs.	Clearly,	the	DEC	model	is	inadequate,	at	least	for	the	key	variable	of	
range-size,	for	fitting	a	dataset	like	Psychotria,	which	has	0	tips	in	widespread	
ranges.	
	
The	reasons	for	this	mismatch	become	clear	when	simulation	histories	are	
visualized.		Figure	3	gives	an	example.	The	width	of	the	branch	corresponds	to	
the	number	of	areas	occupied	for	each	lineage	at	every	point	in	the	phylogeny.	A	
DEC	simulation	(3A),	using	the	parameters	inferred	from	Psychotria,	is	able	to	
spread	lineages	to	different	areas	using	a	d	parameter	of	0.035,	but	it	is	not	able	
produce	all	tips	with	size	1.	DEC	does	have	processes	that	reduce	range	size	–	the	
cladogenesis	processes	lower	the	average	range	size	when	they	operate,	and	the	
range	contraction	parameter	e,	is	0.028,	comparable	to	d.	(The	problem	would	be	
worse	in	the	much	more	common	situation	where	inferred	𝑒 ≅ 0.)	But,	even	
though	the	parameters	controlling	range	expansion	and	range	contraction	are	
optimized	to	match	the	Psychotria	dataset,	the	resulting	simulation	under	the	
inferred	process	just	isn’t	able	to	avoid	producing	some	tips	with	widespread	
ranges.		

Simulation	
model

Starting	
range

Number	
of	tips

average	
fraction	of	

branchlength	
that	is	

widespread

95%	
percentiles

mean	
fraction	of	
tips	that	are	
widespread

95%	
percentiles

Yule+DEC A 50 0.164 (0.0065,	0.382) 0.178 (0.0276,	0.341)

Yule+DEC+J A 50 0.000 (0,	0) 0.000 (0,	0)

Yule+DEC sampled 50 0.210 (0.0065,	0.463) 0.188 (0.0526,	0.368)

Yule+DEC+J sampled 50 0.038 (0,	0.185) 0.0063 (0,	0.053)

Yule+DEC A 19 0.182 (0.0828,	0.281) 0.192 (0.0715,	0.34)

Yule+DEC+J A 19 0.000 (0,	0) 0.000 (0,	0)

Yule+DEC sampled 19 0.198 (0.0896,	0.331) 0.195 (0.081,	0.34)

Yule+DEC+J sampled 19 0.016 (0,	0.09) 0.0016 (0,	0.02)

19

Table	5.	Summary	statistics	from	model	adequacy	study,	simulating	from	the	ML-inferred	

parameters	for	the	Psychotria	dataset.	All	DEC	simulations	were	run	with	the	ML-inferred	

patterns	for	the	Psychotria	dataset	under	the	DEC	model	(λ=0.3288159,	μ=0,	d=0.03504546,	
e=0.02835632,	j=0).	Similarly,	the	Yule+DEC+J	simulations	used	the	DEC+J-inferred	parameters	

(λ=0.3288159,	μ=0,	d=0,	e=0,	j=0.1142811).

0	(all	tips	single-area)Psychotria	(empirical)
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Explanation:	residence	times	of	widespread	ranges	under	DEC.	The	key	problem	
involves	the	concept	of	residence	time.	Stochastic	models	imply	certain	average	
residence	times	for	every	state	in	the	state	space,	given	a	starting	state,	
parameter	values,	and	a	time	after	the	starting	point.	DEC	fundamentally	relies	
on	a	range-expansion	process,	a	process	that	occurs	rarely	for	typically-inferred	
values	of	d.		For	example,	when	d=0.035	in	the	Psychotria	example,	this	suggests	
that	range	expansion	events	happen	about	once	for	every	28.6	million	years	of	
branch	length	(1/0.035).	The	simulated	19-species	phylogenies	have	an	average	
of	about	60	million	years	of	branchlength	(95%	CI:	32-88),	suggesting	that	
typically	just	a	few	range	expansion	events	will	occur.	After	the	range	has	
expanded,	there	will	usually	be	a	substantial	waiting	time	until	either	a	
cladogenesis	event	or	a	range	contraction	event	occurs.	Thus,	the	lineages	in	the	
simulation	will	spend	a	substantial	proportion	of	time	residing	in	widespread	
ranges.	The	more	time	that	lineages	spend	in	widespread	ranges,	the	greater	the	
chance	that	one	or	more	tips	will	inhabit	widespread	ranges	when	the	simulation	
stops,	and	in	fact,	residence	time	in	widespread	ranges	and	the	number	of	
observed	tips	in	widespread	ranges	are	strongly	correlated	in	the	simulations	
(Figure	4).		
	

