Main content
VAPAR: Visual Attention Prediction for Autonomous drone Racing
Contributors:
Date created: 2021-09-09 08:42 PM | Last Updated: 2022-03-17 04:07 PM
Identifier: DOI 10.17605/OSF.IO/UABX4
Category: Project
VAPAR is a flight trajectory and RGB camera dataset in autonomous drone racing scenarios.
If you use the code or data in an academic context, please cite the following work:
APA:
Pfeiffer C, Wengeler S, Loquercio A, Scaramuzza D (2022) Visual attention prediction improves performance of autonomous drone racing agents. PLOS ONE 17(3): e0264471. https://doi.org/10.1371/journal.pone.0264471
Bibtex:
…
Files
Files can now be accessed and managed under the Files tab.
Citation
Recent Activity
Unable to retrieve logs at this time. Please refresh the page or contact support@osf.io if the problem persists.
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept