Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Reading is both a visual and a linguistic task, and as such it relies on both general-purpose, visual mechanisms and more abstract, meaning-oriented processes. Disentangling the roles of these resources is of paramount importance in reading research. The present study capitalizes on the coupling of Fast Periodic Visual Stimulation (FPVS; Rossion, 2014) and MEG recordings to address this issue and investigate the role of different kinds of visual and linguistic units in the visual word identification system. We compared strings of pseudo-characters (BACS; C. Vidal & Chetail, 2017); strings of consonants (e.g,. sfcl); readable, but unattested strings (e.g., amsi); frequent, but non-meaningful chunks (e.g., idge); suffixes (e.g., ment); and words (e.g., vibe); and looked for discrimination responses with a particular focus on the ventral, occipito-temporal regions. The results revealed sensitivity to alphabetic, readable, familiar and lexical stimuli. Interestingly, there was no discrimination between suffixes and equally frequent, but meaningless endings, thus highlighting a lack of sensitivity to semantics. Taken together, the data suggest that the visual word identification system, at least in its early processing stages, is particularly tuned to form-based regularities, most likely reflecting its reliance on general-purpose, statistical learning mechanisms that are a core feature of the visual system as implemented in the ventral stream.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.