	 	
Figure	3.	Example	simulation	histories	under	DEC	and	DEC+J	with	parameters	fit	to	the	Hawaiian	
Psychotria	dataset.	3A:	DEC+Yule	simulation;	3B:	DEC+J+Yule	simulation.	
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Figure	4.	The	correlation	between	the	residence	time	spent	in	widespread	ranges	during	a	simulation,	
and	the	proportion	of	tips	occupying	widespread	ranges	at	the	end	of	the	simulation.	Black:	DEC	
simulations.	Grey:	DEC+J	simulations.	The	simulations	correspond	to	rows	7	and	8	of	Table	5.	
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On	the	other	hand,	simulations	from	the	DEC+J	model,	fit	to	the	same	Psychotria	
dataset,	have	no	difficulty	producing	datasets	where	most	or	all	of	the	tips	
inhabit	single	areas	(Table	5).	Figure	3B	shows	an	example	simulation	under	this	
model.	Even	when	the	root	states	are	sampled	from	inferred	root	state	
probabilities	under	DEC+J	(which	give	some	probability	to	the	root	inhabiting	
multiple	areas),	the	model	has	no	trouble	producing	few-to-no	tips	with	
widespread	ranges.		
	
In	short,	DEC+J	is	a	better	fit	to	datasets	like	Hawaiian	Psychotria	because	it	is	
more	adequate	–	it	puts	high	probability	on	states	(single-area	ranges)	that	are	
like	the	states	observed	in	the	empirical	dataset	(also	single-area	ranges).	The	
DEC	model	is	a	poorer	fit,	because	it	puts	a	higher	probability	on	producing	tips	
with	widespread	ranges,	which	are	not	found	in	this	dataset.		Insofar	as	datasets	
with	characteristics	like	the	Psychotria	dataset	are	common	in	historical	
biogeography,	this	explains	the	commonly,	but	not	universally,	observed	
advantage	of	the	DEC+J	model	over	the	DEC	model.		
	
To	put	it	more	simply:	a	model	that	tends	to	produce	states	that	are	not	
commonly	observed	will	tend	to	have	a	poorer	fit	than	a	model	that	produces	
states	that	are	commonly	observed.	This	is	not	“unfair”	–	rather,	comparing	how	
well	different	models	explain	datasets	is	the	main	point	of	statistics,	and	perhaps	
of	science	in	general.		
	
DEC’s	view	of	biogeographical	evolution:	slow	and	stately.	Another	crucial	point	
may	now	be	made.	Biogeographers	often	plot	ancestral	range	probabilities	
calculated	at	nodes	on	their	phylogeny.	However,	they	often	do	not	think	enough	
about	what	their	inferred	model	is	suggesting	happens	along	branches.	The	DEC	
model,	at	least	when	d	is	greater	than	0	and	at	typically-inferred	values,	and	e	is	
comparable	or	0,	suggests	that	range	expansion	dispersal	events	occur	rarely	in	
evolutionary	time	--	usually	with	average	waiting	times	between	range-
expansion	events	of	millions	of	years.	Furthermore,	it	suggests	that	these	
widespread	ranges	then	persist	for,	typically,	millions	more	years,	until	either	an	
independent	cladogenesis	event	occurs	that	produces	a	daughter	(or	daughters)	
with	smaller	range	sizes,	or	until	a	rare	range-contraction	event	occurs.	This	is	a	
slow,	stately	view	of	the	evolution	of	geographic	range.		
	
