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Interventions to reduce misinformation sharing have been a major focus in recent years. 
Developing “content-neutral” interventions that do not require specific fact-checks or 
warnings related to individual false claims is particularly important in developing scalable 
solutions. Here, we provide the first evaluations of a content-neutral intervention to reduce 
misinformation sharing conducted at scale in the field. Specifically, across two on-platform 
randomized controlled trials, one on Meta’s Facebook (N=33,043,471) and the other on 
Twitter (N=75,763), we find that simple messages reminding people to think about 
accuracy—delivered to large numbers of users using digital advertisements—reduce 
misinformation sharing, with effect sizes on par with what is typically observed in digital 
advertising experiments. On Facebook, in the hour after receiving an accuracy prompt ad, 
we found a 2.6% reduction in the probability of being a misinformation sharer among users 
who had shared misinformation the week prior to the experiment. On Twitter, over more 
than a week of receiving 3 accuracy prompt ads per day, we similarly found a 3.7% to 6.3% 
decrease in the probability of sharing low-quality content among active users who shared 
misinformation pre-treatment. These findings suggest that content-neutral interventions 
that prompt users to consider accuracy have the potential to complement existing content-
specific interventions in reducing the spread of misinformation online.  
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The spread of misinformation is a source of great concern among academics, policymakers, and 
the general public1. Particular attention has been paid to social media’s role in the spread of false 
and misleading content2. Accordingly, academics and technology companies have invested a 
great deal of effort in exploring approaches to reduce the spread of misinformation online. 
Labeling and algorithmic demotion of content flagged by machine learning classifiers, 
professional fact-checkers, or crowdsourced (i.e., layperson) evaluations3 form the mainstay of 
current approaches to curb misinformation. These content-specific approaches have been shown 
to be largely effective at curtailing the influence of misinformation once it has been identified4 
(see, for example, an analysis of sharing before versus after posts were identified to Facebook as 
misinformation by 3rd party fact-checkers in SI section S1.3).  

Critically, however, content-specific interventions alone cannot keep pace with the vast quantity 
of content posted on social media. For example, in 2022, 1.7 million pieces of content were 
posted on Facebook every minute5—fact-checking at this scale and pace would be challenging 
for any organization, particularly during crisis events. Furthermore, content-specific 
interventions are impossible on platforms with privacy protections such as end-to-encryption. 
Alternatively, some have expressed concern about the possibility of bias and over-enforcement of 
content-specific interventions, typically applied by platforms in a top-down fashion6. Thus, it is 
important to complement these traditional approaches with content-neutral interventions that get 
ahead of the problem by reducing the spread of misinformation before it “goes viral.”  

A large body of survey-based experiments suggests that content-neutral interventions may have 
promise for combating misinformation sharing7‑11. However, virtually all this evidence relies on 
hypothetical sharing intentions measured while participants know they are in an experiment. 
Thus, despite an explosion of research in recent years, there is still virtually no evidence 
assessing whether content-neutral interventions can actually reduce the sharing of 
misinformation at scale “in the wild.” 

Here, we help to fill this gap. We focus in particular on accuracy prompts, a recently proposed 
class of intervention that is particularly scalable because it involves simply reminding users to 
consider accuracy. Even though the large majority of social media users around the world 
explicitly prefer to prioritize accuracy over other motives for sharing10,12, the social media 
context can distract people from accuracy and focus their attention on other factors9,10,13. As a 
result, several survey experiments have shown that shifting attention back to accuracy can 
improve the quality of content people intend to share online7,9,10,12‑17. In particular, having 
participants explicitly rate each headline’s accuracy immediate before deciding whether to share 
it reduced sharing of false news by 28.4%-51.2%10,13, and more generally prompting participants 
to consider accuracy at the outset of the study reduced subsequent sharing of false news by 10% 
in a meta-analysis of over 26,000 Americans16 and by 9.4% in a study of over 34,000 people 
across 16 countries12. 

But can accuracy prompts reduce actual misinformation sharing on-platform? Some have argued 
that accuracy prompts are ineffective for Republicans18 (but see16). Others have argued that 
accuracy prompts will not work for posts involving “sacred values” (i.e., those central to political 
identities) and that these posts are central to misinformation spreading19. Relatedly, it has been 
robustly demonstrated that accuracy prompts only reduce sharing insomuch as people believe the 
content is inaccurate7,9,10,12,13,16. Thus, if most misinformation shared online is more plausible 
than the blatantly false claims used in most survey experiments—or is shared by partisans who 
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sincerely believe the false claims—then we would not expect accuracy prompts to have a 
meaningful effect in the field.  

Thus, despite a wealth of survey experiments, it remains unclear whether accuracy prompts are 
indeed a useful tool for platforms seeking to reduce the spread of misinformation1. To help 
address this gap, we present the results of two similar large-scale randomized field studies 
conducted by separate teams—one industry and one academic—on Facebook and Twitter, 
respectively, providing the first evaluations of accuracy prompts deployed on-platform at scale.  

Both experiments use advertisements to deliver accuracy prompts and then assess the effect of 
these ads on users’ actual sharing behavior. Although social media advertisements are a very 
light-touch method for delivering interventions—for example, users may scroll past without 
noticing the ads or may choose to ignore them purposely—they have nonetheless been shown to 
affect users’ behavior and attitudes. For example, a meta-analysis of more than 600 advertising 
experiments using large advertisers on Facebook finds a median increase of 5% in purchase 
behavior and related outcomes20; a meta-analysis of over 800 public health advertising 
experiments on Facebook and Instagram found the average campaign increased the prevalence of 
positive opinions about COVID-19 vaccines by roughly 1%21; a long-term political advertising 
experiment during the 2020 U.S. Presidential Election caused a 0.3-0.4pp change in voter 
turnout22; and 90s video ads on YouTube describing rhetorical manipulation techniques increased 
technique identification in a follow-up survey by 5%11. Effects of this magnitude can have 
meaningful real-world consequences when deployed at scale (as suggested, for example, by the 
vast investment in digital ads by businesses and political campaigns). 
 
Here, we ask whether accuracy prompt advertisements—delivered in a content-neutral manner—
can similarly reduce users' subsequent sharing of misinformation. If so, we would demonstrate 
the utility of accuracy prompts for helping to address the misinformation challenge, provide 
evidence for inadvertent sharing of inaccurate content online, and offer guidance on how such 
content-neutral approaches may be most effectively delivered and applied.  

 

Accuracy prompts on Facebook 
Our first study (Fig. 1), an experiment conducted by a research team at Meta, involved 33 
million Facebook users.  The experiment primarily included non-targeted users reached through 
the ads auction, augmented with a smaller group of users targeted because they had repeatedly 
shared links classified as misinformation prior to the study (with ads also delivered via the ads 
auction). Users were randomly assigned to either a treatment group, whereby an average of 3.2 
ads over the course of 3 weeks were replaced with accuracy prompts, or a control group, 
whereby those ad spots were filled with standard Facebook ad content.  

 
1 The only existing field evidence comes from a comparatively small-scale experiment in which Twitter users sent 
private accuracy prompt messages to their followers10, which does not reflect how such prompts would be used by 
platforms. 



 4 

 

Fig. 1. Facebook study experimental design. The Facebook study consists of two audiences 
where an oversampled cluster targeted users who had recently shared misinformation. Users 
were randomly assigned to the control group or one of three treatment groups. The intervention’s 
impact was measured during the 60-minute window after the first accuracy prompt ad was 
delivered (or would have been delivered if the user was in the control group).  

Users in the treatment group were further randomized to be prompted to think about accuracy in 
three different ways: 1) static images providing “tips for thinking critically before sharing,” 2) a 
9-second video stating that some stories use emotional language and encouraging users to “check 
for accuracy,” or 3) an ad randomly selected from either the critical thinking tips image, a “poll 
ad” asking users how important accuracy is when sharing, or a message that said that 88% of 
Americans believe it is important that the news they read online is accurate. Prior survey 
experiments have demonstrated that these different interventions are all similarly effective at 
shifting attention to accuracy7.  

We then compare the sharing of posts containing likely misinformation by users in the control 
versus the treatment. We classify a post as containing likely misinformation if it was flagged by 
third-party fact-checkers, a representative group of Facebook users23, or Facebook’s classifier 
that is trained to detect posts that are likely to be misinformation based on various signals24. 
Although this approach provides only an estimate of whether a given post contains 
misinformation, by using post-level evaluations, we achieve much greater precision than the 
domain-level evaluations typically used in prior work10,25‑27. Furthermore, our approach achieves 
substantially greater coverage by being able to evaluate all posts rather than only posts 
containing links to news sites. Hereafter, we may refer to content flagged via these channels as 
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“misinformation” for convenience; for full details of the experimental design, see the Methods 
section.  

Using this measure, we find that 5.7% of the non-targeted audience in our experiment shared at 
least one likely misinformation post in the week prior to the experiment, as did 74.6% of the 
users targeted because of past misinformation sharing. Overall, then, 6.4% of users in our 
experiment shared content estimated to be likely misinformation in the week prior to the 
experiment. Of course, the intervention could only possibly reduce misinformation sharing 
among users who had the opportunity and would have been inclined to share misinformation in 
the first place—and, as this analysis shows, despite our targeting a comparatively small fraction 
of users in our experiment share content estimated to be likely misinformation at baseline (in line 
with estimates from past work examining smaller samples of users with coarser measurements of 
information quality28,29).   

