The terms of a language with one constant, one binary function, and one 4 -ary function have an odd number of symbols

Open Mathematics Collaboration* ${ }^{*}$
September 5, 2021

Abstract

We show using induction on complexity that all terms of a language with one constant, one binary function, and one 4-ary function have an odd number of symbols.

keywords: language, induction on complexity, first-order logic
The most updated version of this white paper is available at https://osf.io/ue32a/download
https://zenodo.org/record/5457880

Introduction

1. This is a pedagogical white paper on first-order logic.
2. Our purpose is to discuss a result in [1] which is licensed under [2].
3. We use minimal notation but preserving all relevant mathematical information.
[^0]
Meta-linguistic symbols

4. := means that what is on the left is defined by what is on the right.
5. :三 means that the strings on both sides are identical.
6. $\mathrm{a}, \mathrm{b} \vdash \mathrm{c}$ means deduction of c from a, b.

Proposition

7.

$\mathscr{L}=\{0, f, g\} \rightarrow$ every \mathscr{L}-term has an odd number of symbols
8. \mathscr{L} := language
9. $0:=$ constant symbol
10. $f:=$ binary function symbol
11. $g:=4$-ary function symbol

Proof of (7) by induction on complexity

12. $t:=\mathscr{L}$-term
13. We need to prove that t has an odd number of symbols.

Case 1
14. $t: \equiv 0$
15. t has 1 symbol.

Case 2

16. t is a variable.
17. t has 1 symbol.

Case 3

18. $t: \equiv f t_{1} t_{2}$
19. $n:=$ number of symbols in t
20. Inductive hypothesis: a term has an odd number of symbols.
21. Let n_{1} and n_{2} be the number of symbols in t_{1} and t_{2}, respectively.
22. (20) $\vdash n_{1}$ and n_{2} are odd numbers.
23. $n=n_{1}+n_{2}+1$
24. (22), (23) $\vdash n$ is odd.

Case 4
25. $t: \equiv g t_{1} t_{2} t_{3} t_{4}$
26. This case is similar to Case 3.

Open Invitation

Review, add content, and co-author this white paper $[3,4]$. Join the Open Mathematics Collaboration.
Send your contribution to mplobo@uft.edu.br.

Open Science

The latex file for this white paper together with other supplementary files are available in $[5,6]$.

How to cite this paper?

https://doi.org/10.31219/osf.io/ue32a
https://zenodo.org/record/5457880

Acknowledgements

+ Center for Open Science https://cos.io
+ Open Science Framework https://osf.io
+ Zenodo
https://zenodo.org

Agreement

All authors agree with [4].

References

[1] Leary, Christopher C., and Lars Kristiansen. A friendly introduction to mathematical logic, 2nd edition, 2015.
https://knightscholar.geneseo.edu/geneseo-authors/6
[2] CC. Creative Commons. https://creativecommons.org
[3] Lobo, Matheus P. "Microarticles." OSF Preprints, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
[4] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
[5] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://osf.io/6hzyp/files
[6] https://zenodo.org/record/5457880

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br) ${ }^{1,2}$ https://orcid.org/0000-0003-4554-1372
${ }^{1}$ Federal University of Tocantins (Brazil)
${ }^{2}$ Universidade Aberta (UAb, Portugal)

[^0]: *All authors with their affiliations appear at the end of this white paper.
 ${ }^{\dagger}$ Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