A	priori,	it	is	perfectly	possible	that	biogeographical	evolution	actually	works	in	
this	slow-and-stately	way.	And	it	accords	with	a	view	of	biogeography	that	was	
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common	in	the	heyday	of	vicariance	biogeography	and	which	presumably	
influenced	the	programming,	and	community	reception,	of	DIVA	and	then	DEC	
(the	Critique	argues	that	DEC	is	a	modified	version	of	the	Mk	model,	but	the	
influence	from	DIVA	is	also	strong).	But	with	the	decline	of	vicariance	
biogeography,	it	should	also	be	recognized	that	it	is	perfectly	possible	that	
geographic	ranges	might	not	evolve	in	this	slow-and-stately	fashion,	particularly	
at	the	coarse	scales	that	most	historical	biogeography	analyses	are	done.	It	might	
be	quite	rare,	for	instance,	that	a	species	can	maintain,	for	millions	of	years,	a	
geographic	range	spanning	multiple	continents	or	multiple	isolated	islands.	The	
key	point	is	that	it	should	not	be	assumed	that	the	DEC	model	is	an	“obvious”	
default	choice	for	modeling	biogeographical	evolution.	It	is	one	possible	choice	
among	many	possible	models,	most	of	which	have	not	been	programmed.	It	has	
become	a	near-default	in	the	biogeographical	community	basically	because	it	
was	the	first	such	model	available,	and	was	relatively	easy	to	use.	But,	if	ten	
different	biogeographers	sat	down	in	different	rooms	and	individually	
programmed	their	own	simulations	representing	their	best	guess	at	how	
biogeographical	evolution	works,	would	they	all	come	up	with	DEC?		
	
The	importance	of	the	state	space.	Once	it	is	accepted	that	the	residence	time	in	
different	states	is	a	crucial	consideration,	a	variety	of	other	interesting	
discussions	would	be	worthwhile.		To	briefly	mention	them:	it	is	clear	that	the	
choice	of	the	states	and	the	state	space	is	a	critical	consideration	for	statistical	
model	comparison,	as	choices	that	create	states	that	are	not	observed	in	the	data	
can	have	a	major	impact	on	model	fit	(FitzJohn,	2012;	Massana	et	al.,	2015).	On	
the	other	hand,	the	DEC	model’s	range-expansion/range-contraction	process	
clearly	implies	the	possibility	of	various	ranges,	even	if	they	are	not	observed.	It	
would	be	desirable	to	subject	the	state	space	itself	to	statistical	model	
comparison,	but	philosophical	difficulties	ensue	(Supp.	Text).		
	
	
	
Part	5.	Time-dependent	probabilities:	just	add	Yule	
	
The	last	major	argument	R&S	offer	is	that	the	DEC+J	model	does	not	model	
biogeographical	change	as	a	time-dependent	process.	Time-dependence,	the	
Critique	claims,	is	a	fundamental	feature	of	all	evolutionary	models,	and	if	DEC+J	
does	not	adhere	to	this	feature,	then	it	can	and	should	be	ignored	in	favour	of	
DEC.	If	AIC	and	the	usual	practices	of	statistical	model	choice	suggest	that	DEC	is	
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a	much	poorer	fit	for	the	data	than	DEC+J,	then	so	much	the	worse	for	AIC	and	
statistical	model	choice!	Apparently,	the	fact	that	AIC	and	related	methods	are	
now	ubiquitous	in	evolutionary	biology	and	other	quantitative	sciences	–	the	key	
work,	Burnham	and	Anderson	(2002),	has	over	50,000	citations	--	can	be	
discarded:	biogeography	should	take	a	different	path	and	prefer	a	traditional	
model	regardless	of	the	difference	in	statistical	fit.	
	
Connecting	DEC/DEC+J	to	ClaSSE.	There	are	a	variety	of	ways	to	respond	to	the	
Critique’s	assertions	about	the	importance	of	time-dependence,	and	its	lack	of	
time-dependence	in	cladogenetic	models	(Supp.	Text).	However,	none	of	the	
above	counterarguments	need	to	be	resolved,	because	it	can	be	shown	that	
statistical	comparison	of	DEC	and	DEC+J	is	exactly	equivalent	to	comparing	two	
special	cases	of	the	ClaSSE	model.	The	probabilities	of	each	cladogenetic	range-
changing	event	allowed	by	these	models,	including	jump	dispersal,	can	easily	be	
transformed	into	continuous-time	rates	by	multiplying	by	the	rate	of	speciation	
inferred	by	fitting	a	Yule	process	to	the	phylogeny.	However,	in	a	clear	
falsification	of	the	Critique’s	argument,	adding	in	the	likelihood	due	to	the	
continuous-time	probability	(density)	of	speciation	events	does	nothing	to	
change	the	log-likelihood	difference	between	the	two	models,	and	thus	does	not	
affect	the	results	of	statistical	model	comparison.		
	