Furthermore, the majority of users who did shared any likely misinformation shared only a single 
misinformation post (i.e., 60.6% when examining baseline data from the week prior to the 
study). Thus, our main specifications use a linear probability model to predict whether or not a 
given user shared any misinformation posts during the 60-minute post-treatment period, using a 
treatment dummy (see SI section S1.4 for models predicting the number of misinformation posts, 
which produces qualitatively equivalent results). For readability, we express all linear regression 
coefficients in units of basis points. For all null results, the larger magnitude endpoint of the 
reported 95% confidence interval corresponds to a 97.5% equivalence bound from a two one-
sided test procedure—that is, for a null result with 95% CI of [a, b], the 97.5% equivalence 
bound is [-c, c] with c = max(|a|, |b|). 

What, then, was the causal effect of receiving an accuracy prompt on the Facebook users’ 
subsequent misinformation sharing? We begin by assessing the intervention’s impact during the 
Facebook session in which the accuracy prompt was delivered by examining misinformation 
sharing in the hour after receiving the first accuracy prompt ad versus control ad. Across all 
users, we find that the treatment significantly reduced the number of users who shared 
misinformation posts (1.8% reduction relative to control; b = -0.38, 95% CI [-0.69, -0.07], p = 
.018; see Fig. 1A). A s expected, a significant interaction between treatment and pre-experiment 
sharing (b = -5.68, 95% CI [-9.60, -1.77], p = .004) shows that the treatment had a significantly 
larger effect among users who shared at least one misinformation post in the week before the 
experiment (2.6% reduction relative to control; b = -5.70, 95% CI [-9.62, -1.78], p = .004), 
compared to the users who did not (b = -0.02, 95% CI [-0.22, 0.18], p = .819). Thus, we focus 
our subsequent analyses on the 6.4% of users in the study who had shared misinformation in the 
week prior to the experiment (for parallel analyses including all users, see SI section S1.4).  

Similarly, many users were likely not exposed to any misinformation during the hour after the 
prompt ad, such that the treatment could not have reduced misinformation reposting among these 
users—which in turn deflates our estimate of treatment’s effect. While we do not have event-
level misinformation exposure data for our experiment, a survey in which 42% of Facebook 
users claimed that they saw false content every time or almost every time they logged onto the 
platform30 can serve as an illustrative upper bound. Such self-report measures are well known to 
dramatically overestimate exposure31,32, and thus it is unlikely that 42% of users were actually 
exposed to misinformation—especially during the one hour period on which we focus our 
analyses. This illustrative upper bound would imply that the treatment reduced the fraction of 
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misinformation sharers by substantially more than 4.3% among all users who were exposed to 
misinformation during the experiment, and substantially more than 6.2% among users who 
shared misinformation in the pre-treatment period and were exposed to misinformation during 
the experiment. For example, if 20% of users were exposed, that would imply 9% and 13% 
reductions in misinformation sharing among exposed users (all users and those who shared 
misinformation pre-treatment, respectively), and if 10% of users were exposed, that would imply 
reductions of 18% and 26%. 

Turning to potential moderators, we find no significant differences in effect size across the three 
different kinds of accuracy prompt ad treatments (digital literacy tip image = 1.0% decrease, 9s 
video = 3.4% decrease, random selection = 3.4% decrease; Wald test for joint significance, p = 
.234). This finding is consistent with the results of a survey experiment that compared numerous 
different accuracy prompts and suggests that the prompts are all working through a similar 
mechanism of shifting attention to accuracy7,12. More direct evidence for this mechanism comes 
from a post-experimental survey (administered using Meta's "brand lift" machinery), which 
suggested that treatment users reported thinking more about the accuracy of the posts they read 
on Facebook compared to control users (see SI section S1.5).  

Fig. 2. A single accuracy prompt ad reduced misinformation sharing within the browsing 
session on Facebook. (A) Estimates (in units of basis points) from linear probability models 
predicting whether or not a given user shared any misinformation posts during the 60-minute 
post-treatment period. (B) Estimates (in units of percent change) from quasi-Poisson models 
predicting the number of misinformation posts shared during the 60-minute post-treatment 
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period, specifically for only users who shared misinformation at least one misinformation post in 
the week prior to the experiment. (C) Estimates (in units of basis points) from linear probability 
models predicting whether or not a given user shared any misinformation posts over the full 3 
weeks of the experiment. 95% confidence intervals are shown.  

 

Finally, we find no significant interactions between treatment and user age (>65 dummy; b = -
8.0, 95% CI [-22.0, 5.7], p = .264), gender (female dummy; b = 2.00, 95% CI [-5.80, 9.80], p = 
.688), or education (college degree dummy; b = -2.00, 95% CI [-9.80, 5.80], p = .660). 
Importantly, we also found no significant effect of the treatment on the number of non-
misinformation posts shared across 60 minutes (quasi-Poisson regression, b = -0.0059, 95% CI [-
.0145, .0027], p = .180; compared to a significant effect on the number of misinformation posts 
shared, b = -0.0296, 95% CI [-.0484, -.0108], p = .002, which is significantly more negative than 
the effect on non-misinformation posts, p = .023; Fig. 2B). Thus, the treatment effect is likely 
specific to misinformation, rather than reducing sharing more generally33. This result is 
important from both a theoretical perspective, as the intervention was predicted to impact 
misinformation specifically, as well as a practical perspective, as platforms could be reluctant to 
implement anti-misinformation policies that reduce engagement with non-misinformation 
content.  

We now turn to misinformation sharing over the full 3 weeks of the experiment. Given that 
digital ads in general have modest effect sizes20‑22 and sharing over 3 weeks is a high-variance 
behavior, and that accuracy prompts in particular rely on attention, which is easily 
redirected2,34,35, we unsurprisingly did not find any significant treatment effect on the probability 
of being a misinformation sharer between the treatment and control when including all posts 
shared over the 3 experimental weeks (all users: b = -1.20, 95% CI [-3.60, 1.20], p = .313; users 
who shared misinformation pre-treatment: b = -2.00, 95% CI [-5.90, 1.90], p = .212; Fig. 2C).  

Together, these results indicate that accuracy prompts can reduce misinformation sharing 
following exposure to the ad but that just a single or few prompts per week is not enough to 
produce a detectable overall effect. These observations suggest that more consistent redirection 
of attention to accuracy is required for a sustained reduction in misinformation sharing. 

Accuracy prompts on Twitter 
This proposition is evaluated in our second study, conducted by an academic research team, 
which involved conducting an ad campaign on Twitter that repeatedly showed users accuracy 
prompt ads. Our second experiment also allows us to evaluate the replicability and 
generalizability of the key insights from the first experiment by testing a very similar 
intervention on a different social media platform and using different implementation and 
operationalization details.  

In our second study (Fig. 3), users were assigned to treatment or control via block randomization, 
and users in the treatment were used as the custom audience for an ad campaign that showed 
them an average of 2.91 accuracy prompt ads per day for at least 8 days. To avoid users 
beginning to ignore the prompts over repeated exposures, the ad campaign used a diverse set of 
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50 different accuracy prompt video creatives, all of which looked different but mentioned 
accuracy in some way (see SI section S2.1.4).  

Using the exact same ad campaign setup and creatives, we conducted four separate experiments 
on different populations of Twitter users (Table 2). Three experiments targeted highly active 
Twitter users who had recently shared links to low-quality news sites or potentially problematic 
or questionable content prior to the study. Two of these three populations were largely U.S. users, 
selected based on having shared links to low-quality domains or tweets about deep-state 
conspiracies; the third population consisted of largely Canadian users, selected based on sharing 
hashtags linked to an anti-vaccination protest in Ottawa. A fourth experiment targeted users who 
had not recently shared links to low-quality new sites but who had done so further in the past. 

Fig. 
3. Twitter study experimental design. The Twitter study targeted highly active users who recently 
shared low-quality content. The amount of low-quality content shared by users was measured 
before and during the ad campaign. Results from three separate experiments were combined 
using fixed-effects meta-analysis.  

We then compared the amount of misinformation shared (i.e., retweeted without comment) 
among users in the treatment versus the control. To classify retweets as misinformation, we use 
the standard approach in the academic literature of using domain-level quality ratings27; our main 
analyses classify all retweets containing links to sites with quality scores at or below 0.70 on a 0-
1 scale as “low quality” (in SI sections S2.2.2 and S2.2.5, we show that our results are robust to 
using alternative quality thresholds and also show results from an alternative more graded 
approach to scoring domain quality). While domain-level quality ratings are necessarily coarse, it 
is the only tractable approach given the large number of tweets. An exception, however, arises in 
the experiment targeting users who shared hashtags linked to an anti-vaccination protest, which 
does offer a tractable approach: counting the number of relevant hashtags shared by users. Thus, 
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for greater precision, our main pre-registered analyses for this experiment use hashtag counts 
instead of low-quality domain counts for that specific experiment (although results are similar 
when using low-quality domain counts for all experiments; see SI section S2.2.3). 

