Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: AI large language models have (co-)produced amazing written works from newspaper articles to novels and poetry. These works meet the standards of the standard definition of creativity: being original and useful, and sometimes even the additional element of surprise. But can a large language model designed to predict the next text fragment provide creative, out-of-the-box, responses that still solve the problem at hand? We put Open AI’s generative natural language model, GPT-3, to the test. Can it provide creative solutions to one of the most commonly used tests in creativity research? We assessed GPT-3’s creativity on Guilford’s Alternative Uses Test (AUT) and compared its performance to previously collected human responses on expert ratings of originality, usefulness and surprise of responses, flexibility of each set of ideas as well as an automated method to measure creativity based on the semantic distance between a response and the AUT object in question.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.