I	will	begin	by	considering	the	ClaSSE	model,	the	very	model	that	the	Critique	
endorses	as	an	appropriate	constructed	model	without	the	alleged	flaws	of	DEC	
and	(especially)	DEC+J.	ClaSSE	is	the	most	generic	case	of	a	series	of	models	
descending	from	the	BiSSE	(Binary	State-dependent	Speciation/Extinction)	
model	Maddison	et	al.,	2007.	In	BiSSE,	there	are	six	parameters:	transition	rates	
between	two	states,	and	speciation	and	extinction	rates	for	each	state.	The	
MuSSE	model	(for	multistate	characters)	is	similar,	but	allows	more	than	two	
states.	The	GeoSSE	model	(Goldberg	&	Igić,	2012)	adds	cladogenetic	range	
change,	where	the	various	cladogenetic	range-change	processes	allowed	in	DEC	
are	given	rate	parameters.	Thus,	in	a	two-area	system,	there	are	three	possible	
ranges/states	(A,B,AB),	each	with	a	transition	rate	to	the	other	two	states	(these	
could	take	the	value	of	DEC’s	d	and	e,	or	other	values),	with	an	extinction	rate,	
and	with	speciation	rate(s).	The	states	A	and	B	just	have	a	typical	speciation	rate,	
and	the	range-inheritance	event	simultaneous	with	speciation	is	just	within-area	
speciation	(A->A,A	or	B->B,B).	However,	the	AB	state	can	have	multiple	kinds	of	
speciation	(vicariance	(A->A,B),	subset	sympatry	(AB->A,AB),	and	subset	
sympatry	(AB->B,AB)),	which	can	have	the	same	or	different	rates.		
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ClaSSE	(Goldberg	&	Igić,	2012)	takes	this	progression	to	the	logical	conclusion,	
where	every	state	in	the	state	space	of	size	k	has	transition	rates	to	every	other	
state	(k-1	transition	rates	per	state,	k*(k-1)	total),	an	extinction	rate	(k	extinction	
rates),	and	a	speciation	rate	for	every	possible	pair	of	states	that	could	descend	
from	a	particular	state	(k*k	possible	types	of	speciation	from	each	state,	or	k3	
speciation	rates	total).	The	number	of	parameters	therefore	rapidly	explodes	
with	larger	state	spaces,	and	attempting	to	make	all	parameters	free	and	infer	
them	from	the	data	would	be	impossible	except	for	the	smallest	problems.	
However,	as	noted	by	the	Critique	and	previously	(Matzke,	2014),	numerous	
parameters	can	be	fixed	to	zero	or	set	to	equal	each	other,	allowing	a	diverse	
range	of	special	case	models	with	fewer	free	parameters	to	be	built,	for	example	
to	study	on	diversification	is	influenced	by	elevation	zone	(Condamine	et	al.	
2018)	or	chromosomal	evolution	(Freyman	&	Höhna,	2018).		
	
DEC	and	DEC+J	as	special	cases	of	ClaSSE.	DEC	and	DEC+J	can	be	produced	by	
setting	ClaSSE	parameters	as	follows.	First,	the	anagenetic	transition	rates	
between	states	are	set	to	the	values	they	would	take	according	to	the	DEC	Q	
matrix,	using	d	and	e	(or	2d,	3d,	etc.,	in	cases	where	multiple	source	areas	are	
available).	Second,	the	extinction	rates	for	all	states	are	set	to	0.	Third,	the	total	
speciation	rate	for	each	state	is	set	to	equal	the	Yule-estimated	rate	for	the	tree	
in	question,	λYule.	Therefore,	if	the	possible	ranges	are	A,	B,	and	AB,	then	λA=	λB=	
λAB=λYule.	Finally,	the	rates	of	each	individual	type	of	speciation,	for	example	λAB-
>A,B,	are	set	to	be	fractions	of	λYule,	according	to	the	conditional	probabilities	that	
they	would	have	DEC	or	the	DEC+J	model	in	question.	As	the	conditional	
probabilities	of	cladogenetic	range	inheritance	events	in	DEC	and	DEC+J	sum	to	
1,	λAB->A,B	equals	λYule*P(AB->A,B|AB).	All	of	these	steps	are	demonstrated	using	
diversitree	in	example	scripts	in	Supplemental	Data	(see	also	Supplemental	
Figure	1).	
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To	complete	the	equivalency	between	ClaSSE	comparisons	and	DEC/DEC+J	
comparisons,	state	frequencies	at	the	root	must	be	set	to	be	equal	(diversitree	
ROOT.EQUI	option),	or	equal	except	with	0	probability	assigned	to	the	null	state	
(ROOT.GIVEN	option).	Finally,	the	completeness	of	taxon	sampling	is	set	to	1,	
and	the	option	to	condition	on	tree	survival	is	set	to	false.		
	