We use quasi-Poisson regression to predict the number of low-quality posts (or hashtags) shared 
by each user on each day of the experiment, with condition as the independent variable and 
including block and date fixed effects and controlling for the users’ level of pre-experiment 
misinformation sharing, as well as clustering standard errors on randomization block.  

We begin by examining the three experiments that targeted highly active misinformation sharers 
because (as discussed and demonstrated above) we would only expect to find treatment effects 
on users who would have shared misinformation in the absence of the treatment. Our main 
analyses calculate overall effect sizes using fixed-effects meta-analysis across experiments. As 
expected (Fig. 4A), users in the treatment shared less low-quality content than users in the 
control (3.7% reduction relative to control; b = -0.038, 95% CI [-0.062, -0.013], p = .002).  

Fig. 4. The accuracy prompt ad campaign reduced sharing of low-quality content among 
active misinformation sharers on Twitter. The overall effect is the intent to treat (ITT) effect and 
the effect among users who saw at least 1 ad is the average treatment effect on the treated (ATT). 
(A) Estimates (black circles) are obtained by performing fixed-effects meta-analyses of three 
experiments recruiting active misinformation sharers. The experiment-level estimates (blue 
hollow circles) are coefficients (in units of percent change) from quasi-Poisson models predicting 
the number of low-quality (top) or non-low-quality (bottom) posts shared in each experiment. (B) 
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Estimates from quasi-Poisson models predicting the number of low-quality content posts shared 
in the experiment recruiting inactive misinformation sharers. 95% confidence intervals are 
shown.  

 

Importantly, due to the nature of Twitter ad delivery, only 60% of the treatment users were shown 
any accuracy prompt ads at all (due to privacy features of the Twitter ads interface, we do not 
know which specific treated users did not see any ads, only the overall percentage). Thus, in 
addition to evaluating the overall intent to treat (ITT) effect reported above, we also estimate the 
causal effect of the treatment among those who actually received it using an instrumental 
variables approach in which we use the initial assignment to treatment as an instrument for actual 
treatment receipt. Using this approach, we estimate an average treatment effect on the treated 
(ATT; i.e., the effect of the treatment among users who would actually receive the treatment), 
which quantifies the true effect of being treated—which yields an estimate of b = -0.065, 95% CI 
[-0.107, -0.023], p = .002 (i.e., 6.3% reduction in misinformation sharing in treatment relative to 
control; Fig. 4A). 

We next turn to examining moderators of the treatment effect. There was no strong evidence that 
the treatment effect varied based on users’ pre-treatment level of misinformation sharing 
(interaction between treatment dummy and sqrt[number of misinformation posts in week pre-
treatment]: b = 0.012, 95% CI [-0.003, 0.028], p = .111). This finding is perhaps unsurprising, 
given that—unlike the Facebook experiment—we only included users in the campaign if they 
had recently shared misinformation pre-treatment. Similarly, there was no significant difference 
in the size of the treatment between users classified as Democrats versus Republicans 
(interaction between treatment dummy and partisanship: b = -0.020, 95% CI [-0.072, 0.031], p = 
.439) based on the politicians and organizations they followed36; between users who followed 
any politicians/organizations versus none (interaction between treatment dummy and political 
follower dummy: b = -0.006, 95% CI [-0.053, 0.041], p = .814); or based on the users’ number of 
followers (interaction between treatment dummy and log[followers+1]: b = -0.008, 95% CI [-
0.019, 0.004], p = .200). 

We also found no evidence that the treatment decayed over the course of the study (i.e., no 
significant interaction between treatment and campaign day: b = 0.00003, 95% CI [-0.002, 
0.002], p = .982). And, as in the Facebook experiment, we find a non-significant effect of the 
treatment on users’ overall sharing of non-misinformation posts (b = -0.004, 95% CI [-0.025, 
0.018], p = .746; Fig. 4B), and this effect is significantly more positive than the effect on 
misinformation sharing (b = 0.034, 95% CI [0.002, 0.067], p = .040; although we note that there 
is no significant effect on the fraction of tweets that are low quality, see SI section 2.2.6 for 
details). Thus, the treatment effect is likely specific to misinformation rather than reducing 
sharing more generally. 

Finally, we consider the fourth experiment that involved low-activity users who had not recently 
shared misinformation. In line with the results for users who had not recently shared 
misinformation in the Facebook experiment, this fourth Twitter experiment found no significant 
treatment effect (ITT b = 0.016, 95% CI [-0.006, 0.038], p = .154; ATT b = 0.026, 95% CI [-
0.010, 0.063], p = .158), and the treatment effect size in this study was meaningfully different 
from the other three experiments that targeted recent misinformation sharers (Q[1] = 10.27, p = 
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.001; for several additional metrics providing clear evidence of treatment heterogeneity across 
experiments, see SI section S2.2.4; unsurprisingly, when pooling across all four Twitter 
experiments despite this heterogeneity, the overall effect is reduced: ITT b = -0.008, 95% CI [-
0.025, 0.008], p = .317; ATT b = -0.013, 95% CI [-0.040, 0.014], p = .353). These results 
reinforce the importance of targeting the intervention at users who recently shared 
misinformation. 

 

Discussion 
Here we have shown in two large-scale field studies that accuracy prompts can successfully 
reduce misinformation sharing on social media platforms. This approach is particularly 
promising because it does not require any information about the specific posts being targeted—
that is, it is content-neutral. Thus, accuracy prompts can help complement more traditional 
content-specific approaches (e.g., fact-checking and algorithmic identification of problematic 
content), reducing the spread of misinformation that has not yet been identified or shared in 
contexts where identification is impossible (e.g., encrypted messaging apps).  
 
To our knowledge, these studies represent the first evidence of content-neutral interventions 
applied at scale to reduce misinformation sharing and the first investigation of interventions 
across multiple major social media platforms. The quantitative similarity of results across our 
studies conducted on Facebook and Twitter, despite the many differences in study 
implementation, lends extra credence to the conclusions. 
 
The magnitudes of the effects we document here—reductions in misinformation sharing among 
recent misinformation sharers of 2.6% to 6.3%—are in line with expectations based on prior 
work. Broadly, other digital ad experiments in commercial, political, and public health 
messaging contexts have found effects of similar magnitudes20‑22. Specific to accuracy prompts, 
survey experiments typically find 9-10% reductions in sharing intentions for false claims12,16, 
and there are numerous reasons to expect the observed effect in the ad field experiments to be 
smaller than the survey experiments. For example, in the survey experiments, all participants 
receive the treatment, the outcome is measured with perfect precision (as the experimenters 
choose which fact-checked false claims to expose users to), respondents may not predict their 
own behavior accurately, and there is no treatment interference between participants. Conversely, 
in the field experiments, many users assigned to treatment do not actually receive the treatment 
(e.g., because they scroll past the ad without looking at it), classifiers or domain-level quality 
ratings must be relied upon as rough estimates of information quality (which add substantial 
measurement noise and thus depress observed effect sizes), and there is the potential for 
interference across conditions (e.g., if a treatment user does not share a given post, users in the 
control may be less likely to see—and thus share—it). Given these and related factors, the 
observed field effects compare favorably to expectations based on the survey experiments.  
 
There are reasons to believe that, although small, effects of this magnitude can be practically 
relevant. For example, because of network effects, small changes at the level of the individual 
may lead to substantially larger impacts at the level of the system because reduced sharing 
reduces exposure—and thus sharing—by one’s followers, which in turn reduces exposure and 
sharing of their followers, and so on10. Relatedly, because of ranking algorithms, reductions in 
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sharing, even among users with few followers, can reduce the reach of a given post by reducing 
engagement signals passed to the algorithm. Furthermore, given the “existence proof” evidence 
we provide for campaigns of this nature, future work can explore other delivery methods that are 
likely to generate larger effect sizes (such as interstitials/pop-ups that are more difficult to ignore, 
or banners across the top of the screen which are less fleeting).  
 
A key conclusion from these studies is that for accuracy prompts to be effective, frequent 
prompting is required (as the effect of each individual prompt probably does not persist much 
beyond the browsing session in which it is delivered—future work should quantify exactly how 
long such effects last). An important feature of the design of our Twitter study was that we used a 
wide variety of different prompts to avoid habituation to the intervention (and accordingly, we 
did not find evidence that the treatment effect decayed over repeated deliveries). Such variation 
seems critical for long-term intervention success.  
 
Another important finding across both studies is that the interventions were most effective when 
targeted at users who were likely to share misinformation in the absence of treatment. Treating 
users who would not have shared misinformation anyway is not cost-effective and even has the 
potential for perverse effects. This targeting of “at risk” users could be done at the level of the 
user (e.g., by identifying users who recently shared misinformation, although this would not 
work in the context of encrypted messaging apps), but also could be done by deploying the 
intervention at moments (e.g., natural disasters, elections, protests) when spikes in 
misinformation sharing are anticipated. Critically, though, the importance of targeting active 
misinformation sharers is not specific to accuracy prompts but applies to any interventions 
seeking to reduce the sharing of misinformation. That said, targeting may be viewed as 
discriminatory, which may pose challenges in many contexts - although one advantage of 
accuracy prompts is that they do not in any way restrict the actions of the targeted users but 
rather simply help them make choices that are informed by their own preferences. Additionally, 
even with a targeted application of the intervention, it would still be important to deploy cost-
effectively to facilitate adoption by platforms (e.g., ads may not be the optimal medium for 
delivery) and ensure that the treatment did not lead to a reduction in non-misinformation sharing.   
 
