Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
## Dataset Information This dataset focuses on extracting pitting corrosion within Aluminum (Al) wires using in-situ XCT images acquired at Sandia National Laboratories (SNL). Currently, the dataset consists of 100 annotated images. #### **Instructions for Generating Predictions and Evaluating Model Performance on the Benchmark Dataset** - Images and corresponding groud truth masks are [here][1]. - For each model, we provide an inference script to generate predictions. - Refer to the table at the bottom for links to the inference scripts for each model. - You need to change the paths for images and model in the script accordingly. - Once you've generated the predictions, you can use the '[get_evaluation_metrics.py][2]' script (applicable to all models in this dataset) to assess the model's performance on the generated predictions. - You need to change the paths for images in the script accordingly. **Metadata:** - **Imaging technique:** XCT - **Sample:** Commercial-purity Aluminum (1100 Al) wire - **Diameter:** 0.813 mm - **Length:** 1.25 mm - **Sample exposure:** - **NaCl droplets:** 60 µg/cm² NaCl - **Relative Humidity:** 98% - **Image size:** 1024 x 988 - **Voxel size:** 1.25 µm - **Minimum resolvable feature size:** 15.6 µm² (2x2x2 voxels) **Want to contribute? Fill up this [Google Form][3]**. <h2> Benchmarks </h2> | Model | Description | Binary IoU | Library | Input Image Size | Performance Metrics | Paper | Model Inference Script | Compatible PyTorch Version | |:---------------------------------:|:--------------------------------------------:|:----------:|:--------------------:|:----------------:|:------------------------------------------:|:------------------------------------------:|:------------------------------------------:|:------------------------------------------:| [unet-seresnext101.h5][4]| U-Net with SE-ResNeXt101 Encoder Backbone | 56%|Tensorflow/Keras <br> ([Segmentation Models][5]) | 768 x 768| Accuracy <br> Precision <br> Recall <br> Binary IoU* | - | [Click Here][6] | TensorFlow 2.17.0 | |[unet-standard.h5][7]| U-Net model with 4-block encoder and decoder| 48% |Tensorflow/Keras | 768 x 768| Accuracy <br> Precision <br> Recall <br> Binary IoU*| - | [Click Here][8] | PyTorch 2.13.0 | [1]: https://osf.io/uzxpc/files/osfstorage [2]: https://osf.io/download/xpu4r/ [3]: https://forms.gle/4pGRhkdw4wGNy1dY9 [4]: https://osf.io/download/7mqh8/ [5]: https://github.com/qubvel/segmentation_models [6]: https://osf.io/download/6707e5ddb6fe7aae902eca72/ [7]: https://osf.io/download/auzts/ [8]: https://osf.io/download/6707e5de3783bf7ee5a5e0ff/
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.