Experiment:	Comparing	log-likelihoods	calculated	under	DEC/DEC+J	and	ClaSSE.	
Employing	this	method,	I	calculated	the	likelihood	of	a	constructed	example	
dataset	using	BioGeoBEARS	DEC	and	DEC+J,	and	the	special-case	ClaSSE	
equivalents	in	diversitree.	The	example	dataset	was	a	4-taxon	tree	using	the	
standard	hominoid	topology	(((human,chimp),gorilla),orang),	but	with	the	
shortest	branches	given	length	1,	and	the	other	branches	scaled	to	make	the	tree	
ultrametric.	The	ranges	were	set	to	B	(“Asia”)	for	orangs,	and	A	(“Africa”)	for	the	
others.	Obviously,	this	is	not	meant	to	resemble	the	real	phylogenetic	dates	or	a	
real	analysis,	rather,	the	purpose	is	to	compare	likelihoods	between	
independently	programmed	implementations.	Likelihoods	were	calculated	
across	a	wide	range	of	combinations	of	the	d,	e,	and	j	parameters	(d,	e:	0,	0.01,	
0.05,	0.1,	0.3,	1,	3,	5;	j:	0,	0.01,	0.05,	0.1,	0.3,	1,	2.99).	
	
The	results	are	plotted	in	Figure	5.	It	is	apparent	that	the	likelihoods	conferred	
by	BioGeoBEARS	DEC	and	DEC+J,	and	an	implementation	of	these	models	in	
diversitree’s	ClaSSE,	are	extremely	highly	correlated	across	many	orders	of	
magnitude	and	many	parameter	combinations.	The	match	is	not	quite	perfect	
(slope	0.9951,	R-squared=0.9991),	but	the	strategy	used	to	calculate	the	
likelihood	in	SSE	models	(Maddison	et	al.,	2007)	is	a	numeric	approximation	and	
not	analytically	exact,	so	minor	disagreements	are	expected.	The	Critique’s	
statement,	“Needless	to	say,	ClaSSE	likelihoods	cannot	be	compared	with	DEC	
and	DEC+J”	is	incorrect	–	DEC	and	DEC+J	likelihoods	differ	from	their	respective	
ClaSSE	submodel	likelihoods	only	by	terms	that	are	constant	across	both	models.	
Exclusion	of	constant	terms	in	likelihood	comparisons	is	a	ubiquitous	practice	
(e.g.	Burnham	&	Anderson,	2002;	Stadler,	2013).		
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Figure	5.	Log-likelihoods	calculated	under	BioGeoBEARS	DEC	and	DEC+J	for	a	wide	
range	of	parameter	values,	regressed	against	log-likelihoods	calculated	under	
diversitree	ClaSSE	models	set	up	to	produce	DEC	and	DEC+J	behavior	(as	in	Figure	5).	
The	letter	d	represents	the	DEC	model	when	e=0,	j=0.	The	letter	e	represents	the	DEC	
model	when	d>0,	e>0,	j=0.	The	letter	j	represents	the	DEC+J	model	when	j>0.	

	
Implications	of	DEC	and	DEC+J	being	submodels	of	ClaSSE.	The	failure	to	recognize	
that	the	continuous-time	rate	of	any	particular	DEC	or	DEC+J	cladogenetic	range-
inheritance	event	is	just	the	Yule	speciation	rate,	times	the	conditional	
probability	of	that	cladogenetic	range-inheritance	event,	is	the	key	missing	
conceptual	step	in	the	Critique’s	analysis	of	DEC	and	DEC+J.	The	consequences	
for	the	Critique’s	argument	are	severe.	First,	the	claim	that	DEC	and	DEC+J	are	
conceptually	flawed	because	they	invoke	processes	that	do	not	act	in	continuous	
time	is	rendered	untrue	once	the	Yule	log-likelihood	is	added.	Second,	the	notion	
that	this	conceptual	flaw	would	differentially	advantage	DEC+J	over	DEC	is	
falsified,	because	the	likelihood	contribution	of	the	Yule	process	is	the	same	for	