Finally, beyond insights into deploying accuracy prompts interventions at scale, our paper also 
makes important contributions to the understanding of online misinformation sharing more 
broadly. The data from our Facebook experiment offer the largest scale assessment to date of the 
prevalence of misinformation sharing on social media, examining numerous orders of magnitude 
more users than most prior work28,29 and utilizing a misinformation measure that considers all 
posts rather than being limited to domains, URL content or political content as in past work28,29,37 
(see SI Section 1.2). Furthermore, our observational analysis of misinformation sharing before 
versus after identification by 3rd party fact-checkers (see SI Section 1.3) is one of the first to 
provide evidence regarding the actual on-platform impact of existing enforcement policies. 
 
In sum, the data presented here suggest that accuracy prompts—when deployed appropriately—
provide a promising content-neutral approach that may complement or even augment38 existing 
content-specific interventions in reducing the spread of misinformation online.  
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Methods 
 

Facebook experiment 
 
Campaign delivery and data collection. The Meta research team conducted the Facebook ad 
campaign targeting users in the United States from January 19 to February 10, 2023. The 
campaign audience consisted of a group of almost 33 million U.S. Facebook users selected 
without specific targeting criteria (representing a broad Facebook user population in the U.S., but 
not necessarily representative of U.S. Facebook users as a whole because the treatment could be 
crowded out or outbid by other content using the ads delivery infrastructure that is targeted to 
specific subgroups), as well as roughly 350,000 U.S. Facebook users who had recently shared 
misinformation (i.e., users who, as of 2 months prior to the campaign, had shared at least one 
post labeled as misinformation by fact-checkers in the 30 preceding days and at least 3 posts 
labeled as misinformation by fact-checkers in the 90 preceding days). See Table 1. 
 
Users were assigned to the control or treatment group, and users in the treatment group were 
further randomized to receive one of three treatments that prompted accuracy in three different 
ways (SI section S1.1; Fig. S1): 1) Digital Literacy group: static images providing “tips for 
thinking critically before sharing,” 2) Video group: a nine-second video stating that some stories 
use emotional language and encouraging users to “check for accuracy,” or 3) Random Selection 
group: an ad randomly selected from the digital literacy tips images, a “poll ad” asking users 
how important accuracy is when sharing, or a message that said that 88% of Americans believe it 
is important that the news they read online is accurate (this statistic was obtained from a separate 
internal off-platform survey of U.S. adults conducted in August 2021); unfortunately, which 
specific ad was shown at which time for the Random Selection treatment was not logged. Prior 
survey experiments have demonstrated that these types of interventions are all similarly effective 
at shifting attention to accuracy7.  
 
Users in the treatment were shown accuracy prompt ads 3.2 times on average during the three-
week campaign. Users in the control group were also assigned accuracy prompt ad spots but 
were shown standard Facebook ads rather than accuracy prompts.    
 
Analysis. We compare the sharing of posts containing misinformation by users in the control 
versus treatment groups using linear regression. We evaluate all posts by users and classify a post 
as containing misinformation if it was flagged by third-party fact-checkers, a representative 
group of Facebook users (via Meta’s Community Review team), or the predictions of an internal 
Facebook misinformation classification algorithm.  
 
The main analysis focused on the 60-minute window immediately after an accuracy prompt 
treatment was delivered. Because the majority of users who shared any misinformation had 
shared only one misinformation post (i.e., 60.6% when examining baseline data from the week 
prior to the study), our main analyses used linear probability models to predict whether or not a 
given user shared any misinformation during this 60-minute window. For readability, we indicate 
all coefficients in units of basis points (i.e. multiply all coefficients by 105). 
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Table 1. Number of Facebook users by treatment group. 
 Digital Literacy Video Random Selection 

Group Control Treatment Control Treatment Control Treatment 
Non-Targeted 
Audience  5,313,712 5,305,307 5,266,611 5,256,049 5,781,630 5,768,251 
Targeted cluster 58,394 59,156 58,764 58,289 59,279 58,729 
 
 

Twitter study 
 
Campaign delivery and data collection. The academic research team conducted the Twitter 
study, which consists of four different experiments conducted between October 2021 and April 
2022 (Table 2). Each experiment included unique, non-overlapping Twitter users, and all data 
were collected using the official Twitter API. Experiments R1, R2, and R3 targeted active users 
who recently shared low-quality content; experiment NR targeted users who had not recently 
shared low-quality content, but had done so at some time in the past. The measures and analyses 
for Experiments R2, R3, and NR were pre-registered before data analysis. See Section S2.1.5 for 
pre-registration details.  
 
Table 2. Twitter campaign descriptives by experiment and treatment group. 
Experiment Country Group Sample Size Users Reached Daily Impressions/User 

R1 (8 days) U.S. Control 16,473 - - 
 

U.S. Treatment 16,415 8,424 (51.3%) 3.46 
R2 (22 days) Canada Control 11,948 - - 
 

Canada Treatment 11,885 7,641 (64.3%) 2.18 
R3 (9 days) U.S. Control 9,525 - - 
 

U.S. Treatment 9,517 5,952 (62.5%) 3.08 
NR (12 days) U.S. Control 40,619 - - 
 

U.S. Treatment 40,671 25,135 (61.8%) 3.18 
 
 
Experiment R1 was an 8-day Twitter campaign conducted between October 17 and 24, 2021. An 
11-day baseline window, September 23 to October 3, 2021, was used to compute a pre-campaign 
covariate. 32,888 Twitter users were included in this experiment because they shared at least one 
of 533 lower-quality domains between September 23 and 30. We used block randomization39 (R 
library quickblock [v0.2.0]) to assign users to either the control or treatment group (covariates 
used for randomization included 15 features such as users’ number of friends, account age, 
number of tweets with lower-quality domains; see SI section S2.1.1 for full list of features). Of 
the 16,415 users assigned to the treatment group, 8,424 (51.32% “reach”) saw one of our ads at 
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least once. The ads received 233,451 impressions in total or 29,181 per day, and on average, each 
user saw 3.46 ads per day.  
 
Experiment R2 was a 22-day Twitter campaign conducted between February 22 and March 15, 
2022, during the Canadian convoy protest. A 9-day baseline window, February 13 to 21, 2022, 
was used to compute a pre-campaign covariate. 23,833 Twitter users were included because 
during February 11 to 16, they posted content that included at least one of 34 hashtags (e.g., 
#canadatruckers, #freedomconvoy, #trudeauresign; see SI section S2.1.2 for all the hashtags used 
to identify eligible users). We used blocked randomization to assign users to either the control or 
treatment group (covariates for randomization included 10 features such as number of relevant 
hashtags shared, users’ number of friends, account age; see SI section S2.1.1 for full list of 
features). Of the 11,885 users assigned to the treatment group, the campaign reached 7,641 users 
(64.29%). The ads received 366,918 impressions in total or 16,678 per day, and each user saw 
2.18 ads per day.  
 
Experiment R3 was a 9-day Twitter campaign conducted between April 19 and 27, 2022. A 13-
day baseline window, April 6 to 18, 2022, was used to compute a pre-campaign covariate. We 
identified 19,042 Twitter users who shared at least one tweet containing the phrases “deepstate” 
or “deep state” between April 1 and 14, and used blocked randomization to assign them to the 
control or treatment group (covariates for randomization included 9 features such as users’ 
number of friends, account age; see SI section S2.1.1 for full list of features). Of the 9,517 users 
assigned to the treatment group, the campaign reached 5,952 users (62.54%). The ads received 
165,018 impressions in total or 18,335 per day, and each user saw 3.08 ads per day.  
 
Experiment NR was a 12-day Twitter campaign conducted between October 22 and November 3, 
2021. A 21-day baseline window, October 1 to 21, was used to compute a pre-campaign 
covariate. Because this experiment used the same user identification strategy as experiment R1 
(which also overlapped with this experiment from October 22 to 24), we (i) excluded users 
targeted in Experiment R1 (which means excluding all users who had shared at least one of the 
lower-quality domain links 3 weeks prior to the experiment) and (ii) expanded the query window 
to ensure we could identify enough users: Any user who shared at least one low-quality domain 
since August 1 was eligible. This combination of excluding relatively recent misinformation 
sharers and including users who had shared misinformation up to 2.5 months earlier means that 
the users in this sample were not recent misinformation sharers and were much less active (see SI 
section S2.1.3). In total, 81,290 Twitter users were included in this experiment, and we used 
blocked randomization (same covariates as experiment R1) to assign users to the control or 
treatment group. Of the 40,671 users assigned to the treatment group, the campaign reached 
25,135 users (61.80%). The ads received 958,883 impressions in total (79,907/day), and each 
user saw 3.18 ads per day.  
 
