Main content

Embeddings-to-judgments  /

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Recent advances in machine learning, combined with the increased availability of large natural language datasets, have made it possible to uncover semantic representations that characterize what people know about and associate with a wide range of objects and concepts. In this paper, we examine the power of word embeddings, a popular approach for uncovering semantic representations, for studying high-level human judgment. Word embeddings are typically applied to linguistic and semantic tasks, however we show that word embeddings can be used to predict complex theoretically- and practically-relevant human perceptions and evaluations in domains as diverse as social cognition, health behavior, risk perception, organizational behavior, and marketing. By learning mappings from word embeddings directly onto judgment ratings, we outperform a similarity-based baseline and perform favorably compared to common metrics of human inter-rater reliability. Word embeddings are also able to identify the concepts that are most associated with observed perceptions and evaluations, and can thus shed light on the psychological substrates of judgment. Overall, we provide new methods and insights for predicting and understanding high-level human judgment, with important applications across the social and behavioral sciences.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.