Figure	5.	Log-likelihoods	calculated	under	BioGeoBEARS	DEC	and	DEC+J	for	a	wide	range	of	parameter	
values,	regressed	against	log-likelihoods	calculated	under	diversitree	ClaSSE	models	set	up	to	produce	
DEC	and	DEC+J	behavior	(as	in	Figure	5).	The	letter	d	represents	the	DEC	model	when	e=0,	j=0.	The	letter	
e	represents	the	DEC	model	when	d>0,	e>0,	j=0.	The	letter	j	represents	the	DEC+J	model	when	j>0.	
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both	models	–	both	models	are	using	the	same	phylogeny,	and	they	both	have	the	
same	number	and	timing	of	cladogenetic	events	to	work	with.	Under	a	Yule	
process,	possibilities	like	extinct	lineages	or	incomplete	taxon	sampling	are	ruled	
out	by	assumption,	therefore	there	are	no	missing	speciation	events	in	the	tree.	
(We	will	return	to	the	dubious	validity	of	that	assumption	momentarily,	but	Yule	
models	are	universally	recognized	to	be	valid	evolutionary	models;	of	course,	
valid	models	may	not	be	correct;	“all	models	are	wrong”	as	famously	stated	by	
Box).	
	
Finally,	because	the	Critique	itself	endorses	ClaSSE	as	an	appropriate	model	for	
biogeography,	the	fact	that	the	DEC/DEC+J	comparison	has	been	shown	to	be	
identical	to	comparing	two	special	cases	of	ClaSSE	introduces	an	irreconcilable	
self-contradiction	into	the	Critique’s	core	argument.	Also,	the	Critique’s	claim	
that	“DEC	and	DEC+J	cannot	be	compared	using	standard	statistical	methods”	
must	be	considered	false	by	anyone	who	recognizes	that	various	submodels	of	
ClaSSE	can	be	statistically	compared	using	AIC	and	related	methods.	As	BiSSE,	
GeoSSE,	etc.	are	submodels	of	ClaSSE,	every	paper	that	ever	compared	two	or	
more	SSE-derived	models	has	done	such	statistical	comparisons	--	probably	this	
includes	every	paper	ever	published	using	an	SSE	model.		
	
Conclusion:	legitimate	criticisms,	and	the	path	forward	in	biogeography	
	
The	framing	of	DEC	and	DEC+J	as	special	cases	of	ClaSSE	has	another	advantage:	
it	gives	us	a	clearer	view	of	what	these	models	are	assuming,	and	thus	a	better	
vantage	point	from	which	to	critique	these	assumptions	and	construct	a	research	
program	to	test	them.		
	
Extinction	and	sampling.	The	biggest	criticism	that	can	be	made	of	DEC	and	
DEC+J	is	that	they	both	make	the	Yule	assumption	of	no	lineage	extinction,	as	
previously	mentioned	in	Matzke	(2014).	The	no-extinction	assumption	has	to	be	
false	for	most	clades	(Marshall,	2017),	and	in	addition,	taxon	experts	often	know	
that	their	phylogeny	suffers	from	incomplete	sampling	of	the	total	diversity	of	
their	study	group	(a	problem	similar	to	extinction).	The	flawed	assumptions	of	
DEC	and	DEC+J	(and	other	similar	models)	could	well	have	real	impacts	on	
inference	of	parameters	and	ancestral	ranges,	because	the	existence	of	extinct	or	
unsampled	lineages	means	that	there	are	unobserved	cladogenetic	events	in	the	
tree,	which	is	problematic	if	cladogenetic	range-changing	processes	are	
operating.	On	the	other	hand,	the	simulations	performed	by	Matzke	(2014)	
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included	scenarios	with	lineage	extinction	and	other	violations	of	DEC/DEC+J	
assumptions,	with	detectable	but	quite	limited	negative	impacts	on	parameter	
inference	and	model	comparison.	As	noted	in	Matzke	(2014),	at	least	when	
extinction	has	a	moderate	rate	and	is	geographically	unbiased,	ignoring	it	does	
not	seem	to	cause	fatal	problems	for	the	usage	of	DEC	and	DEC+J,	and	
comparison	of	the	same.	Of	course,	if	extinction	rates	have	been	large	or	biased,	
then	the	problems	could	well	be	severe.	However,	this	is	not	much	different	than	
the	situation	with	other	phylogenetic	comparative	methods.	For	phylogenetic	
inference	of	ancestral	body	sizes	and	the	rates	of	body	size	evolution,	severely	
mistaken	inference	could	occur	if	extinction	or	taxon	sampling	had	biases	
correlated	with	body	size.		
	