Analysis. The main dependent variable for the three experiments with predominantly U.S. users 
is the number of “low quality” domains shared by users in their “retweets.” We focus our 
analyses on 11,520 domains evaluated using a “wisdom of experts” approach in previous work27. 
As with previous work27, we excluded popular non-news domains (e.g., google.com, 
youtube.com, facebook.com). The quality of domains ranges from 0 (lowest quality: 
naturalnews.com) to 1 (highest quality: reuters.com). For the main analyses, we classify a 
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retweet as a low-quality domain if it is at or below 0.70; in the SI section S2.2.2, we report 
analyses with domain quality thresholds ranging from 0.40 to 0.80 (in steps of 0.05) and show 
that our results are relatively robust to using different quality thresholds. The main dependent 
variable for the experiment with predominantly Canadian users is the total number of hashtags 
shared by users in their “retweets,” because the users were selected based on sharing one of 34 
hashtags (prior to the experiment) associated with an anti-vaccination protest in Canada, Ottawa. 
As pre-registered, after the experiment ended, we searched for the most popular and relevant 
hashtags shared during the protest using Twitter’s API (rather than by looking at our data) and 
focused on these hashtags in our main analyses. In the SI section S2.2.3, we report analyses 
using two other dependent variables for this experiment: the number of retweets containing one 
of these hashtags and the domain-based approach described above.  
 
For each experiment, we fit fixed-effects quasi-Poisson regression models to estimate the 
treatment effect. All models include two fixed effects: randomization blocks and campaign dates 
because in each experiment, blocked random assignment was used to assign users to the control 
and treatment groups (coded -0.5 and 0.5, respectively), and the dependent variables (“time1”) 
were measured daily. Standard errors are clustered on randomization blocks. To increase 
precision, we include the corresponding pre-campaign “time0” variable in each model as a 
covariate. This “time0” covariate is sqrt-root transformed (to address right skew) and mean-
centered prior to model fitting. We fit the models using the R (v4.3.1) library fixest (v0.11.1), 
using the following model specification: feglm(time1 ~ condition * time0 | block + date, 
cluster=~block, family="quasipoisson"). Both the “time1” and “time0” variables were separately 
winsorized by replacing values above the 95th percentile of all values with the 95th percentile of 
all values. We report the results of winsorizing values at the 99th percentile and no winsorizing 
in the SI section S2.2.7.  
 
We conducted additional analyses using the same model specification—but the “time1” and 
“time0” variables are the number of non-low-quality retweets users shared—to investigate 
whether the treatment effect was specific to low-quality content rather than reducing sharing 
more generally.  
 
We examined whether the treatment effect on the number of low-quality domains shared was 
moderated by other important covariates, including political affiliation (Republican or not) and 
whether users followed politicians or organizations or not, using the following fixed-effects 
quasi-Poisson: feglm(time1 ~ condition * (time0 + covariate) | block + date, cluster=~block, 
family="quasipoisson").  
 
We assess the effect of the intervention by estimating the “intent-to-treat effect” (ITT) and the 
“average treatment effect on the treated” (ATT). The ITT effect is the average causal effect of 
treatment assignment; it represents the overall effect of the intervention, regardless of whether a 
user in the treatment group had actually seen the ads. The ATT effect is the effect of the treatment 
on the treated, and the estimand is the average effect among “compliers,” the subset of users who 
would be treated if assigned to the treatment group. To estimate the ATT effects, separately for 
each experiment, we divide the ITT estimates by the proportion of users that saw the ads (0.513, 
0.643, and 0.625 for the three experiments). The standard errors for the ATT effects were 
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computed via bootstrapping: For each model, we create 5,000 bootstrap samples by sampling 
with replacement at the level of the randomization block.  
 
To estimate the average effect across the experiments, we aggregate the model coefficients from 
the different experiments by performing fixed-effects meta-analyses, also known as “common 
effects,” because it assumes a single true effect exists that is common to all the observed studies.  
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S1 Facebook Study 
 
S1.1 Ad Creatives 
 

 
 

Figure S1. Facebook ad creatives shown to users in the treatment group. (A) Users in the 
Digital Literacy group saw static images that provided tips for thinking critically before sharing 
content. (B) Users in the Video group were shown a short nine-second video stressing that some 
stories may use strong, emotional language to evoke a strong reaction and encouraged users to 
check for accuracy. (C) Users in the Random Selection group were shown different messages 
that included the three digital literacy creatives, a “poll” ad asking them how important 
accuracy is when sharing a post or article, and a message that said “88% of Americans believe 
that it is important that the news they read online is accurate.” Internal Meta designers worked 
with an external agency to ensure these creatives followed best practices, and relied upon 
previous creatives that the Global Policy Programs team had launched in their informational 
campaigns to fight against COVID-19 misinformation. All ads included the Meta branding.  
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S1.2 Baseline Descriptives 
 
To provide a sense of the baseline for our key outcome of misinformation sharing, we provide a 
description of behavior in the week prior to the beginning of our experiment. Of the 33 million 
users in our experiment, 2.13 million shared at least one piece of likely misinformation (i.e., 
flagged by either 3rd party fact-checkers (3PFC), Community Review crowd raters, or the 
misinformation classifier) in the week before the experiment. Out of these, 1.866 million users 
(87.6%) were from the non-targeted audience and 263,000 users (12.4%) were from the users 
targeted because they had repeatedly shared links classified as misinformation prior to the study. The 
distribution of the number of pieces of likely misinformation shared among sharers is very right-
skewed (Figure S2). For example, 60.6% of the users who shared any likely misinformation in 
the pre-experiment week (1.29 million users) only shared 1 piece of likely misinformation. 
 

 
Figure S2. Distribution of the number of pieces of likely misinformation shared in the pre-
experiment week. The x-axis is clipped at the 99.9th percentile (i.e., users that shared more than 
36 pieces of misinformation). 
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S1.3 Baseline Standard of Care 
 
The effect of the content-free intervention we examine here must be understood in the context of 
existing content-specific interventions that are currently deployed on platform (and with which 
our intervention was thus implemented in tandem). To provide some insight into the baseline 
(content-specific) standard of care, we present an observational analysis of sharing before versus 
after a piece of content is identified as misinformation by 3PFCs (which leads to labeling and 
warning if the user attempts to reshare, and may be subject to demotion). To do so, we examine 
all posts reshared by users in the targeted cluster during our 3 week experiment that were 
identified as 3PFC misinformation. (Slightly less than 50% of all 3PFC misinformation reshared 
during the campaign period was identified as misinformation before, during, or shortly after the 
campaign, and it is these posts that we examine here.) For each sharing event, we calculate the 
distance (in days) between when the sharing event occurred and when the post was identified as 
3PFC misinformation (negative values indicate that the share occurred before the content was 
identified as 3PFC, positive values indicate that the share occurred after the content was 
identified as 3PFC). A histogram of the resulting values is shown in Figure S3. Although the 
observational nature of these data obviously do not allow strong causal inferences, the pattern is 
striking: Once Meta identifies content as 3PFC misinformation and applies the baseline standard 
of care, resharing is almost entirely eliminated.  

 
Figure S3. Histogram of number of days between Meta identifying a post as 3PFC 
misinformation and that post being reshared. Negative values indicate that the reshare occurred 
before the content was identified as 3PFC; positive values indicate that the reshare occurred 
after the content was identified as 3PFC. Y-axis is scaled such that the largest bin is 1.  
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S1.4 Results 
 
Here we present regression tables for the analyses described in the main text, along with 
alternative specifications that use quasi-Poisson models to predict the number of misinformation 
posts shared (rather than OLS models predicting whether users shared at least 1 misinformation 
post) and which consider all users versus just users who shared at least one misinformation post 
in the pre-experiment week. 
 
Table S1. Models predicting misinformation sharing across all users in the 60 minutes after 
prompt delivery and across the full 3 weeks of the campaign. 
 1 2 3 4 

Outcome >0 Misinfo 
Post 

# Misinfo Post >0 Misinfo Post # Misinfo Post 

Model OLS Quasi-Poisson OLS Quasi-Poisson 

Users All All All All 

Time range 60m 60m Full Campaign Full Campaign 

Treatment b -0.000038 -0.0200 -0.00012 -0.0015 

se 0.000016 0.0086 0.00012 0.0021 

p p = 0.018 p = 0.020 p = 0.313 p = 0.477 

Intercept 0.002125  -6.0261 0.1344  -0.7123 

Sample Size 33043471 33043471 33043471 33043471 
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Table S2. Models examining moderation of the treatment effect based on having shared 
misinformation in the pre-experiment week, for the 60 minutes after treatment and the full 
campaign.  
 1 2 3 4 

Outcome >0 Misinfo Post # Misinfo Post >0 Misinfo 
Post 

# Misinfo 
Post 

Model OLS Quasi-Poisson OLS Quasi-
Poisson 

Users All All All All 

Time range 60m 60m Full Campaign Full 
Campaign 

Treatment b -0.00057 -0.0296 -0.0002 -0.002 

se 0.0002 0.0096 0.0002 0.0015 

p p = 0.004 p = 0.002 p = 0.212 p = 0.169 

(0 pre-exp shares) b -0.02113 -3.475 -0.6315 -3.2836 

se 0.00014 0.012 0.0001 0.0017 

p p = 0.000 p = 0.000 p = 0.000 p = 0.000 

Treatment X (0 pre-exp 
shares) b 

0.00057 0.0292 0.0001 0.0001 

se 0.0002 0.0171 0.0002 0.0024 

p p = 0.004 p = 0.087 p = 0.604 p = 0.969 

Intercept 0.0219  -3.6547 0.7253  1.5956 

Sample Size 33043471 33043471 33043471 33043471 
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Table S3. Models examining each of the three treatment arms separately.  
 1 2 3 4 

