[white paper: pedagogical]

Diamond Open Access

[waiting peer review]

The terms of a language with one constant, one binary function, and one 4-ary function have an odd number of symbols

Open Mathematics Collaboration*†

September 5, 2021

Abstract

We show using induction on complexity that all terms of a language with one constant, one binary function, and one 4-ary function have an odd number of symbols.

keywords: language, induction on complexity, first-order logic

The most updated version of this white paper is available at https://osf.io/ue32a/download https://zenodo.org/record/5457880

Introduction

- 1. This is a pedagogical white paper on first-order logic.
- 2. Our purpose is to discuss a result in [1] which is licensed under [2].
- 3. We use minimal notation but preserving all relevant mathematical information.

^{*}All authors with their affiliations appear at the end of this white paper.

[†]Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

Meta-linguistic symbols

- 4. := means that what is on the left is defined by what is on the right.
- 5. \equiv means that the strings on both sides are identical.
- 6. $a,b \vdash c$ means deduction of c from a,b.

Proposition

7.

 $\mathscr{L} = \{0, f, g\} \rightarrow \text{every } \mathscr{L}\text{-term has an odd number of symbols}$

- 8. $\mathcal{L} \coloneqq \text{language}$
- 9. 0 := constant symbol
- 10. f := binary function symbol
- 11. g := 4-ary function symbol

Proof of (7) by induction on complexity

- 12. $t \coloneqq \mathcal{L}\text{-term}$
- 13. We need to prove that t has an odd number of symbols.

Case 1

- 14. $t \equiv 0$
- 15. t has 1 symbol.

Case 2

- 16. t is a variable.
- 17. t has 1 symbol.

Case 3

- 18. $t \coloneqq ft_1t_2$
- 19. n := number of symbols in t
- 20. Inductive hypothesis: a term has an odd number of symbols.
- 21. Let n_1 and n_2 be the number of symbols in t_1 and t_2 , respectively.
- 22. (20) $\vdash n_1$ and n_2 are odd numbers.
- 23. $n = n_1 + n_2 + 1$
- 24. (22), $(23) \vdash n$ is odd.

Case 4

- 25. $t \coloneqq gt_1t_2t_3t_4$
- 26. This case is similar to Case 3.

Open Invitation

Review, add content, and co-author this white paper [3,4]. Join the Open Mathematics Collaboration.

Send your contribution to mplobo@uft.edu.br.

Open Science

The **latex file** for this white paper together with other supplementary files are available in [5,6].

How to cite this paper?

https://doi.org/10.31219/osf.io/ue32a

https://zenodo.org/record/5457880

Acknowledgements

+ Center for Open Science https://cos.io

+ Open Science Framework https://osf.io

+ Zenodo https://zenodo.org

Agreement

All authors agree with [4].

References

- [1] Leary, Christopher C., and Lars Kristiansen. A friendly introduction to mathematical logic, 2nd edition, 2015.

 https://knightscholar.geneseo.edu/geneseo-authors/6
- [2] CC. Creative Commons. https://creativecommons.org
- [3] Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [4] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." *OSF Preprints*, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836

- [5] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://osf.io/6hzyp/files
- [6] https://zenodo.org/record/5457880

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br) 1,2 https://orcid.org/0000-0003-4554-1372

¹Federal University of Tocantins (Brazil)

²Universidade Aberta (UAb, Portugal)