State-dependence	of	speciation	and	extinction.	Another	major	assumption	of	DEC	
and	DEC+J	is	the	state-independence	of	the	overall	speciation	rate.	The	assumed	
speciation	rate	is	the	same	for	all	states	(except	for	the	null	range,	where	it	is	0,	
although	setting	the	speciation	rate	for	the	null	range	to	other	values	does	not	
change	the	likelihood,	as	the	null	range	is	an	impossible	ancestor	at	all	points	in	
the	tree).	There	is	state-dependence	of	speciation	only	in	the	limited	sense	that	
probabilities	of	specific	range-inheritance	scenarios,	given	speciation,	are	
conditional	on	the	range	before	speciation.		
	
Advantages	of	framing	DEC	and	DEC+J	as	ClaSSE	submodels.	The	framing	of	DEC	
and	DEC+J	as	special	cases	of	ClaSSE	is	useful,	in	that	it	invites	us	to	focus	on	the	
potential	of	statistically	comparing	these	simple	models	with	more	complex	ones	
in	a	ClaSSE	framework.	For	example,	it	is	clear	that	lineage	extinction	is	a	major	
process	in	evolutionary	history,	but	its	inference	is	fraught	(Marshall,	2017).	
What	dataset	sizes	and	characteristics	will	retain	sufficient	information	to	favour	
a	biogeographical	model	with	lineage	extinction?		Similar	questions	could	be	
asked	about	state-dependence	versus	state-independence	for	speciation	and	
extinction,	and	for	different	types	of	cladogenetic	range-changing	processes	
(vicariance,	jump-dispersal,	etc.).	Once	the	paradigm	of	statistical	model	
comparison	is	routinely	accepted	in	historical	biogeography,	all	such	questions	
become	statistically	accessible.	Historical	biogeography	can	thus	join	the	larger	
world	of	macroevolutionary	modeling,	using	rigorous	statistical	methods	to	
measure	the	support	that	data	lend	to	different	models.	This	would	be	a	marked	
improvement	over	the	history	of	historical	biogeography,	which	has	been	
marked	by	contentious,	non-statistical	debates	over	assumptions.		
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Routine	use	of	statistical	model	comparison	would	also	be	an	improvement	over	
some	common	practices	in	the	historical	biogeography	literature	of	recent	years,	
where	the	biogeographical	portion	of	research	papers	would	often	follow	one	of	
the	two	following	stereotyped	strategies.	The	first	common	practice	has	been	to	
run	the	three	methods	available	in	RASP	--	parsimony	DIVA,	likelihood-based	
Lagrange	DEC,	and	the	Bayesian	Binary	Model	(more	recently	BayArea).	As	these	
are	three	different	inference	frameworks,	the	results	are	not	statistically	
comparable,	and	researchers	were	stuck	either	presenting	all	three,	or	picking	
one	based	on	intuition	or	prior	beliefs.	The	second	common	practice	was	to	
choose	just	one	model,	commonly	DEC	or	DIVA,	and	treat	the	result	as	“the	
reconstruction”	of	biogeographical	history,	with	little	consideration	of	whether	
the	assumptions	of	these	models	were	good	fits	for	the	data	at	hand.		
	
BioGeoBEARS,	by	providing	likelihood-based	implementations	of	all	of	these	
models,	and	adding	the	option	for	jump	dispersal	to	each	model,	took	a	first	step	
towards	remedying	the	limitations	of	previous	practice.	However,	all	of	these	
models	still	have	obvious	flaws,	and	the	point	of	BioGeoBEARS	and	the	DEC+J	
model	was	not	to	provide	the	One	True	Model	–	which	science	will	never	reach	in	
any	case	–	but	to	open	up	some	of	the	assumptions	made	by	DEC	and	other	
models	to	statistical	testing.	Once	statistical	model	comparison	has	been	
accepted	as	a	framework,	the	way	is	open	for	advancing	our	understanding	of	
biogeographical	process,	arguably	a	more	important	scientific	goal	than	merely	
inferring	ancestral	ranges	on	a	phylogeny.	This	approach	has	been	used	to	
explore	the	role	of	distance,	connectivity,	and	dispersal-modifying	traits	(Van	
Dam	&	Matzke,	2016;	Dupin	et	al.,	2017;	Matos-Maraví	et	al.,	2018;	Klaus	&	
Matzke,	2020;	Garcia-R	&	Matzke,	2021).	
		