Outcome >0 Misinfo Post # Misinfo Post >0 Misinfo Post # Misinfo Post 

Model OLS Quasi-Poisson OLS Quasi-Poisson 

Users >0 misinfo pre-exp shares  All 

Time range 60m 60m 60m 60m 

Tips b -0.00022 -0.0137 -0.000028 -0.0151 

se 0.00029 0.0151 0.000023 0.0122 

p 0.431 0.366 0.216 0.218 

Video b -0.00074 -0.0321 -0.00003 -0.0113 

se 0.00028 0.0153 0.000023 0.0123 

p 0.009 0.036 0.186 0.355 

Combo b -0.00074 -0.0423 -0.000054 -0.0324 

se 0.00027 0.0148 0.000022 0.0119 

p 0.007 0.004 0.015 0.007 

Sample Size 2128311 2128311 33043471 33043471 
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Table S4. Models examining moderation of the treatment effect by individual differences.  
 1 2 3 4 

Outcome >0 Misinfo Post # Misinfo Post >0 Misinfo Post # Misinfo Post 

Model OLS Quasi-Poisson OLS Quasi-Poisson 

Users >0 misinfo shares pre-exp All 

Time range 60m 60m 60m 60m 

Treatment b -0.0004 -0.0147 -0.000031 -0.0136 

se 0.0004 0.0179 0.000026 0.0141 

p 0.235 0.413 0.232 0.335 

female b -0.0062 -0.3228 0.0000004 -0.0457 

se 0.0003 0.0149 0.000023 0.012 

p 0.000 0.000 0.988 0.0001 

female X Treatment b 0.0002 -0.0093 0.000011 0.0022 

se 0.0004 0.0212 0.000032 0.0171 

p 0.688 0.662 0.741 0.898 

Over65 b 0.0175 0.7442 0.00365 1.1925 

se 0.0005 0.0166 0.000066 0.0144 

p 0.000 0.000 0.000 0.000 

Over65 X Treatment b -0.0008 -0.0157 -0.00013 -0.0177 

se 0.0007 0.0237 0.00009 0.0205 

p 0.264 0.507 0.166 0.388 

College b -0.00001 -0.0057 -0.00035 -0.1601 

se 0.00029 0.0153 0.00002 0.0124 

p 0.963 0.711 0.000 0.000 

College X Treatment b -0.0002 -0.0098 0.0000038 -0.0043 

se 0.0004 0.0219 0.0000324 0.0177 

p 0.66 0.654 0.908 0.809 

Intercept 0.0226  -3.6474 0.002  -6.1112 

Sample Size 2108334 2108334 32740024 32740024 
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Table S5. Models examining treatment effect on sharing of non-misinformation posts.  
 1 2 

Outcome # Total Non-Misinfo Posts # Total Non-Misinfo Posts 

Model Quasi-Poisson Quasi-Poisson 

Users All >0 misinfo shares pre-exp 

Time range 60m 60m 

Treatment b -0.0047 -0.0059 

se 0.0028 0.0044 

p 0.090 0.182 

Sample Size 33043471 2128311 
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Finally, to facilitate reproducibility, we provide descriptive tables that contain the information 
required to reproduce the main analyses (i.e. the OLS models in Tables S1, S2 and S5) in Table 
S6.   
 
Table S6. Descriptive statistics for reproducing the main analyses. 
Condition 
(0=control, 1=treatment)  

Audience 
(0=untargeted, 
1=targeted) 

Shared Misinfo  
in Pre-Exp Week 

Shared  
Anything 

Shared Any 
Misinfo 

User Count Time Period 

0 0 0 0 0 14819402 60m 
0 0 0 1 0 598230 60m 
0 0 0 1 1 10897 60m 
0 0 1 0 0 708492 60m 
0 0 1 1 0 211219 60m 
0 0 1 1 1 13713 60m 
0 1 0 0 0 33762 60m 
0 1 0 1 0 10007 60m 
0 1 0 1 1 934 60m 
0 1 1 0 0 73906 60m 
0 1 1 1 0 47846 60m 
0 1 1 1 1 9605 60m 
1 0 0 0 0 14787961 60m 
1 0 0 1 0 598630 60m 
1 0 0 1 1 10784 60m 
1 0 1 0 0 708279 60m 
1 0 1 1 0 210734 60m 
1 0 1 1 1 13219 60m 
1 1 0 0 0 33746 60m 
1 1 0 1 0 9819 60m 
1 1 0 1 1 988 60m 
1 1 1 0 0 74426 60m 
1 1 1 1 0 47407 60m 
1 1 1 1 1 9465 60m 
0 0 0  Not measured 0 14010040 Full campaign 
0 0 0  Not measured 1 1418489 Full campaign 
0 0 1  Not measured 0 286095 Full campaign 
0 0 1  Not measured 1 647329 Full campaign 
0 1 0  Not measured 0 12208 Full campaign 
0 1 0  Not measured 1 32495 Full campaign 
0 1 1  Not measured 0 6390 Full campaign 
0 1 1  Not measured 1 124967 Full campaign 
1 0 0  Not measured 0 13983850 Full campaign 
1 0 0  Not measured 1 1413525 Full campaign 
1 0 1  Not measured 0 285954 Full campaign 
1 0 1  Not measured 1 646278 Full campaign 
1 1 0  Not measured 0 12273 Full campaign 
1 1 0  Not measured 1 32280 Full campaign 
1 1 1  Not measured 0 6452 Full campaign 
1 1 1  Not measured 1 124846 Full campaign 
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S1.5 Brand Lift Study  
 
As part of the campaign, we also administered surveys to users in the control and treatment 
groups using the brand lift infrastructure. Each user was shown only a single question. The brand 
lift collects responses from both users who saw the accuracy prompt ads (i.e., treated users) as 
well as users who did not see the accuracy prompt ads (i.e., control users). 
 
We asked the following two questions while the campaign was active: 
 
Meta Cares About Users (CAU) question: 

● Please agree or disagree with the following statement: Meta (formerly Facebook, Inc.) 
cares about its users. 

○ Strongly agree 
○ Agree 
○ Neither agree nor disagree 
○ Disagree 
○ Strongly disagree 

 
Meta Misinfo Success question: 

● How successful is Meta (formerly Facebook, Inc.) at reducing false information? 
○ Extremely successful 
○ Quite successful 
○ Somewhat successful 
○ Not at all successful 
○ I’m not sure  

 
We also asked the following question once the campaign had ended: 
 

● In the last 14 days, did you think about the accuracy of the posts that you read on 
Facebook? 

○ Yes/No/I don’t remember 
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Table S7a. Number of Facebook users who responded to each question per treatment group. 
 Digital Literacy Video Combination 

 Untargeted Targeted Untargeted Targeted Untargeted Targeted 

 T C T C T C T C T C T C 

Meta CAU 1,936 2,001 2,013 1,874 1,918 1,999 1,857 2,006 1,936 1,986 1,846 2,012 
Meta Success 1,929 2,000 1,568 1,994 1,900 1,992 1,479 1,995 1,923 1,988 1,563 1,991 

14 days action 2,004 1,992 1,487 1,507 1,965 2,003 1,515 1,491 2,002 1,993 1,424 1,418 
 
Table S7a shows the number of users who answered each question (brand lift surveys on 
Facebook have a roughly 2% response rate). Table S7b below shows the point estimates from the 
“Advanced lift” results, which are calibrated with other lift tests and account for the 
representativeness of the users who responded to the survey invitation. Because of this 
calibration, it is unfortunately not possible to pool the brand lift results across treatment arms or 
samples. Nonetheless, we see a consistent pattern across treatment arms and samples whereby 
the treatments increasing the fraction of users who recalled thinking about accuracy while on 
Facebook; and do not see large or consistent effects on attitudes towards Meta. 
 
We also note that in terms of baseline levels in the control, 38 to 42 percent of the untargeted 
audience—and 44 to 48 percent of the targeted audience—responded Yes to the question about 
considering accuracy; 12 to 14 percent of the untargeted audience—and 5 to 6 percent of the 
targeted audience—responded “Agree” or “Strongly Agree” to the Meta CAU question; and 12 
to 13 percent of the untargeted audience—and 5 percent of the targeted audience—responded 
“Quite Successful” or “Extremely Successful” to the Meta Misinfo Success question.  
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Table S7b. Point estimates from the “Advanced lift” results.  

Brand Lift Results Meta CAU Meta Misinfo 
Success 

Recall Thinking 
about Accuracy 

Digital Literacy Untargeted Audience +0.3 pts +0.6 pts +1.2 pts 

Video Untargeted Audience -0.8 pts -1.3 pts +1.6 pts 

Random Selection Untargeted Audience -1.3 pts -0.8 pts +2.8 pts 

Digital Literacy Targeted Audience +0.3 pts -0.3 pts +1.3 pts 

Video Targeted Audience +0.1 pts -0.3 pts +2.4 pts 

Random Selection Targeted Audience -1.3 pts -0.1 pts +1.9 pts 
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S2 Twitter Study 
 
S2.1 Extended Methods and Descriptives 
 
S2.1.1 Covariates For Block Randomization Treatment Assignment 
 
In each experiment, we used blocked randomization to assign users to either the control or 
treatment group to ensure balanced treatment assignment across groups and covariate levels. 
Experiments R1 and NR used 15 covariates: pretreatment quality mean, pretreatment quality 
count, pretreatment quality sum, number of active days, number of relevant retweets retrieved, 
number of relevant tweets retrieved, follower count, friend count, favorites count, overall tweet 
count, friend-follow ratio, days since account creation, predicted quality mean, predicted quality 
count, predicted quality sum. Experiment R2 used 10 covariates: number of relevant hashtags, 
number of active days, number of relevant retweets retrieved, number of relevant tweets 
retrieved, follower count, friend count, favorites count, overall tweet count, friend-follow ratio, 
days since account creation. Experiment R3 used 9 covariates: number of active days, number of 
relevant retweets retrieved, number of relevant tweets retrieved, follower count, friend count, 
favorites count, overall tweet count, friend-follow ratio, days since account creation. 
 
S2.1.2 Hashtags For Identifying Eligible Users in Experiment R2 
 
For Experiment R2, we included users who were participating in and sharing content on Twitter 
related to the Canadian anti-vaccination “trucker convoy” protest. From February 11 to 16, 2022, 
we identified 34 popular hashtags and then used these hashtags to search for users that would be 
eligible for our experiment: #canadatruckers #canadiantruckers #convoyforfreedom2022 
#endthemandates #freedomconv #freedomconvoy #freedomconvoycanada2022 #freedomrally 
#freedomtruckers #freetamaralich #freetruckers #holdthelinecanada #honkhonk #honkhonk2022 
#honkhonkhonk #nojabs #ottawaoccupied #ottawasiege #truckerconvoy #truckerconvoy2022 
#truckersconvoy #truckersforfreedom #truckersforfreedom2022 #truckersforfreedomconvoy 
#truckersforfreedomconvoy2022 #truckyoutrudeau #trudeaudictatorshipmustgo 
#trudeauhasgottogo #trudeauisacoward #trudeaumustresign #trudeaumustresign2022 
#trudeaunationaldisgrace #trudeauresign #truenorthstrongandfree. We used a broad range of 
hashtags to cover engagement with the protest movement. Much of the language in the hashtags 
relates to “truckers,” but the protest was motivated by opposition to COVID-19 vaccinations. For 
further details see1‑3. 
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S2.1.3 User Characteristics 
 

 
 

 
Figure S4. Proportion of pre-treatment days with activity for each Twitter experiment. 
Experiment NR users were much less active before the experiment: It excluded relatively recent 
misinformation sharers and included users who had shared misinformation up to 2.5 months 
earlier. 
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Figure S5. User partisanship across all experiments. There were about three times as many 
Republican users as Democrat users. Partisanship was determined based on the politicians and 
organizations a user followed on Twitter. 
 
S2.1.4 Ad Creatives 
 
The ad campaigns used a diverse set of 50 different accuracy prompt creatives, and the 
campaigns were delivered using the academic team’s Twitter thinkaccuracy account (see profile 
page for example video creatives in the timeline). More examples are provided below. All 
creatives were videos that did not have accompanying audio.  
 

 
Figure S6. Four example video creatives used in the Twitter experiments. See @thinkaccuracy 
account’s profile page for more example video creatives in the timeline. 

https://twitter.com/thinkaccuracy00
https://twitter.com/thinkaccuracy00
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S2.1.5 Pre-Registrations 
 
Experiment R1 was not pre-registered.  
 
For Experiment R2, before data collection we submitted a pre-registration (https://osf.io/bqtmd). 
The experiment was run in immediate response to an unexpected unfolding crisis in Canada 
involving a large-scale protest against COVID-19 policies (e.g. mandates), and thus the pre-
registration was assembled quickly and was not that detailed. The pre-registration specified the 
target sample (20k Twitter users as a goal, while acknowledging that the ultimate exact number 
would depend on Twitter’s algorithms) and the basic model structure (condition, pre-experiment 
outcome, and their interaction as the independent variables), but not the specific modeling 
approach. In terms of outcomes, the pre-registration clearly specified that the number of convoy-
related hashtags would be an outcome variable, with the set of hashtags to be considered 
determined by searching for the most popular hashtags using Twitter’s API (rather than by 
looking in the datasets). We also pre-registered that we would create continuous ratings of 
domain quality including all links to domains that we have ratings for, although we did not 
specify what domain rating set we would use, or how we could calculate the quality ratings. A 
year after conducting the initial experiment—but prior to conducting any domain-level 
analyses—we submitted another pre-registration to more precisely specify how we could analyze 
domain quality (https://aspredicted.org/16g_kmz), using the same analyses described below in 
detail for Experiment R3. Given that the hashtag counting outcome was the only outcome that 
was clearly specified in the original pre-registration (and it has the advantage of being more 
precise than the domain-level approach), we focus on the count of relevant hashtags as our key 
outcome variable for study R2, and followed the pre-registered approach (as described in more 
detail in SI section S2.1.2). We then include the domain-level analyses in the second pre-
registration as secondary measures in SI section S2.2.3, S2.2.5 and S2.2.6. Finally, the initial 
pre-registration also said that as a secondary analysis we would analyze primary tweets (rather 
than retweets) but there were comparatively few primary tweets with relevant hashtags (only 
3.7% as many primary tweets as retweets) and thus we did not conduct these analyses due to lack 
of power; the initial pre-registration said that we would also fit models predicting post-campaign 
behavior, but did not specify anything about what this analysis would entail or how the outcomes 
would be calculated (e.g., how long after the end of the campaign we would examine) and 
indicated that we would count the number of “misinformation claims and/or low-quality 
content/domains” shared as an outcome, with the selection of domains and claims to be 
determined post hoc based on fact-checking sites and fact-checkers (but not specifying how 
precisely this would be done). Thus, any such analyses would be considered exploratory anyway, 
and given the large number of analyses in the paper, we did not analyze post-campaign behavior 
or identify claims based on post hoc fact-checking.   
 

https://osf.io/bqtmd
https://aspredicted.org/16g_kmz
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For Experiment R3, we submitted a pre-registration after data was collected, but before any data 
was analyzed (https://aspredicted.org/8ry_485). Below we reproduce the relevant section of the 
pre-registration, in which we describe how we will calculate the count of low quality domains 
shared (used as our primary outcome), a summed low quality score (see SI section S2.2.5), and 
the fraction of low-quality domains (see SI section S2.2.6):  
 

We have quality ratings for over 11,000 domains (obtained from a separate project). These are aggregated 
(via principal component analysis) ratings ("PC1"), which range from 0 (lowest quality) to 100 (highest 
quality). Domains with quality ratings below a particular threshold will be considered "low quality." We 
will run the analyses with thresholds ranging from 40 to 80, in steps of 5. 
 
Count of low-quality domains shared: Domains with ratings below the threshold will be considered low 
quality and counted (those above the threshold will be excluded because they are considered high quality). 
For each user, we will count the number of low-quality domains retweets, both before the campaign ("time 
0") and during the campaign ("time 1"). Blocked random assignment was used to assign users to the control 
and treatment group, and the DVs/outcomes ("t1") were measured daily. Thus, we will fit fixed-effects 
quasipoisson regression models with blocks and days as fixed effects. Standard errors will be clustered on 
blocks. We will include the corresponding pre-campaign "t0" variable in the model as a covariate. Model 
specification/R syntax: fixest::feglm(t1 ~ condition * t0 | block + day, family = "quasipoisson", cluster = 
"block") 
 
Summed low-quality domain score: Domains with ratings below the threshold will be assigned the value 
100 (maximum low quality), whereas domains with ratings above the threshold will be linearly rescaled to 
99-0 (decreasing quality). The model specification is identical to the count model above: fixest::feglm(t1 ~ 
condition * t0 | block + day, family = "quasipoisson", cluster = "block") 
 
Fraction of low-quality domains shared: To compute this metric, we will divide the count of low-quality 
domains shared by the total number of retweets. Unlike summed badness and count of low-quality domains 
(which have no upper bound), this metric is bounded between 0 and 1, so we will fit linear regression 
models. Model specification/R syntax: fixest::feols(t1 ~ condition * t0 | block + day, cluster = "block") 
 
Probing significant interactions: If there are significant interactions, we will split the users into 5 bins 
(based on the covariate "t0") and then examine how the treatment effect differs across bins. 
 
Extreme and missing user values: We will winsorize all variables such that values above the 95th percentile 
will be replaced with the 95th percentile. Users with missing values will be assigned the value 0, reflecting 
that these users did not share any low-quality domains (note that this step happens after winsorizing the 
variables [previous step]). 

  
For Experiment NR, we submitted a pre-registration after data was collected, but before any data 
was analyzed (https://aspredicted.org/mgf_mfr). The pre-registration was substantively identical 
to the pre-registration for Experiment R3, except that the summed low quality score was pre-
registered as the primary outcome. For comparability across experiments, we instead use the 
count of low quality domains as the outcome in our main analysis, but the results are equivalent 
when using the summed low quality score (no significant treatment effect; see SI section S2.2.5) 
 

https://aspredicted.org/8ry_485
https://aspredicted.org/mgf_mfr


S-19 

Finally, in terms of aggregating the results of the four experiments, our decision to meta-analyze 
the results, and our choice of meta-analytic strategy, was determined after all data collection was 
completed and we had decided not to run any more experiments. Thus, the total number of 
experiments we conducted was not influenced by the results of meta-analysis.  
 