Prospects	for	practical	use	of	ClaSSE	in	biogeography.	The	process	of	model	
building	and	statistical	testing	will	continue	in	historical	biogeography.	I	
therefore	endorse	R&S’s	recommendation	to	explore	the	use	of	ClaSSE	for	
biogeographical	problems.		However,	as	noted	in	Matzke	(2014),	there	are	
substantial	technical	challenges	for	doing	so.	Apart	from	the	parameter	
explosion,	computational	speed	is	a	major	problem.	The	SSE	models	use	
numerical	integration	on	a	series	of	differential	equations	to	approximate	the	
likelihood,	as	analytic	strategies	such	as	matrix	exponentiation	(used	in	DEC-like	
models	and	innumerable	other	phylogenetic	models)	are	not	available.	Many	
users	of	Lagrange	or	BioGeoBEARS	users	have	already	run	up	against	the	quite	
strict	limits	of	matrix	exponentiation	as	a	strategy:	once	the	state	space	grows	
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beyond	1500	or	2000	possible	ranges,	the	likelihood	calculations	become	so	
slow	that	ML	optimization	runs	will	not	complete	in	any	reasonable	amount	of	
time.	Multicore	parallel	processing,	implemented	in	BioGeoBEARS,	allows	the	
state	space	to	be	pushed	only	a	little	further.	The	numeric	integration	method	
used	in	SSE	models,	on	the	other	hand,	is	even	slower,	thus	imposing	even	more	
strict	limits	on	the	state	space.	Even	if	the	calculation	issues	are	overcome,	
allowing	ClaSSE	to	be	run	on	normal	biogeographical	problems	with	100-2000	
possible	ranges,	there	will	be	a	fairly	strict	limit	to	the	complexity	of	models	that	
can	be	supported	given	existing	or	imaginable	biogeographical	datasets.	DEC	and	
DEC+J	may	well	be	overly	simple,	but	any	ClaSSE	model	feasible	for	inference	
will	have	to	similarly	use	a	small	set	of	parameters	to	describe	the	most	
important	processes.		The	goal	should	be	to	find	simple	ClaSSE	models	that	also	
can	pass	basic	model	adequacy	tests.	The	issue	of	the	residence	times	of	range	
sizes,	in	particular,	will	undoubtedly	recur	as	soon	as	ClaSSE-derived	models	are	
employed	in	biogeography,	and	any	models	that	fail	to	take	this	into	account	will	
fare	poorly.		
	
The	advantage	of	statistical	model	comparison	in	biogeography	is	that	it	allows	
researchers	with	differing	intuitions	about	how	biogeography	works	to	
statistically	test	them	by	comparing	model	fits.	Frequent	model	testing	would	be	
an	indication	that	historical	biogeography	is	a	vibrant	and	advancing	science.	
The	Critique	seems	to	suggest	that	the	main	point	of	probabilistic	models	in	
historical	biogeography	is	to	infer	ancestral	ranges,	certainly	a	common	view	in	
the	literature.	However,	most	important	use	of	probabilistic	models	in	historical	
biogeography	should	be	to	learn	about	the	processes	that	have	produced	the	
distribution	of	biodiversity	around	the	globe.	A	beneficial	by-product	of	
comparing	models	is,	of	course,	that	better-fit	models	are	likely	to	be	more	
accurate	for	estimating	ancestral	ranges,	as	demonstrated	by	the	simulation-
inference	studies	in	Matzke	(2014).	Better	inference	of	ancestral	ranges	is	good,	
but	learning	about	the	fundamental	processes	working	in	biogeography	is	a	far	
more	fundamental	scientific	goal	than	just	inferring	the	history	of	individual	
clades.	By	comparing	models	on	many	clades,	we	can	begin	to	understand	the	
variation	in	the	importance	of	different	processes,	for	example	depending	on	the	
physical	geography,	habitat,	and	ecological	dispersal	ability	of	different	taxa.	In	
order	for	this	research	program	to	advance,	the	one	thing	researchers	must	be	
prepared	to	do	is	revise	their	intuitions,	if	statistical	evidence	starts	
accumulating	against	them.		
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