S2.2 Results 
 
S2.2.1 Individual Experiments 
 

 
Figure S7. Treatment effect (ITT) on reduction in misinformation sharing for each study and 
meta-analytic effect.  
 

 
Figure S8. Treatment effect on the treated (ATT) on reduction in misinformation sharing and 
meta-analytic effect.  
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S2.2.2 Different Domain Quality Thresholds 
 

 
Figure S9. Meta-analytic treatment effect for different domain quality thresholds. Analyses with 
higher thresholds included more domains but also included more higher quality domains. 
Analyses with lower thresholds included fewer domains but are more likely to contain only lower 
quality domains. 
 
S2.2.3 Other Dependent Measures for Experiment R2 
 
For the analyses in the main text, Experiments R1 and R3 counted the number of low quality 
domains shared whereas Experiment R2 counted the number of relevant hashtags shared. We 
show that we also find significant meta-analytic treatment effects when using two alternative 
dependent measures for Experiment R2: using the count of posts (i.e., retweets) with relevant 
misinformation hashtags (which, unlike the number of hashtags, does not capture the strength of 
the signal given by the hashtags) gives ITT b = -0.034 [-0.058, -0.010], p = .005; ATT b = -0.059 
[-0.101, -0.018], p = .005; using the number of low quality domains shared (which is a much 
coarser measure than hashtag count, as it is not specific to the content of posts) yields ITT b = -
0.024 [-0.045, -0.003], p = .023; ATT b = -0.040 [-0.075, -0.004], p = .028. 
 
S2.2.4 Treatment Effect Heterogeneity 
 
There was no evidence of treatment effect heterogeneity across Experiments R1, R2, and R3 (ps 
> .95; see Figures S7, S8). Unsurprisingly—and as described in the main text—including 
Experiment NR in the meta-analysis led to significant heterogeneity (Q[3] = 10.37, p = .016; see 
Figures S10 and S11 below), because this experiment targeted relatively inactive users who had 
not recently shared links to low quality new sites, but who had done so further in the past. As 
expected, a meta-regression moderator analysis (predicting treatment effect using a Experiment 
NR dummy) showed that the difference between Experiment NR and the other experiments is 
highly significant (Q[1] = 10.27, p = .001; Figures S10 and S11). Importantly, this dummy 
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moderator in the meta-regression model accounted for 100% of the heterogeneity in treatment 
effects across experiments. Additional analyses using numerous different influence diagnostics 
(Figure S12) provides further evidence that Experiment NR is different from the other 
experiments (i.e., is an “influential case” that has a large effect on the pooled effect and 
heterogeneity), and that omitting Experiment NR results in a more precise estimate of the overall 
treatment effect.  
 

 
Figure S10. Treatment effect (ITT) on reduction in misinformation sharing for each study and 
meta-analytic effect. Experiment NR targeted relatively inactive users who had not recently 
shared links to low quality new sites, but who had done so further in the past. 
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Figure S11. Treatment effect (ATT) on reduction in misinformation sharing and meta-analytic 
effect. Experiment NR targeted relatively inactive users who had not recently shared links to low 
quality new sites, but who had done so further in the past. 
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Figure S12. Meta-analysis influence diagnostics for each experiment. Each panel is one 
diagnostic metric. Influence cases are shown in red. Higher values of the following metrics 
suggest an influential case: externally standardized residual (Stand. Residual), difference in fits 
(DFFITS), Cook’s distance, hat (another measure of study weight), and weight. Lower values of 
the following metrics suggest an influential case: covariance ratio, leave-one-out tau-squared, 
and leave-one-out Q.   
 
S2.2.5 Graded Approach to Scoring Domain Quality  
 
We evaluate the robustness of our results by using a graded approach to scoring domain quality. 
Domains with ratings below a given threshold (e.g., 0.70) are assigned the value 1.0 (maximally 
low quality), whereas domains with ratings above that threshold are linearly rescaled to 0.99 to 0. 
As with the main analyses (threshold = 0.70), users in the treatment shared less low quality 
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content than users in the control (ITT b = -0.028 [-0.051, -0.006], p = .014; ATT b = -0.047 [-
0.086, -0.009], p = .017; see Figures S13 and S14). The results are robust to using different 
quality thresholds (Figure S15). This graded measure is the pre-registered primary outcome 
measure for Experiment NR that recruited inactive misinformation sharers (ITT b = 0.011 [-
0.011, 0.032], p = .320; ATT b = 0.017 [-0.018, 0.052], p = .330). 
 

 
Figure S13. Treatment effect (ITT) on reduction in misinformation sharing and meta-analytic 
effect. Experiments R1 and R3 used a graded approach to scoring domain quality. Experiment 
R2 counted the number of relevant low quality hashtags shared. 
 

 
Figure S14. Treatment effect (ATT) on reduction in misinformation sharing and meta-analytic 
effect. Experiments R1 and R3 used a graded approach to scoring domain quality. Experiment 
R2 counted the number of relevant low quality hashtags shared. 
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Figure S15. Meta-analytic treatment effect for different domain quality thresholds (graded 
approach).  
 
 
S2.2.6 Fraction Low-Quality Domains Shared 
 
We also examine whether the treatment reduced the proportion of low-quality content shared by 
users—defined as the number of tweets low-quality domains shared divided by the total number 
of retweets shared by each user. This analysis was conceptualized as a way to test whether the 
treatment was specifically affecting sharing of low quality content, versus content more 
generally. We later decided that simply comparing the treatment effect on count of low quality 
retweets to the treatment effect on count of all other retweets (as reported in the main text) was a 
better/more direct measure of this quantity. However, because this fraction analysis was pre-
registered, we report it here.  
 
There was no significant effect of the treatment on this outcome across experiments R1, R2, and 
R3 (ITT b = -0.0002 [-0.0006, 0.0002], p = .385; ATT b = -0.0003 [-0.001, 0.0004], p = .454; 
see Figures S16, S17, and S18) or in experiment NR (ITT b = -0.0004 [-0.001, 0.0001], p = .095; 
ATT b = -0.0007 [-0.002, 0.0001], p = .097). 
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Figure S16. Treatment effect (ITT) on reduction in misinformation sharing and meta-analytic 
effect. The outcome was fraction low-quality domains shared: (number of tweets with low-quality 
domains shared / all retweets). Estimates for each study were obtained from fixed-effects OLS.  
 

 
Figure S17. Treatment effect (ATT) on reduction in misinformation sharing and meta-analytic 
effect. The outcome was fraction low-quality domains shared: (number of tweets with low-quality 
domains shared / all retweets). Estimates for each study were obtained from fixed-effects OLS.  
 

 
Figure S18. Meta-analytic treatment effect for different domain quality thresholds. The outcome 
was fraction low-quality domains shared: (number of tweets with low-quality domains shared / 
all retweets).  
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S2.2.7 Winsorization 
 
In the main text, we winsorized variables by replacing values above the 95th percentile of all 
values with the 95th percentile of all values. Winsorization is helpful and often necessary 
because social media sharing data tend to have heavy right skews, and importantly, outliers (i.e., 
the few users who share large amounts of content) that can bias the causal effect estimates (but 
quasi-Poisson models can help to partly address these issues). When we winsorize at the 99th 
percentile, we still find that users in the treatment shared less low quality content than users in 
the control (ITT b = -0.036 [-0.065, -0.007], p = .014; ATT b = -0.062 [-0.112, -0.012], p = .016; 
see Figures S19 and S20). The results are relatively robust to using different quality thresholds 
(Figure S21). 

Figure S19. Treatment effect (ITT) on reduction in misinformation sharing and meta-analytic 
effect. Experiments R1 and R3 used a graded approach to scoring domain quality. The outcome 
and pre-treatment variables are winsorized at the 99th percentile. 
 

 
Figure S20. Treatment effect (ATT) on reduction in misinformation sharing and meta-analytic 
effect. Experiments R1 and R3 used a graded approach to scoring domain quality. The outcome 
and pre-treatment variables are winsorized at the 99th percentile. 
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Figure S21. Meta-analytic treatment effect for different domain quality thresholds. The outcome 
and pre-treatment variables are winsorized at the 99th percentile. 
 
Similarly, when we do not winsorize, we find that users in the treatment shared less low quality 
content than users in the control (ITT b = -0.04 [-0.08, -0.002], p = .038; ATT b = -0.07 [-0.14, -
0.004], p = .039; see Figures S22 and S23). The results are also relatively robust to using 
different quality thresholds (Figure S24). 
 

 
Figure S22. Treatment effect (ITT) on reduction in misinformation sharing and meta-analytic 
effect. Experiments R1 and R3 used a graded approach to scoring domain quality. The outcome 
and pre-treatment variables are not winsorized. 
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Figure S23. Treatment effect (ATT) on reduction in misinformation sharing and meta-analytic 
effect. Experiments R1 and R3 used a graded approach to scoring domain quality. The outcome 
and pre-treatment variables are not winsorized. 
 

 
Figure S24. Meta-analytic treatment effect for different domain quality thresholds. The outcome 
and pre-treatment variables are not winsorized. 
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